1
|
Tulinska J, Kobylinska L, Lehotska Mikusova M, Babincova J, Mitina N, Rollerova E, Liskova A, Madrova N, Alacova R, Zaichenko A, Lesyk R, Horvathova M, Szabova M, Lukan N, Vari S. PEG-Polymeric Nanocarriers Alleviate the Immunosuppressive Effects of Free 4-Thiazolidinone-Based Chemotherapeutics on T Lymphocyte Function and Cytokine Production. Int J Nanomedicine 2024; 19:14021-14041. [PMID: 39742092 PMCID: PMC11687095 DOI: 10.2147/ijn.s479137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Our study aimed to assess the effects of anticancer 4-thiazolidinone-based free water-insoluble therapeutics Les-3288 and Les-3833 and their waterborne complexes with branched PEG-containing polymeric carriers (A24-PEG550 and A24-PEG750) on immune response. Methods Human peripheral blood was used to study in vitro lymphocyte proliferative function, leukocyte phagocytic activity and respiratory burst, and cytokine production. Results The binding of the polymer to the anticancer drug Les-3288, which is intended to mitigate the immunosuppressive effects of the free drug on the proliferative activity of T lymphocytes and T-dependent B cells, demonstrated comparable efficacy for both A24-PEG750 and A24-PEG550 nanocarriers. Furthermore, it was observed that the drug-polymer complex significantly increased the reduced levels of IFN-γ and TNF-α resulting from free Les-3288. Conversely, the reduced levels of IL-6 and IL-4 remained unchanged. Administration of either form of Les-3288 had no effect on the phagocytic activity of monocytes, granulocytes or the respiratory burst of granulocytes. Due to the reduced cell viability and increased cytotoxicity associated with Les-3833, tenfold lower doses were selected for the immune assays. The effects of free Les-3833 on lymphocyte proliferative function resulted in significant stimulation of T-dependent B cells. The binding of Les-3833 to the smaller carrier, A24-PEG550 was found to maintain the stimulatory effect on B lymphocytes. While no effect of free Les-3833 on the granulocyte phagocytic activity was observed, binding of Les-3833 to both polymeric carriers resulted in a decrease in granulocyte phagocytic activity and respiratory burst, with no observable effect on monocytes. Monitoring of cytokine production showed no significant effect of either form of Les-3833 on the production of IFN-γ and IL-6. In the context of TNF-α and IL-4, the positive effect of polymer binding on restoring suppressed cytokine levels induced by the Les-3833 free drug was slightly more favorable for A24-PEG750. Conclusion The drug complexation with novel PEGylated carriers is a promising way for efficient therapeutic development.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Julia Babincova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Natalia Mitina
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Eva Rollerova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Nikola Madrova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Alexander Zaichenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and BioOrganic Chemistry Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Sandor Vari
- International Research and Innovation in Medicine Program, Cedars - Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Paul V, Pandhi S, Mahato DK, Agarwal A, Tripathi AD. Polyhydroxyalkanoates (PHAs) and its copolymer nanocarrier application in cancer treatment: An overview and challenges. Int J Biol Macromol 2024; 277:134201. [PMID: 39069052 DOI: 10.1016/j.ijbiomac.2024.134201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
In the modern era, nanomedicine has developed novel drug-delivery strategies to improve chemotherapy. Nanotechnological-based treatment approaches for cancer through targeted tumour drug delivery and stimulus-responsive tumour microenvironment have gained tremendous success in oncology. The application of building block materials of these nanomedicines plays a vital role in cancer remediation. Despite successful application in various medical treatments, nanocarriers' lack of biodegradability and biocompatibility makes their use in a clinical context difficult. In addition, the preparation of current drug delivery systems is a major constraint. The current cancer treatment methods aim to destroy diseased tissue, frequently with the use of radiation and chemotherapy. These treatment options are accompanied by a significant level of toxicity, which has excellent potential to further medical issues in the afflicted patient. Polyhydroxyalkanoate (PHA) polymers are biodegradable and biocompatible polyesters that can potentially be used as nanoparticular delivery systems for cancer treatment. Previously, PHA has shown tremendous application as a packaging material in the food and pharma industry. PHA-based nanocarriers are an effective drug delivery system because of their non-immunogenicity, regulated drug release, high drug loading capacity, and targeted drug delivery. This review focuses on creating and using PHA-based nanocarriers in cancer treatment. Despite its many benefits, PHA-based nanocarriers have yet to progress to clinical trials for drug delivery applications due to several issues, including the polymers' hydrophobic nature and high production costs. This review examines these challenges along with existing alternatives.
Collapse
Affiliation(s)
- Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; Department of Food Processing Technology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia.
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, University of Delhi, New Delhi, India.
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Yu Y, Li S, Kong L, Du Y, Liu Y, Zang J, Guo R, Zhang L, Zhao Z, Ju R, Li X. Development of a brain-targeted nano drug delivery system to enhance the treatment of neurodegenerative effects of resveratrol. J Liposome Res 2024; 34:435-451. [PMID: 38032385 DOI: 10.1080/08982104.2023.2290050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023]
Abstract
As the aging population continues to increase, aging-related inflammation, oxidative stress, and neurodegenerative diseases have become serious global health threats. Resveratrol, a star molecule in natural polyphenols, has been widely reported to have physiological activities such as anti-aging, anti-inflammatory, antioxidant, and neuroprotection. However, its poor water solubility, rapid metabolism, low bioavailability and poor targeting ability, which limits its application. Accordingly, a brain-targeted resveratrol liposome (ANG-RES-LIP) was developed to solve these issues. Experimental results showed that ANG-RES-LIP has a uniform size distribution, good biocompatibility, and a drug encapsulation rate of over 90%. Furthermore, in vitro cell experiments showed that the modification of the targeting ligand ANG significantly increased the capability of RES to cross the BBB and neuronal uptake. Compared with free RES, ANG-RES-LIP demonstrated stronger antioxidant activity and the ability to rescue oxidatively damaged cells from apoptosis. Additionally, ANG-RES-LIP showed the ability to repair damaged neuronal mitochondrial membrane potential. In vivo experiments further demonstrated that ANG-RES-LIP improved cognitive function by reducing oxidative stress and inflammation levels in the brains of aging model mice, repairing damaged neurons and glial cells, and increasing brain-derived neurotrophic factor. In summary, this study not only provides a new method for further development and application of resveratrol but also a promising strategy for preventing and treating age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| | - Shutong Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| | - Yumeng Du
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| | - Juan Zang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| | - Ruibo Guo
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| | - Ziyue Zhao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| | - Ruijun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine - Dalian Campus, Dalian, China
| |
Collapse
|
5
|
Fu S, Zheng A, Wang L, Chen J, Zhao B, Zhang X, McKenzie VAA, Yang Z, Leblanc RM, Prabhakar R, Zhang F. Tuneable redox-responsive albumin-hitchhiking drug delivery to tumours for cancer treatment. J Mater Chem B 2024; 12:6563-6569. [PMID: 38899918 DOI: 10.1039/d4tb00751d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This paper outlines a novel drug delivery system for highly cytotoxic mertansine (DM1) by conjugating to an albumin-binding Evans blue (EB) moiety through a tuneable responsive disulfide linker, providing valuable insights for the development of effective drug delivery systems toward cancer therapy.
Collapse
Affiliation(s)
- Shiwei Fu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Ajay Zheng
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Bowen Zhao
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Xiao Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Zixin Yang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
- The Dr John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
6
|
El-Tanani M, Nsairat H, Aljabali AA, Matalka II, Alkilany AM, Tambuwala MM. Dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer. Expert Opin Drug Deliv 2024; 21:309-324. [PMID: 38284386 DOI: 10.1080/17425247.2024.2311812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The resistance to chemotherapy is a significant hurdle in breast cancer treatment, prompting the exploration of innovative strategies. This review discusses the potential of dual-loaded liposomal carriers to combat chemoresistance and improve outcomes for breast cancer patients. AREAS COVERED This review discusses breast cancer chemotherapy resistance and dual-loaded liposomal carriers. Drug efflux pumps, DNA repair pathways, and signaling alterations are discussed as chemoresistance mechanisms. Liposomes can encapsulate several medicines and cargo kinds, according to the review. It examines how these carriers improve medication delivery, cancer cell targeting, and tumor microenvironment regulation. Also examined are dual-loaded liposomal carrier improvement challenges and techniques. EXPERT OPINION The use of dual-loaded liposomal carriers represents a promising and innovative strategy in the battle against chemotherapy resistance in breast cancer. This article has explored the various mechanisms of chemoresistance in breast cancer, emphasizing the potential of dual-loaded liposomal carriers to overcome these challenges. These carriers offer versatility, enabling the encapsulation and precise targeting of multiple drugs with different modes of action, a crucial advantage when dealing with the complexity of breast cancer treatment.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
7
|
Christyani G, Carswell M, Qin S, Kim W. An Overview of Advances in Rare Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:1201. [PMID: 38256274 PMCID: PMC10815984 DOI: 10.3390/ijms25021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as the leading global cause of mortality, with rare cancer comprising 230 distinct subtypes characterized by infrequent incidence. Despite the inherent challenges in addressing the diagnosis and treatment of rare cancers due to their low occurrence rates, several biomedical breakthroughs have led to significant advancement in both areas. This review provides a comprehensive overview of state-of-the-art diagnostic techniques that encompass new-generation sequencing and multi-omics, coupled with the integration of artificial intelligence and machine learning, that have revolutionized rare cancer diagnosis. In addition, this review highlights the latest innovations in rare cancer therapeutic options, comprising immunotherapy, targeted therapy, transplantation, and drug combination therapy, that have undergone clinical trials and significantly contribute to the tumor remission and overall survival of rare cancer patients. In this review, we summarize recent breakthroughs and insights in the understanding of rare cancer pathophysiology, diagnosis, and therapeutic modalities, as well as the challenges faced in the development of rare cancer diagnosis data interpretation and drug development.
Collapse
Affiliation(s)
| | | | - Sisi Qin
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| |
Collapse
|
8
|
Mir M, Akhter MH, Afzal O, Rab SO, Altamimi ASA, Alossaimi MA, Nasar Mir Najib Ullah S, Jaremko M, Emwas AH, Ahmad S, Alam N, Ali MS. Design-of-Experiment-Assisted Fabrication of Biodegradable Polymeric Nanoparticles: In Vitro Characterization, Biological Activity, and In Vivo Assessment. ACS OMEGA 2023; 8:38806-38821. [PMID: 37901564 PMCID: PMC10601053 DOI: 10.1021/acsomega.3c01153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 10/31/2023]
Abstract
Berberine (BER) is an alkaloid obtained from berberis plant having broad biological activities including anticancer. BER-encapsulated alginate (ALG)/chitosan (CHS) nanoparticles (BER-ALG/CHS-NPs) were developed for long-acting improved treatment in breast cancer. The surface of the NPs was activated by a conjugation reaction, and thereafter, the BER-ALG/CHS-NP surface was grafted with folic acid (BER-ALG/CHS-NPs-F) for specific targeting in breast cancer. BER-ALG/CHS-NPs-F was optimized by applying the Box-Behnken design using Expert design software. Moreover, formulations are extensively evaluated in vitro for biopharmaceutical performances and tested for cell viability, cellular uptake, and antioxidant activity. The comparative pharmacokinetic study of formulation and free BER was carried out in animals for estimation of bioavailability. The particle size recorded for the diluted sample using a Malvern Zetasizer was 240 ± 5.6 nm. The ζ-potential and the predicted % entrapment efficiency versus (vs) observed were +18 mV and 83.25 ± 2.3% vs 85 ± 3.5%. The high % drug release from the NPs was recorded. The analytical studies executed using infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction expressed safe combinations of the components in the formulation and physical state of the drug revealed to be amorphous in the formulation. Cytotoxicity testing demonstrated that the formulation effectively lowered the cell viability and IC50 of the tested cell line in comparison to a raw drug. The cellular uptake of BER-ALG/CHS-NPs-F was 5.5-fold higher than that of BER-suspension. The antioxidant capacities of BER-ALG/CHS-NPs-F vs BER-suspension by the DPPH assay were measured to be 62.3 ± 2.5% vs 30 ± 6%, indicating good radical scavenging power of folate-conjugated NPs. The developed formulation showed a 4.4-fold improved oral bioavailability compared to BER-suspension. The hemolytic assay intimated <2% destruction of erythrocytes by the developed formulation. The observed experimental characterization results such as cytotoxicity, cellular uptake, antioxidant activity, and improved absorption suggested the effectiveness of BER-ALG/CHS-NPs-F toward breast cancer.
Collapse
Affiliation(s)
- Mushtaq
Ahmad Mir
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Md Habban Akhter
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Safia Obaidur Rab
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Sarfaraz Ahmad
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Nawazish Alam
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Md Sajid Ali
- Department
of Pharmaceutics, College of Pharmacy, Jazan
University, Jazan 45142, Saudi Arabia
| |
Collapse
|
9
|
Liang T, Feng Z, Zhang X, Li T, Yang T, Yu L. Research progress of calcium carbonate nanomaterials in cancer therapy: challenge and opportunity. Front Bioeng Biotechnol 2023; 11:1266888. [PMID: 37811375 PMCID: PMC10551635 DOI: 10.3389/fbioe.2023.1266888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer has keeping the main threat to the health of human being. Its overall survival rate has shown rare substantial progress in spite of the improving diagnostic and treatment techniques for cancer in recent years. Indeed, such classic strategies for malignant tumor as surgery, radiation and chemotherapy have been developed and bring more hope to the patients, but still been accompanied by certain limitations, which include the challenge of managing large wound sizes, systemic toxic side effects, and harmful to the healthy tissues caused by imprecise alignment with tumors in radiotherapy. Furthermore, immunotherapy exhibits a limited therapeutic effect in advanced tumors which is reported only up to 25%-30%. The combination of nanomaterials and cancer treatment offers new hope for cancer patients, demonstrating strong potential in the field of medical research. Among the extensively utilized nanomaterials, calcium carbonate nanomaterials (CCNM) exhibit a broad spectrum of biomedical applications due to their abundant availability, cost-effectiveness, and exceptional safety profile. CCNM have the potential to elevate intracellular Ca2+ levels in tumor cells, trigger the mitochondrial damage and ultimately lead to tumor cell death. Moreover, compared with other types of nanomaterials, CCNM exhibit remarkable advantages as delivery systems owing to their high loading capacity, biocompatibility and biodegradability. The purpose of this review is to provide an overview of CCNM synthesis, focusing on summarizing its diverse roles in cancer treatment and the benefits and challenges associated with CCNM in cancer therapy. Hoping to present the significance of CCNM as for the clinical application, and summarize information for the design of CCNM and other types of nanomaterials in the future.
Collapse
Affiliation(s)
- Tiantian Liang
- Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Zongqi Feng
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Xiao Zhang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tianfang Li
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Tingyu Yang
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Lan Yu
- Clinical Medical Research Center, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Disease, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Medical Sciences, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
10
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
11
|
Efimova AA, Popov AS, Kazantsev AV, Semenyuk PI, Le-Deygen IM, Lukashev NV, Yaroslavov AA. pH-Sensitive Liposomes with Embedded 3-(isobutylamino)cholan-24-oic Acid: What Is the Possible Mechanism of Fast Cargo Release? MEMBRANES 2023; 13:407. [PMID: 37103834 PMCID: PMC10141028 DOI: 10.3390/membranes13040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
pH-sensitive liposomes have great potential for biomedical applications, in particular as nanocontainers for the delivery of biologically active compounds to specific areas of the human body. In this article, we discuss the possible mechanism of fast cargo release from a new type of pH-sensitive liposomes with embedded ampholytic molecular switch (AMS, 3-(isobutylamino)cholan-24-oic acid) with carboxylic anionic groups and isobutylamino cationic ones attached to the opposite ends of the steroid core. AMS-containing liposomes demonstrated the rapid release of the encapsulated substance when altering the pH of an outer solution, but the exact mechanism of the switch action has not yet been accurately determined. Here, we report on the details of fast cargo release based on the data obtained using ATR-FTIR spectroscopy as well as atomistic molecular modeling. The findings of this study are relevant to the potential application of AMS-containing pH-sensitive liposomes for drug delivery.
Collapse
Affiliation(s)
- Anna A. Efimova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Anton S. Popov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey V. Kazantsev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninkie Gory 1/40, 119992 Moscow, Russia
| | - Irina M. Le-Deygen
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Nikolay V. Lukashev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexander A. Yaroslavov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
12
|
Advances in Nanomaterials for Drug Delivery. Biomedicines 2023; 11:biomedicines11020399. [PMID: 36830935 PMCID: PMC9953327 DOI: 10.3390/biomedicines11020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, nanomedicine has provided several high-performance tools for overcoming biomedical challenges, resulting in numerous patents [...].
Collapse
|
13
|
Tefas LR, Toma I, Sesarman A, Banciu M, Jurj A, Berindan-Neagoe I, Rus L, Stiufiuc R, Tomuta I. Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer. J Liposome Res 2022:1-17. [PMID: 36472146 DOI: 10.1080/08982104.2022.2153139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Colorectal cancer remains one of the major causes of morbidity and mortality in both developed and emerging countries. Cancer stem cells (CSCs) are a subpopulation of cells within the tumor mass harboring stem cell characteristics, considered responsible for tumor initiation, growth, relapse, and treatment failure. Lately, it has become clear that both CSCs and non-CSCs have to be eliminated for the successful eradication of cancer. Drug delivery systems have been extensively employed to enhance drug efficacy. In this study, salinomycin (SAL), a selective anti-CSC drug, and gemcitabine (GEM), a conventional anticancer drug, were co-loaded in liposomes and tested for optimal therapeutic efficacy. We employed the Design of Experiments approach to develop and optimize a liposomal delivery system for GEM and SAL. The antiproliferative effect of the liposomes was evaluated in SW-620 human colorectal cancer cells. The GEM and SAL-loaded liposomes exhibited adequate size, polydispersity, zeta potential, and drug content. The in vitro release study showed a sustained release of GEM and SAL from the liposomes over 72 h. Moreover, no sign of liposome aggregation was seen over 1 month and in a biological medium (FBS). The in vitro cytotoxic effects of the co-loaded liposomes were superior to that of single GEM either in free or liposomal form. The combination therapy using GEM and SAL co-loaded in liposomes could be a promising strategy for tackling colorectal cancer.
Collapse
Affiliation(s)
- Lucia Ruxandra Tefas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioana Toma
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Lucia Rus
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Rares Stiufiuc
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Li Y, Su Y, Li Z, Chen Y. Supramolecular Combination Cancer Therapy Based on Macrocyclic Supramolecular Materials. Polymers (Basel) 2022; 14:polym14224855. [PMID: 36432982 PMCID: PMC9696801 DOI: 10.3390/polym14224855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Supramolecular combination therapy adopts supramolecular materials to design intelligent drug delivery systems with different strategies for cancer treatments. Thereinto, macrocyclic supramolecular materials play a crucial role in encapsulating anticancer drugs to improve anticancer efficiency and decrease toxicity towards normal tissue by host-guest interaction. In general, chemotherapy is still common therapy for solid tumors in clinics. However, supramolecular combination therapy can overcome the limitations of the traditional single-drug chemotherapy in the laboratory findings. In this review, we summarized the combination chemotherapy, photothermal chemotherapy, and gene chemotherapy based on macrocyclic supramolecular materials. Finally, the application prospects in supramolecular combination therapy are discussed.
Collapse
|
15
|
Cantelli A, Malferrari M, Mattioli EJ, Marconi A, Mirra G, Soldà A, Marforio TD, Zerbetto F, Rapino S, Di Giosia M, Calvaresi M. Enhanced Uptake and Phototoxicity of C 60@albumin Hybrids by Folate Bioconjugation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193501. [PMID: 36234629 PMCID: PMC9565331 DOI: 10.3390/nano12193501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/12/2023]
Abstract
Fullerenes are considered excellent photosensitizers, being highly suitable for photodynamic therapy (PDT). A lack of water solubility and low biocompatibility are, in many instances, still hampering the full exploitation of their potential in nanomedicine. Here, we used human serum albumin (HSA) to disperse fullerenes by binding up to five fullerene cages inside the hydrophobic cavities. Albumin was bioconjugated with folic acid to specifically address the folate receptors that are usually overexpressed in several solid tumors. Concurrently, tetramethylrhodamine isothiocyanate, TRITC, a tag for imaging, was conjugated to C60@HSA in order to build an effective phototheranostic platform. The in vitro experiments demonstrated that: (i) HSA disperses C60 molecules in a physiological environment, (ii) HSA, upon C60 binding, maintains its biological identity and biocompatibility, (iii) the C60@HSA complex shows a significant visible-light-induced production of reactive oxygen species, and (iv) folate bioconjugation improves both the internalization and the PDT-induced phototoxicity of the C60@HSA complex in HeLa cells.
Collapse
|
16
|
Characterization of PDL1 enhanced siRNA/albumin liposome for effective therapeutic function in lung cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04298-2. [PMID: 35997823 DOI: 10.1007/s00432-022-04298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE The applications of liposomes are limited due to poor structural stability and short drug circulation time. This study aims to build an albumin-based liposomal delivery system to provide strategies for tumor specificity, efficient gene delivery and effective release of albumin liposomes. METHODS In this study, siRNA loaded PDL1-targeted albumin liposome was constructed for the treatment of lung cancer and its function was evaluated. Physical parameters such as particle size, potential and infrared spectrum were detected and microscopic morphology was observed by electron microscopy to detect the binding and uptake capacity of albumin liposome with cells. The optimal preparation process and binding ratio of PDL1-targeted albumin liposome/siRNA complex were determined. RESULTS The constructed siRNA loaded PDL1-targeted albumin liposomes has low toxicity, high loading rate and tumor cell targeted gene therapy ability. Moreover, it increased T cell activation and down-regulated siRNA expression, effectively realizing the inhibition of lung cancer cells. CONCLUSION The results showed that the PDL1-targeted albumin liposome could be used as a high efficient delivery vector of siRNA, and was a high efficient and safe nano vector for tumor targeted gene therapy.
Collapse
|
17
|
Yavari M, Jaafari MR, Mirzavi F, Mosayebi G, Ghazavi A, Ganji A. Anti-tumor effects of PEGylated-nanoliposomes containing ginger extract in colorectal cancer-bearing mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:890-896. [PMID: 36033959 PMCID: PMC9392564 DOI: 10.22038/ijbms.2022.63870.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/26/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVES This study aimed to develop a nanoliposomal formulation containing ginger ethanolic extract with a higher therapeutic effect for cancer treatment. MATERIALS AND METHODS The present study aimed to prepare PEGylated nanoliposomal ginger through the thin film hydration method plus extrusion. Physicochemical characteristics were evaluated, and the toxicity of the prepared liposomes was assessed using the MTT assay. In addition, tumor size was monitored in colorectal cancer-bearing mice. Also, the anticancer effects of liposomal ginger were evaluated by gene expression assay of Bax and Bcl-2 and cytokines including TNF-α, TGF-β, and IFN-γ by Real-time PCR. Also, cytotoxic T lymphocytes (CTLs) and regulatory T lymphocytes (Treg cells) were counted in spleen and tumor tissue by flow cytometry assay. RESULTS The nanoliposomes' particle size and polydispersity index (PDI) were 94.95 nm and 0.246 nm, respectively. High encapsulation capacity (80 %) confirmed the technique's efficiency, and the release rate of the extract was 85% at pH 6.5. In addition, this study showed that liposomal ginger at 100 mg/kg/day enhanced the expression of Bax (P<0.05) and IFN-γ (P<0.01) compared with ginger extract in the mouse model. Also, the number of tumor-infiltrating lymphocytes (TILs) and CTLs cell count in tumor tissue showed a significant increase in the LipGin group compared with the Gin group (P<0.05). CONCLUSION Results indicated that the liposomal ginger enhanced the antitumor activity; therefore, the prepared liposomal ginger can be used in future clinical trials.
Collapse
Affiliation(s)
- Maryam Yavari
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ghasem Mosayebi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran , Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran,Corresponding author: Ali Ganji. Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran. Tel: +98-34173548; Fax: +98-34173548;
| |
Collapse
|