1
|
Khamees Thabet H, Ragab A, Imran M, Helal MH, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Rakan Alshammari M, S Abusaif M, A Ammar Y. Discovery of new anti-diabetic potential agents based on paracetamol incorporating sulfa-drugs: Design, synthesis, α-amylase, and α-glucosidase inhibitors with molecular docking simulation. Eur J Med Chem 2024; 275:116589. [PMID: 38878516 DOI: 10.1016/j.ejmech.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Uncontrolled diabetes can lead to hyperglycemia, which causes neuropathy, heart attacks, retinopathy, and nervous system damage over time, therefore, controlling hyperglycemia using potential drug target inhibitors is a promising strategy. This work focused on synthesizing new derivatives via the diazo group, using a hybridization strategy involving two approved drugs, paracetamol and several sulfonamides. The newly designed diazo-paracetamols 5-12 were fully characterized and then screened for in vitro α-amylase and α-glucosidase activities and exhibited inhibitory percentages (IP) = 92.5-96.5 % and 91.0-95.7 % compared to Acarbose IP = 96.5 and 95.8 %, respectively at 100 μg/mL. The IC50 values of the synthesized derivatives were evaluated against α-amylase and α-glucosidase enzymes, and the results demonstrated moderate to potent activity. Among the tested diazo-paracetamols, compound 11 was found to have the highest potency activity against α-amylase with IC50 value of 0.98 ± 0.015 μM compared to Acarbose IC50 = 0.43 ± 0.009 μM, followed by compound 10 (IC50 = 1.55 ± 0.022 μM) and compound 9 (IC50 = 1.59 ± 0.023 μM). On the other hand, for α-glucosidase, compound 10 with pyrimidine moiety demonstrated the highest inhibitory activity with IC50 = 1.39 ± 0.021 μM relative to Acarbose IC50 = 1.24 ± 0.029 μM and the order of the most active derivatives was 10 > 9 (IC50 = 2.95 ± 0.046 μM) > 11 (IC50 = 5.13 ± 0.082 μM). SAR analysis confirmed that the presence of 4,5-dimethyl-isoxazole or pyrimidine nucleus attached to the sulfonyl group is important for activity. Finally, the docking simulation was achieved to determine the mode of binding interactions for the most active derivatives in the enzyme's active site.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam, 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Malek Rakan Alshammari
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
2
|
Omran MM, Kamal MM, Ammar YA, Abusaif MS, Ismail MMF, Mansour HH. Pharmacological investigation of new niclosamide-based isatin hybrids as antiproliferative, antioxidant, and apoptosis inducers. Sci Rep 2024; 14:19818. [PMID: 39191850 DOI: 10.1038/s41598-024-69250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
A group of Niclosamide-linked isatin hybrids (Xo, X1, and X2) was created and examined using IR, 1HNMR, 13C NMR, and mass spectrometry. These hybrids' cytotoxicity, antioxidant, cell cycle analysis, and apoptosis-inducing capabilities were identified. Using the SRB assay, their cytotoxicity against the human HCT-116, MCF-7, and HEPG-2 cancer cell lines, as well as VERO (African Green Monkey Kidney), was evaluated. Compound X1 was the most effective compound. In HCT-116 cells, compound X1 produced cell cycle arrest in the G1 phase, promoted cell death, and induced apoptosis through mitochondrial membrane potential breakdown in comparison to niclosamide and the control. Niclosamide and compound X1 reduced reactive oxygen species generation and modulated the gene expression of BAX, Bcl-2, Bcl-xL, and PAR-4 in comparison to the control. Docking modeling indicated their probable binding modalities with the XIAP BIR2 domain, which selectively binds caspase-3/7, and highlighted their structural drivers of activity for further optimization investigations. Computational in silico modeling of the new hybrids revealed that they presented acceptable physicochemical values as well as drug-like characteristics, which may introduce them as drug-like candidates. The study proved that compound X1 might be a novel candidate for the development of anticancer agents as it presents antiproliferative activity mediated by apoptosis.
Collapse
Affiliation(s)
- Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona M Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Magda M F Ismail
- Department of Medicinal Pharmaceutical Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | - Heba H Mansour
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City Cairo, Egypt.
| |
Collapse
|
3
|
Ahmed S, Queen A, Irfan I, Siddiqui MN, Abdulhameed Almuqdadi HT, Setia N, Ansari J, Hussain A, Hassan MI, Abid M. Vanillin-Isatin Hybrid-Induced MARK4 Inhibition As a Promising Therapeutic Strategy against Hepatocellular Carcinoma. ACS OMEGA 2024; 9:25945-25959. [PMID: 38911744 PMCID: PMC11190929 DOI: 10.1021/acsomega.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4) is a serine-threonine kinase that phosphorylates microtubule-associated proteins (MAPs) and increases the microtubule dynamics. Due to its direct involvement in initiation, cell division, progression, and cancer metastasis, MARK4 is considered a potential therapeutic target. Here, we designed, synthesized, and characterized vanillin-isatin hybrids and evaluated their MARK4 inhibitory potential. All of the compounds strongly bind to MARK4 and interact closely with the active site residues. Finally, the compound VI-9 was selected for further investigation due to its high binding affinity and strong MARK4 inhibitory potential. Tau-phosphorylation assay has further confirmed that VI-9 significantly reduced the activity of MARK4. Compared with vanillin, VI-9 showed a better binding affinity and MARK4 inhibitory potential. Cell viability assays on human hepatocellular carcinoma (HCC) cell lines C3A and SNU-475 revealed that VI-9 inhibited their growth and proliferation. In addition, these compounds were nontoxic (up to 200 μM) for noncancerous (HEK-293) cells. Interestingly, VI-9 induces apoptosis and decreases the metastatic potential of the C3A and SNU-475 cell lines. The present work opens a newer avenue for vanillin-isatin hybrids and their derivatives in developing MARK4-targeted anticancer therapies.
Collapse
Affiliation(s)
- Sarfraz Ahmed
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Aarfa Queen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Iram Irfan
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Naseem Siddiqui
- Department
of Orthopaedics, Indira Gandhi Medical College
& Hospital, Shimla, Himachal Pradesh 171001, India
| | - Haider Thaer Abdulhameed Almuqdadi
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department
of Chemistry, College of Science, Al-Nahrain
University, Baghdad 10070, Iraq
| | - Nisha Setia
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Jaoud Ansari
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia
Nagar, New Delhi 110025, India
| | - Mohammad Abid
- Medicinal
Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
4
|
Zhu YS, Zhou SR, Zhang HH, Wang T, Chen XD. Inhibition of EGFR attenuates EGF-induced activation of retinal pigment epithelium cell via EGFR/AKT signaling pathway. Int J Ophthalmol 2024; 17:1018-1027. [PMID: 38895677 PMCID: PMC11144774 DOI: 10.18240/ijo.2024.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 06/21/2024] Open
Abstract
AIM To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS EGF treatment for 24h induced a significant increase of ARPE-19 cells' viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells' viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).
Collapse
Affiliation(s)
- Yu-Sheng Zhu
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Si-Rui Zhou
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Hui-Hui Zhang
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
| | - Tong Wang
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| | - Xiao-Dong Chen
- Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi Province, China
- First Affiliated Hospital of Northwest University, Northwest University, Xi'an 710069, Shaanxi Province, China
- Department of Ophthalmology, Xi'an No.1 Hospital, Xi'an 710002, Shaanxi Province, China
- Shaanxi Institute of Ophthalmology, Shaanxi Provincial Key Lab of Ophthalmology, Clinical Research Center for Ophthalmology Diseases of Shaanxi Province, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
5
|
Ragab A, Salem MA, Ammar YA, Aboulthana WM, Helal MH, Abusaif MS. Explore new quinoxaline pharmacophore tethered sulfonamide fragments as in vitro α-glucosidase, α-amylase, and acetylcholinesterase inhibitors with ADMET and molecular modeling simulation. Drug Dev Res 2024; 85:e22216. [PMID: 38831547 DOI: 10.1002/ddr.22216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
6
|
Youssif YM, Elhagali GAM, Zahran MA, Ahmed FA, Ragab A. Utilising UPLC-QTOF-MS/MS to determine the phytochemical profile and in vitro cytotoxic potential of Ziziphora capitata L. with molecular docking simulation. Nat Prod Res 2024:1-9. [PMID: 38557274 DOI: 10.1080/14786419.2024.2335666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Ziziphora capitata (Lamiaceae family) aerial parts extract contains 57 metabolites, including flavonoids, phenolic acids, anthocyanins, and coumarins, as assessed by UPLC-QTOF-MS/MS. Successive extracts (hexane, chloroform, ethyl acetate, ethanol 95%, and water) were tested in vitro cytotoxic activity against HepG-2, MCF-7, HCT-116, A549, and PC3 cell lines. The results revealed that hexane extract exhibited the most potent cytotoxic activity among PC3 and A549 cell lines, IC50 = 47.1 ± 1.75 and 49.2 ± 1.08 µg/mL compared to Vinblastine IC50 = 42.47 ± 1.95 and 24.64 ± 1.18 µg/mL, respectively, and had a moderate impact on the remaining cell lines. Moreover, the chloroform and ethyl acetate extracts exhibited moderate affinity among all tested cell lines. Furthermore, the total phenolic and flavonoid contents were assessed. The molecular docking simulation was performed inside the effective sites of VEGFR-2 and TS as anticancer targets for the top ten phytochemicals. The results showed higher binding energy values for VEGFR-2 than for TS compared to vinblastine and co-crystallized ligands.
Collapse
Affiliation(s)
- Youssif M Youssif
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Gameel A M Elhagali
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Medhat A Zahran
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Fatma A Ahmed
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Hossain MS, Rahman MA, Dey PR, Khandocar MP, Ali MY, Snigdha M, Coutinho HDM, Islam MT. Natural Isatin Derivatives Against Black Fungus: In Silico Studies. Curr Microbiol 2024; 81:113. [PMID: 38472456 DOI: 10.1007/s00284-024-03621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/18/2024] [Indexed: 03/14/2024]
Abstract
During this coronavirus pandemic, when a lot of people are already severely afflicted with SARS-CoV-19, the dispersion of black fungus is making it worse, especially in the Indian subcontinent. Considering this situation, the idea for an in silico study to identify the potential inhibitor against black fungal infection is envisioned and computational analysis has been conducted with isatin derivatives that exhibit considerable antifungal activity. Through this in silico study, several pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity (ADMET) are estimated for various derivatives. Lipinski rules have been used to observe the drug likeliness property, and to study the electronic properties of the molecules, quantum mechanism was analyzed using the density functional theory (DFT). After applying molecular docking of the isatin derivatives with sterol 14-alpha demethylase enzyme of black fungus, a far higher docking affinity score has been observed for the isatin sulfonamide-34 (derivative 1) than the standard fluconazole. Lastly, molecular dynamic (MD) simulation has been performed for 100 ns to examine the stability of the proposed drug complex by estimating Root Mean Square Deviation (RMSD), Radius of gyration (Rg), Solvent accessible surface area (SASA), Root Mean Square Fluctuation (RMSF), as well as hydrogen bond. Listed ligands have precisely satisfied every pharmacokinetics requirement for a qualified drug candidate and they are non-toxic, non-carcinogenic, and have high stability. This natural molecule known as isatin derivative 1 has shown the potential of being a drug for fungal treatment. However, the impact of the chemicals on living cells requires more investigation and research.
Collapse
Affiliation(s)
- Md Saddam Hossain
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Anisur Rahman
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | - Prithbey Raj Dey
- Department of Industrial and Production Engineering, Dhaka University of Engineering and Technology, Gazipur, 1707, Bangladesh
| | - Md Parvez Khandocar
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Yeakub Ali
- Department of Biomedical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Mahajabin Snigdha
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
8
|
Khodair AI, El-Hallouty SM, Cagle-White B, Abdel Aziz MH, Hanafy MK, Mowafy S, Hamdy NM, Kassab SE. Camptothecin structure simplification elaborated new imidazo[2,1-b]quinazoline derivative as a human topoisomerase I inhibitor with efficacy against bone cancer cells and colon adenocarcinoma. Eur J Med Chem 2024; 265:116049. [PMID: 38185054 DOI: 10.1016/j.ejmech.2023.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
Camptothecin is a pentacyclic natural alkaloid that inhibits the hTop1 enzyme involved in DNA transcription and cancer cell growth. Camptothecin structure pitfalls prompted us to design new congeners using a structure simplification strategy to reduce the ring extension number from pentacyclic to tetracyclic while maintaining potential stacking of the new compounds with the DNA base pairs at the Top1-mediated cleavage complex and aqueous solubility, as well as minimizing compound-liver toxicity. The principal axis of this study was the verification of hTop1 inhibiting activity as a possible mechanism of action and the elaboration of new simplified inhibitors with improved pharmacodynamic and pharmacokinetic profiling using three structure panels (A-C) of (isoquinolinoimidazoquinazoline), (imidazoquinazoline), and (imidazoisoquinoline), respectively. DNA relaxation assay identified five compounds as hTop1 inhibitors belonging to the imidazoisoquinolines 3a,b, the imidazoquinazolines 12, and the isoquinolinoimidazoquinazolines 7a,b. In an MTT cytotoxicity assay against different cancer cell lines, compound 12 was the most potent against HOS bone cancer cells (IC50 = 1.47 μM). At the same time, the other inhibitors had no detectable activity against any cancer cell type. Compound (12) demonstrated great penetrating power in the HOS cancer cells' 3D-multicellular tumor spheroid model. Bioinformatics research of the hTop1 gene revealed that the TP53 cell proliferative gene is in the network of hTop1. The finding is confirmed empirically using the gene expression assay that proved the increase in p53 expression. The impact of structure simplification on compound 12 profile, characterized by the absence of acute oral liver toxicity when compared to Doxorubicin as a standard inhibitor, the lethal dose measured on Swiss Albino female mice and reported at LD50 = 250 mg/kg, and therapeutic significance in reducing colon adenocarcinoma tumor volume by 75.36 % after five weeks of treatment with compound 12. The molecular docking solutions of the active CPT-based derivative 12 and the inactive congener 14 into the active site of hTop1 and the activity cliffing of such MMP directed us to recommend the addition of HBD and HBA variables to compound 12 imidazoquinazoline core scaffold to enhance the potency via hydrogen bond formation with the major groove amino acids (Asp533, Lys532) as well as maintaining the hydrogen bond with the minor groove amino acid Arg364.
Collapse
Affiliation(s)
- Ahmed I Khodair
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt
| | - Brittnee Cagle-White
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, TX 75799, USA
| | - May H Abdel Aziz
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, TX 75799, USA
| | - Mahmoud Kh Hanafy
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt; Research Centre for Idling Brain Science, Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 930-0194, Japan
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt
| | - Nadia M Hamdy
- Biochemistry Dept., Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Shaymaa E Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt.
| |
Collapse
|
9
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
10
|
Elmongy EI, Alanazi WS, Aldawsari AI, Alfaouri AA, Binsuwaidan R. Antimicrobial Evaluation of Sulfonamides after Coupling with Thienopyrimidine Coplanar Structure. Pharmaceuticals (Basel) 2024; 17:188. [PMID: 38399403 PMCID: PMC10892651 DOI: 10.3390/ph17020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
This work describes the design and synthesis of three series of hybrids of thienopyrimidines and sulfonamides. Dihydrofolate reductase enzyme was selected as a target for the in-silico screening of the synthesized thienopyrimidine-sulfonamide hybrid as an antibacterial, while squalene epoxidase was selected as an antifungal target protein. All screened compounds showed promising binding affinity ranges, with perfect fitting not exceeding 1.9 Å. The synthesized compounds were tested for their antimicrobial activity using agar well diffusion and minimum inhibitory concentration tests against six bacterial strains in addition to two Candida strains. Compounds 8iii and 12ii showed varying degrees of inhibition against Staphylococcus aureus and Escherichia coli bacterial strains, whereas the best antifungal activity against Candida was displayed by compound 8iii. Compound 12ii, the cyclohexathienopyrimidine coupled with sulfadiazine at position 3, has the best antibacterial activity, which is consistent with molecular docking results at the active site of the oxidoreductase protein. Interestingly, compound 12ii also has the highest docking binding energy at the antifungal squalene epoxidase active site. Investigating the physicochemical properties of the synthesized hybrids revealed their high tolerability with cell membranes, and moderate to poor oral bioavailability, and that all are drug-like candidates, among which 4i, the cyclohexathieno[2,3-d] pyrimidine core with sulphaguanidine incorporated at position 4, recorded the best score (1.58).
Collapse
Affiliation(s)
- Elshaymaa I. Elmongy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo P.O. Box 11795, Egypt;
| | - Wejdan S. Alanazi
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Alhanouf I. Aldawsari
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Asma A. Alfaouri
- College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (W.S.A.); (A.I.A.); (A.A.A.)
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
11
|
Sokolov D, Sharda N, Banerjee A, Denisenko K, Basalious EB, Shukla H, Waddell J, Hamdy NM, Banerjee A. Differential Signaling Pathways in Medulloblastoma: Nano-biomedicine Targeting Non-coding Epigenetics to Improve Current and Future Therapeutics. Curr Pharm Des 2024; 30:31-47. [PMID: 38151840 DOI: 10.2174/0113816128277350231219062154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease. METHODOLOGY This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials. RESULTS This study indicates that several signaling pathways, such as sonic hedgehog, WNT/β-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-β and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates. CONCLUSION This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.
Collapse
Affiliation(s)
- Daniil Sokolov
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Aindrila Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kseniia Denisenko
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr Al Aini 11562, Cairo, Egypt
| | - Hem Shukla
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| |
Collapse
|
12
|
Abdel-Baky YM, Omer AM, El-Fakharany EM, Ammar YA, Abusaif MS, Ragab A. Developing a new multi-featured chitosan-quinoline Schiff base with potent antibacterial, antioxidant, and antidiabetic activities: design and molecular modeling simulation. Sci Rep 2023; 13:22792. [PMID: 38123716 PMCID: PMC10733428 DOI: 10.1038/s41598-023-50130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
A new chitosan Schiff base was developed via the reaction of chitosan (CH) with 2-chloro-3-formyl-7-ethoxy quinoline (Q) derivative. The alteration in the chemical structure and morphology of CHQ derivative was confirmed by 1H NMR, FT-IR spectroscopy and SEM analysis. The antibacterial activity was considerably promoted with increasing quinoline concentration up to 1 M with maximal inhibition reached 96 and 77% against Staphylococcus haemolyticus and Escherichia coli, respectively. Additionally, CHQ derivative afforded higher ABTS·+ radical scavenging activity reached 59% compared to 13% for native chitosan, approving its acceptable antioxidant activity. Moreover, the developed CHQ derivative can stimulate the glucose uptake in HepG-2 and yeast cells, while better inhibition of α-amylase and α-glucosidase was accomplished with maximum values of 99.78 and 92.10%, respectively. Furthermore, the molecular docking simulation clarified the binding mode of CHQ derivative inside the active site of α-amylase and α-glucosidase, suggesting its potential use as diabetes mellitus drug. The DFT calculations indicated an improvement in the electronic properties of CHQ with a lower energy band gap reached 4.05eV compared to 5.94eV for CH. The cytotoxicity assay revealed the safety of CHQ towards normal HSF cells, hypothesizing its possible application as non-toxic antibacterial, antioxidant, and antidiabetic agent for biomedical applications.
Collapse
Affiliation(s)
- Yasser M Abdel-Baky
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed M Omer
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
13
|
Embarez DH, Razek ASA, Basalious EB, Mahmoud M, Hamdy NM. Acetaminophen-traces bioremediation with novel phenotypically and genotypically characterized 2 Streptomyces strains using chemo-informatics, in vivo, and in vitro experiments for cytotoxicity and biological activity. J Genet Eng Biotechnol 2023; 21:171. [PMID: 38112983 PMCID: PMC10730784 DOI: 10.1186/s43141-023-00602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
We isolated two novel bacterial strains, active against the environmental pollutant acetaminophen/Paracetamol®. Streptomyces chrestomyceticus (symbol RS2) and Flavofuscus (symbol M33) collected from El-Natrun Valley, Egypt-water, sediment, and sand samples, taxonomically characterized using a transmission electron microscope (TEM). Genotypic identification, based on 16S rRNA gene sequence analysis followed by BLAST alignment, were deposited on the NCBI as 2 novel strains https://www.ncbi.nlm.nih.gov/nuccore/OM665324 and https://www.ncbi.nlm.nih.gov/nuccore/OM665325 . The phylogenetic tree was constructed. Acetaminophen secondary or intermediate product's chemical structure was identified by GC/LC MS. Some selected acetaminophen secondary-product extracts and derived compounds were examined against a panel of test micro-organisms and fortunately showed a good anti-microbial effect. In silico chemo-informatics Swiss ADMET evaluation was used in the selected bio-degradation extracts for absorption (gastric), distribution (to CNS), metabolism (hepatic), excretion (renal), and finally not toxic, being non-mutagenic/teratogenic or genotoxic, virtually. Moreover, in vitro cytotoxic activity of these selected bio-degradation secondary products was examined against HepG2 and MCF7 cancer cell lines, where M33 and RS2 extract effects on acetaminophen/paracetamol bio-degradation products were safe, with higher IC50 on HepG2 and MCF7 than the acetaminophen/paracetamol IC50 of 108.5 μg/ml. Moreover, an in vivo oral acute single-dose toxicity experiment was conducted, to confirm these in vitro and in silico lower toxicity (better safety) than acetaminophen/paracetamol.
Collapse
Affiliation(s)
- Donia H Embarez
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Ahmed S Abdel Razek
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, 12622, Dokki, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Al Kasr El-Aini, Egypt
| | - Magdi Mahmoud
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Abassia, Egypt.
| |
Collapse
|
14
|
Ragab A, Ibrahim SA, Aboul-Magd DS, Baren MH. One-pot synthesis of pyrazolo[4,3- d]thiazole derivatives containing α-aminophosphonate as potential Mur A inhibitors against MDR pathogens with radiosterilization and molecular modeling simulation. RSC Adv 2023; 13:34756-34771. [PMID: 38035237 PMCID: PMC10685179 DOI: 10.1039/d3ra07040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The present study involves the synthesis of a new series of α-aminophosphonate derivatives in good yields with a simple workup via the Kabachnik-Fields reaction using lithium perchlorate (LiClO4) as a catalyst to facilitate the reaction. All the newly synthesized compounds were confirmed using various physical, spectroscopic, and analytical data, and the obtained results correlated with the proposed molecular structure. The in vitro antimicrobial activities of each compound were evaluated against different clinical isolates. The results indicated that among these derivatives, two compounds (5a and 5b) were the most active and displayed potent activity with MICs in the range from 0.06 to 0.25 μg mL-1 compared with fosfomycin and fluconazole as standard antibiotics. Moreover, the synthesized phosphonates displayed a broad spectrum of bactericidal and fungicidal activities depending on MICs, MBCs/MFCs, and the time-kill kinetics. In addition, the checkerboard assay showed synergistic and partial synergistic activities between the active compounds combined with fosfomycin and fluconazole. Furthermore, the SEM images showed distinct ruptures of the OM integrity of the FOS-R E. coli at their MICs, which was further indicated by the increased EtBr accumulation within the bacterial cells. Moreover, active derivatives revealed MurA inhibitory activity with IC50 values of 3.8 ± 0.39 and 4.5 ± 0.23 μM compared with fosfomycin (IC50 = 12.7 ± 0.27 μM). To our surprise, exposing 5a and 5b compounds to different gamma radiation doses revealed that 7.0 kGy eradicated the microbial load completely. Finally, the results of quantum chemical study supported the binding mode obtained from the docking study performed inside the active site of MurA (PDB: 1UAE), suggesting that these phosphonates may be promising safe candidates for MDR infection therapy clinical trials with no toxic effects on the normal human cells.
Collapse
Affiliation(s)
- Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Seham A Ibrahim
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Egypt
| | - Mohamed H Baren
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
15
|
Radwan AA, Al-Anazi FK, Al-Agamy M, Alghaith AF, Mahrous GM, Alhuzani MR, Alghamdi AS. Design, synthesis and molecular modeling of isatin-aminobenzoic acid hybrids as antibacterial and antibiofilm agents. Saudi Pharm J 2023; 31:101781. [PMID: 37860684 PMCID: PMC10582576 DOI: 10.1016/j.jsps.2023.101781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023] Open
Abstract
Number of factors, including newly emerging infectious diseases and an increase in multi-drug resistant microbial pathogens with particular relevance for Gram-positive bacteria, make the treatment of infectious diseases in hospital-based healthcare a major challenge in the medical community. 4-Aminobenzoic acid (PABA), has demonstrated a variety of biological actions particularly, antimicrobial activity. In our study we coupled this vitamin-like molecule with different isatin derivatives. We investigated the antibacterial activity of the synthesized Schiff's bases. The compounds showed high selective activity against Gram-positive bacteria and showed weak or no activity against both Gram-negative bacteria and fungi. Compound 2a showed highest activity against S. aureus and B. subtilis (MIC 0.09 mmol/L). Additionally, these substances exhibit strong anti-B. Subtilis biofilm formation. We were able to shed insight on the binding mode of these new inhibitors using in silico docking of the compounds in the binding sites of a 3D structure of B. subtilis histidine kinase/Walk. The binding free energy of the compound 2a to the catalytic domain walk, of histidine kinase enzyme of B. subtilis bacteria, was calculated using molecular mechanics/generalized born surface area scoring. The key residues for macromolecule-ligand binding were postulated. The optimized 3D protein-ligand binding modes shed light on the B. subtilis HK/Walk-ligand interactions that afford a means to assess binding affinity to design new HK/Walk inhibitor as antibacterial agents.
Collapse
Affiliation(s)
- Awwad A. Radwan
- Kayyali Chair, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Fares K. Al-Anazi
- Kayyali Chair, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal M. Mahrous
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad R. Alhuzani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrhman S.A. Alghamdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Ammar YA, Ragab A, Migahed MA, Al-Sharbasy S, Salem MA, Riad OKM, Selim HMRM, Abd-Elmaksoud GA, Abusaif MS. Design, green synthesis, and quorum sensing quenching potential of novel 2-oxo-pyridines containing a thiophene/furan scaffold and targeting a LasR gene on P. aeruginosa. RSC Adv 2023; 13:27363-27384. [PMID: 37711372 PMCID: PMC10498153 DOI: 10.1039/d3ra04230h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
The current trend in fighting bacteria is attacking the virulence and quorum-sensing (QS) signals that control bacterial communication and virulence factors, especially biofilm formation. This study reports new Schiff bases and tetracyclic rings based on a pyridine pharmacophore by two methods: a green approach using CAN and a conventional method. The structure of designed derivatives was confirmed using different spectroscopies (IR and 1H/13C NMR) and elemental analysis. The designed derivatives exhibited good to moderate inhibition zones against bacterial and fungal pathogens. In addition, six compounds 2a,b, 3a,b, and 6a,b displayed potency against tested pathogens with eligible MIC and MBC values compared to standard antimicrobial agents. Compound 2a displayed MIC values of 15.6 μg mL-1 compared to Gentamicin (MIC = 250 μg mL-1 against K. pneumoniae), while compound 6b exhibited super-potent activity against P. aeruginosa, and K. pneumoniae with MIC values of 62.5 and 125 μg mL-1, as well as MBC values of 31.25 and 15.6 μg mL-1 compared to Gentamicin (MIC = 250 and 125 μg mL-1 and MBC = 62.5 μg mL-1), respectively. Surprisingly, these six derivatives revealed bactericidal and fungicidal potency and remarkable anti-biofilm activity that could significantly reduce the biofilm formation against MRSA, E. coli, P. aeruginosa, and C. albicans. Furthermore, the most active derivatives reduced the LasR gene's production between 10-40% at 1/8 MICs compared with untreated P. aeruginosa. Besides, they demonstrated promising safety profile on Vero cells (normal cell lines) with IC50 values ranging between (175.17 ± 3.49 to 344.27 ± 3.81 μg mL-1). In addition, the in silico ADMET prediction was carried out and the results revealed that these compounds could be used with oral bioavailability with low toxicity prediction when administered as a candidate drug. Finally, the molecular docking simulation was performed inside LasR and predicted the key binding interactions responsible for the activity that corroborated the biological results.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - M A Migahed
- Egyptian Petroleum Research Institute (EPRI) 11727 Nasr City Cairo Egypt
| | - S Al-Sharbasy
- Department of Chemistry, Faculty of Science (girls), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | - Omnia Karem M Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University Nasr City Cairo Egypt
| | - Heba Mohammed Refat M Selim
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University Nasr City Cairo Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Maarefa University Diriyah 13713 Riyadh Saudi Arabia
| | - Gehad A Abd-Elmaksoud
- Department of Chemistry, Faculty of Science (girls), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| |
Collapse
|
17
|
Ismail MA, Abusaif MS, El-Gaby MSA, Ammar YA, Ragab A. A new class of anti-proliferative activity and apoptotic inducer with molecular docking studies for a novel of 1,3-dithiolo[4,5- b]quinoxaline derivatives hybrid with a sulfonamide moiety. RSC Adv 2023; 13:12589-12608. [PMID: 37101951 PMCID: PMC10123497 DOI: 10.1039/d3ra01635h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
A new series of 6-(pyrrolidin-1-ylsulfonyl)-[1,3]dithiolo[4,5-b]quinoxaline-2-ylidines 10a-f, 12, 14, 16, and 18 were designed, synthesized, and evaluated for their in vitro anticancer activity. The structures of the novel compounds were systematically characterized by 1H NMR, 13C NMR, and elemental analysis. The synthesized derivatives were evaluated for their in vitro antiproliferative activity against three human cancer cell lines (HepG-2, HCT-116, and MCF-7) with more sensitivity to MCF-7. Moreover, three derivatives 10c, 10f, and 12 were the most promising candidates with sub-micromole values. These derivatives were further evaluated against MDA-MB-231, and the results displayed significant IC50 values ranging from 2.26 ± 0.1 to 10.46 ± 0.8 μM and showed low cellular cytotoxicity against WI-38. Surprisingly, the most active derivative 12 revealed sensitivity towards the breast cell lines MCF-7 (IC50 = 3.82 ± 0.2 μM) and MDA-MB-231 (IC50 = 2.26 ± 0.1 μM) compared with doxorubicin (IC50 = 4.17 ± 0.2 and 3.18 ± 0.1 M). Cell cycle analysis showed that compound 12 arrests and inhibits the growth of MCF-7 cells in the S phase with values of 48.16% compared with the untreated control 29.79% and exhibited a significantly higher apoptotic effect in MCF-7 with a value of 42.08% compared to control cell at 1.84%. Furthermore, compound 12 decreased Bcl-2 protein 0.368-fold and activation on pro-apoptotic genes Bax and P53 by 3.97 and 4.97 folds, respectively, in MCF-7 cells. Compound 12 exhibited higher inhibitory activity to EGFRWt, EGFRL858R, and VEGFR-2 with IC50 values (0.19 ± 0.009, 0.026 ± 0.001, and 0.42 ± 0.021 μM) compared with erlotinib (IC50 = 0.037 ± 0.002 and 0.026 ± 0.001 μM) and sorafenib (IC50 = 0.035 ± 0.002 μM). Finally, in silico ADMET prediction presented that 1,3-dithiolo[4,5-b]quinoxaline derivative 12 obeys the Lipinski rule of five and the Veber rule with no PAINs alarms and moderately soluble properties. Additionally, toxicity prediction revealed that compound 12 demonstrated inactivity to hepatotoxic carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. Moreover, molecular docking studies showed good binding affinity with lower binding energy inside the active site of Bcl-2 (PDB: 4AQ3), EGFR (PDB: 1M17), and VEGFR (PDB: 4ASD).
Collapse
Affiliation(s)
- Mostafa A Ismail
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Mohamed S A El-Gaby
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
18
|
Hassan AS, Morsy NM, Aboulthana WM, Ragab A. Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations. RSC Adv 2023; 13:9281-9303. [PMID: 36950709 PMCID: PMC10026821 DOI: 10.1039/d3ra00297g] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Recently, scientists developed a powerful strategy called "one drug-multiple targets" to discover vital and unique therapies to fight the most challenging diseases. Novel derivatives of isatin-based Schiff bases 2-7 have been synthesized by the reaction of 3-hydrazino-isatin (1) with aryl aldehydes, hetero-aryl aldehydes, and dialdehydes. The structure of the synthesized derivatives was proved by physical and spectral analysis. Additionally, in vitro biological studies were performed, including antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities. The four derivatives 3b, 5a, 5b, and 5c possess the highest activities. Among the four potent derivatives, compound 5a exhibited the highest antioxidant (TAC = 68.02 ± 0.15 mg gallic acid per g; IRP = 50.39 ± 0.11) and scavenging activities (ABTS = 53.98 ± 0.12% and DPPH = 8.65 ± 0.02 μg mL-1). Furthermore, compound 5a exhibited an α-amylase inhibitory percentage of 57.64 ± 0.13% near the acarbose (ACA = 69.11 ± 0.15%) and displayed inhibitor activity of the acetylcholinesterase (AChE) enzyme = 36.38 ± 0.08%. Moreover, our work extended to determining the anti-arthritic effect, and compound 5a revealed good inhibitor activities with very close values for proteinase denaturation (PDI) = 39.59 ± 0.09% and proteinase inhibition (PI) = 36.39 ± 0.08%, compared to diclofenac sodium PDI = 49.33 ± 0.11% and PI = 41.88 ± 0.09%. Additionally, the quantum chemical calculations, including HOMO, LUMO, and energy band gap were determined, and in silico ADMET properties were predicted, and their probability was recorded. Finally, molecular docking simulations were performed inside α-amylase and acetylcholinesterase enzymes.
Collapse
Affiliation(s)
- Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre Dokki 12622 Cairo Egypt
| | - Nesrin M Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre Dokki 12622 Cairo Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre Dokki 12622 Cairo Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
19
|
Ayman R, Abusaif MS, Radwan AM, Elmetwally AM, Ragab A. Development of novel pyrazole, imidazo[1,2-b]pyrazole, and pyrazolo[1,5-a]pyrimidine derivatives as a new class of COX-2 inhibitors with immunomodulatory potential. Eur J Med Chem 2023; 249:115138. [PMID: 36696764 DOI: 10.1016/j.ejmech.2023.115138] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Searching for new compounds with anti-inflammatory properties is a significant target since inflammation is a major cause of pain. A series of pyrazole, imidazopyrazolone, and pyrazolopyrimidine derivatives were designed and synthesized by reaction of 3,5-diamino-1H-pyrazole derivative with cyclic and acyclic carbonyl reagents. The structure of the newly synthesized derivatives were fully characterized using different spectroscopic data and elemental analysis, and therefore, evaluated as COX-2 inhibitors. The in vitro COX-2 activity of the tested derivatives 2-13 displayed moderate to good potency with two derivatives 8 and 13 that exhibiting high potency to COX-2 with IC50 values of 5.68 ± 0.08 and 3.37 ± 0.07 μM compared with celecoxib (IC50 = 3.60 ± 0.07 μM) and meloxicam (IC50 = 7.58 ± 0.13 μM). Furthermore, the most active pyrazolo[1,5-a]pyrimidine derivatives 8 and 13 were evaluated to measure the levels of pro-inflammatory proteins such as TNF-α and IL-6 using qRT-PCR in RAW264.7 cells, and the results showed down-regulation of two immunomodulatory proteins. Surprisingly, these derivatives 8 and 13 revealed a decrease in IL-6 level with inhibition percentages of 65.8 and 70.3%, respectively, compared with celecoxib (% = 76.8). Further, compounds 8 and 13 can regulate and suppress the TNF-α with percentage inhibition of 63.1 and 59.2% to controls, while celecoxib displayed an inhibition percentage of 72.7. The Quantum chemical calculation was conducted, and data explained the structural features crucial to the activity. The molecular docking simulation and ADMET predictions revealed that the most active derivatives have good binding affinity, possess appropriate drug-likeness properties and low toxicity profiles. Finally, compounds 8 and 13 demonstrated COX-2 inhibitors with α-TNF and IL-6 suppression capabilities as a dual-action strategy to get more effective treatment.
Collapse
Affiliation(s)
- Radwa Ayman
- Department of Chemistry, Faculty of Science Girls, Al-Azhar University, Nasr City, Cairo, 11754, Egypt.
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science Boys, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - A M Radwan
- Department of Chemistry, Faculty of Science Girls, Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | | | - Ahmed Ragab
- Department of Chemistry, Faculty of Science Boys, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
20
|
Cytotoxic and chemomodulatory effects of Phyllanthus niruri in MCF-7 and MCF-7 ADR breast cancer cells. Sci Rep 2023; 13:2683. [PMID: 36792619 PMCID: PMC9932073 DOI: 10.1038/s41598-023-29566-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The members of the genus Phyllanthus have long been used in the treatment of a broad spectrum of diseases. They exhibited antiproliferative activity against various human cancer cell lines. Breast cancer is the most diagnosed cancer and a leading cause of cancer death among women. Doxorubicin (DOX) is an anticancer agent used to treat breast cancer despite its significant cardiotoxicity along with resistance development. Therefore, this study was designed to assess the potential cytotoxicity of P. niruri extracts (and fractions) alone and in combination with DOX against naïve (MCF-7) and doxorubicin-resistant breast cancer cell lines (MCF-7ADR). The methylene chloride fraction (CH2Cl2) showed the most cytotoxic activity among all tested fractions. Interestingly, the CH2Cl2-fraction was more cytotoxic against MCF-7ADR than MCF-7 at 100 µg/mL. At sub-cytotoxic concentrations, this fraction enhanced the cytotoxic effect of DOX against the both cell lines under investigation (IC50 values of 0.054 µg/mL and 0.14 µg/mL vs. 0.2 µg/mL for DOX alone against MCF-7) and (1.2 µg/mL and 0.23 µg/mL vs. 9.9 µg/mL for DOX alone against MCF-7ADR), respectively. Further, TLC fractionation showed that B2 subfraction in equitoxic combination with DOX exerted a powerful synergism (IC50 values of 0.03 µg/mL vs. 9.9 µg/mL for DOX alone) within MCF-7ADR. Untargeted metabolite profiling of the crude methanolic extract (MeOH) and CH2Cl2 fraction exhibiting potential cytotoxicity was conducted using liquid chromatography diode array detector-quadrupole time-of-flight mass spectrometry (LC-DAD-QTOF). Further studies are needed to separate the active compounds from the CH2Cl2 fraction and elucidate their mechanism(s) of action.
Collapse
|
21
|
Development of new spiro[1,3]dithiine-4,11'-indeno[1,2-b]quinoxaline derivatives as S. aureus Sortase A inhibitors and radiosterilization with molecular modeling simulation. Bioorg Chem 2023; 131:106307. [PMID: 36481380 DOI: 10.1016/j.bioorg.2022.106307] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Multi-drug resistant microbes have become a severe threat to human health and arise a worldwide concern. A total of fifteen spiro-1,3-dithiinoindenoquinoxaline derivatives 2-7 were synthesized and evaluated for their biological activities against five standard and MDRB pathogens. The MIC and MBC/MFC for the most active derivatives were determined in vitro via broth microdilution assay. These derivatives showed significant activity against the tested strains with microbicidal behavior, with compound 4b as the most active compound (MIC range between 0.06 and 0.25 µg/mL for bacteria strains and MIC = 0.25 µg/mL for C. albicans). The most active spiro-1,3-dithiinoindenoquinoxaline derivatives were able to inhibit the activity of SrtA with IC50 values ranging from 22.15 ± 0.4 µM to 37.12 ± 1.4 µM. In addition, the active spiro-1,3-dithiinoindenoquinoxaline attenuated the in vitro virulence-related phenotype of SrtA by weakening the adherence of S. aureus to fibrinogen and reducing the biofilm formation. Surprisingly, compound 4b revealed potent SrtA inhibitory activity with IC50 = 22.15 µM, inhibiting the adhesion of S. aureus with 39.22 ± 0.15 % compared with untreated 9.43 ± 1.52 %, and showed a reduction in the biofilm biomass of S. aureus with 32.27 ± 0.52 %. We further investigated the effect of gamma radiation as a sterilization method on the microbial load and found that a dose of 5 kGy was sufficient to eradicate the microbial load. The quantum chemical studies exhibited that the tested derivatives have a small energy band gap (ΔE = -2.95 to -3.61 eV) and therefore exert potent bioactivity by interacting with receptors more stabilizing.
Collapse
|
22
|
Ammar YA, Micky JA, Aboul-Magd DS, Abd El-Hafez SMA, Hessein SA, Ali AM, Ragab A. Development and radiosterilization of new hydrazono-quinoline hybrids as DNA gyrase and topoisomerase IV inhibitors: Antimicrobial and hemolytic activities against uropathogenic isolates with molecular docking study. Chem Biol Drug Des 2023; 101:245-270. [PMID: 36305722 DOI: 10.1111/cbdd.14154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 01/14/2023]
Abstract
This study aimed to synthesize new potent quinoline derivatives based on hydrazone moieties and evaluate their antimicrobial activity. The newly synthesized hydrazono-quinoline derivatives 2, 5a, 9, and 10b showed the highest antimicrobial activity with MIC values ≤1.0 μg/ml against bacteria and ≤8.0 μg/ml against the fungi. Further, these derivatives exhibited bactericidal and fungicidal effects with MBC/MIC and MFC/MIC ratio ≤4. Surprisingly, the most active compounds displayed good inhibition to biofilm formation with MBEC values ranging between (40.0 ± 10.0 - 230.0 ± 31.0) and (67.0 ± 24.0 - 347.0 ± 15.0) μg/ml against Staphylococcus aureus and Pseudomonas aeruginosa, respectively. The hemolytic assays confirmed that the hydrazono-quinoline derivatives are non-toxic with low % lysis values ranging from 4.62% to 14.4% at a 1.0 mg/ml concentration. Besides, compound 5a exhibited the lowest hemolytic activity value of ~4.62%. Furthermore, the study suggests that the hydrazono-quinoline analogs exert their antibacterial activity as dual inhibitors for DNA gyrase and DNA topoisomerase IV enzymes with IC50 values ranging between (4.56 ± 0.3 - 21.67 ± 0.45) and (6.77 ± 0.4 - 20.41 ± 0.32) μM, respectively. Additionally, the recent work advocated that compound 5a showed the reference SAL at the ɣ-radiation dose of 10.0 kGy in the sterilization process without affecting its chemical structure. Finally, the in silico drug-likeness, toxicity properties, and molecular docking simulation were performed. Besides, the result exhibited good oral-bioavailability, lower toxicity prediction, and lower binding energy with good binding mode rather than the positive control.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Jehan A Micky
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Sondos M A Abd El-Hafez
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Sadia A Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abeer M Ali
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
23
|
Abdelgalil MM, Ammar YA, Elhag Ali GA, Ali AK, Ragab A. A novel of quinoxaline derivatives tagged with pyrrolidinyl scaffold as a new class of antimicrobial agents: Design, synthesis, antimicrobial activity, and molecular docking simulation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Hassan AS, Morsy NM, Aboulthana WM, Ragab A. In vitro enzymatic evaluation of some pyrazolo[1,5-a]pyrimidine derivatives: Design, synthesis, antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities with molecular modeling simulation. Drug Dev Res 2023; 84:3-24. [PMID: 36380556 DOI: 10.1002/ddr.22008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The strategy of utilizing nitrogen compounds in various biological applications has recently emerged as a powerful approach to exploring novel classes of therapeutics to face the challenge of diseases. A series of pyrazolo[1,5-a]pyrimidine-based compounds 3a-l and 5a-f were prepared by the direct cyclo-condensation reaction of 5-amino-1H-pyrazoles 1a, b with 2-(arylidene)malononitriles and 3-(dimethylamino)-1-aryl-prop-2-en-1-ones, respectively. The structures of the new pyrazolo[1,5-a]pyrimidine compounds were confirmed via spectroscopic techniques. The in vitro biological activities of all pyrazolo[1,5-a]pyrimidines 3a-l and 5a-f were evaluated by assaying total antioxidant capacity, iron-reducing power, the scavenging activity against 1-diphenyl-2-picryl-hydrazyl (DPPH) and 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, anti-diabetic, anti-Alzheimer, and anti-arthritic biological activities. All compounds displayed good to potent bioactivity, and three compounds 3g, 3h, and 3l displayed the most active derivatives. Among these derivatives, compound 3l exhibited the highest antioxidant (total antioxidant capacity [TAC] = 83.09 mg gallic acid/g; iron-reducing power [IRP] = 47.93 µg/ml) and free radicals scavenging activities with (DPPH = 18.77 µg/ml; ABTS = 40.44%) compared with ascorbic acid (DPPH = 4.28 µg/ml; ABTS = 38.84%). Furthermore, compound 3l demonstrated the strongest inhibition of α-amylase with a percent inhibition of 72.91 ± 0.14 compared to acarbose = 67.92 ± 0.09%. Similarly, it displayed acetylcholinesterase inhibition of 62.80 ± 0.06%. However, compound 3i showed a significantly higher inhibition percentage for protein denaturation and proteinase at 20.66 ± 0.00 and 26.42 ± 0.06%, respectively. Additionally, some in silico ADMET properties were predicted and studied. Finally, molecular docking simulation was performed inside the active site of α-amylase and acetylcholinesterase to study their interactions.
Collapse
Affiliation(s)
- Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nesrin M Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
25
|
Ayman R, Radwan AM, Elmetwally AM, Ammar YA, Ragab A. Discovery of novel pyrazole and pyrazolo[1,5-a]pyrimidine derivatives as cyclooxygenase inhibitors (COX-1 and COX-2) using molecular modeling simulation. Arch Pharm (Weinheim) 2023; 356:e2200395. [PMID: 36336646 DOI: 10.1002/ardp.202200395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Searching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1). Among them, six derivatives 4c, 5b, 6a, 7a, 7b, and 10b displayed the highest binding energy. These derivatives were evaluated for their in vitro COX-1 and COX-2 inhibitory activities and their selectivity indexes were calculated. Additionally, these derivatives displayed IC50 values ranging between 4.909 ± 0.25 and 57.53 ± 2.91 µM, and 3.289 ± 0.14 and 124 ± 5.32 µM, against COX-1 and COX-2, respectively. Furthermore, the tested derivatives were found to have selective inhibitory activity on the COX-2 enzyme. Surprisingly, the two pyrazole derivatives 4c and 5b were found to be the most active, with IC50 values of 9.835 ± 0.50 and 4.909 ± 0.25 µM and 4.597 ± 0.20 and 3.289 ± 0.14 µM compared with meloxicam (1.879 ± 0.1 and 5.409 ± 0.23 µM) and celecoxib (5.439 ± 0.28 and 2.164 ± 0.09 µM) against COX-1/-2, respectively. Besides, two pyrazole derivatives, 4c and 5b, displayed a COX-1/COX-2 SI of 2.14 and 1.49. Computational techniques such as molecular docking, density function theory (DFT) calculation, and chemical absorption, distribution, metabolism, excretion, and toxicity evaluation were applied to explain the molecules' binding mode, chemical nature, drug likeness, and toxicity prediction.
Collapse
Affiliation(s)
- Radwa Ayman
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - A M Radwan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
26
|
Synthesis, antimicrobial activity and molecular docking studies of spiroquinoline-indoline-dione and spiropyrazolo-indoline-dione derivatives. Sci Rep 2023; 13:1676. [PMID: 36717728 PMCID: PMC9885930 DOI: 10.1038/s41598-023-27777-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Spiro[benzo[h]quinoline-7,3'-indoline]diones and spiro[indoline-3,4'-pyrazolo[3,4-b]quinoline]diones were efficiently synthesized via one-pot multi-component reactions under ultrasound-promoted conditions. Spiro[benzo[h]quinoline-7,3'-indoline]dione derivatives were successfully developed by the reaction of isatins, naphthalene-1-amine and 1,3-dicarbonyl compounds. The spiro[indoline-3,4'-pyrazolo[3,4-b]quinoline]dione derivatives were prepared by the reaction of isatins, 5-amino-1-methyl-3-pheylpyrazole, and 1,3-dicarbonyl compounds by using ( ±)-camphor-10-sulfonic acid as a catalyst in H2O/EtOH (3:1 v/v) solvent mixture. The antibacterial activity of the synthesized compounds was evaluated against, Enterococcus faecalis, Staphylococcus aureus and Candida albicans. Compounds 4b, 4h, and 6h showed the strongest antimicrobial activity toward both bacteria. The MIC values of these compounds ranged from 375-3000 µg/mL. The effect of these compounds (4b, 4h, 6h) as a function of applied dose and time was investigated by a kinetic study, and the interaction with these antimicrobial results was simulated by a molecular docking study. We also used the docking approach with Covid-19 since secondary bacterial infections. Docking showed that indoline-quinoline hybrid compounds 4b and 4h exerted the strongest docking binding value against the active sites of 6LU7. In addition, the synthesized compounds had a moderate to good free radical scavenging activity.
Collapse
|
27
|
Raslan RR, Ammar YA, Fouad SA, Hessein SA, Shmiess NAM, Ragab A. Evaluation of the anti-proliferative activity of 2-oxo-pyridine and 1′ H-spiro-pyridine derivatives as a new class of EGFR Wt and VEGFR-2 inhibitors with apoptotic inducers †. RSC Adv 2023; 13:10440-10458. [PMID: 37020892 PMCID: PMC10069231 DOI: 10.1039/d3ra00887h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Developing new agents for cancer treatment remains a top priority because it is one of the deadliest worldwide. A new series of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives were designed and synthesized based on an N-(ethyl benzoate) moiety. The structure of the designed derivatives was confirmed by different spectroscopic techniques (FT-IR and NMR) and elemental analysis and then evaluated as antiproliferative against HepG-2 and Caco-2 cell lines compared with Doxorubicin. The spiro-pyridine derivatives 5, 7, and 8 exhibited a remarkably higher activity against Caco-2 cell lines than that of other derivatives. Additionally, these derivatives exhibited activation in the Bax and suppressed Bcl-2 expression with variable degrees. Interestingly, compound 7 showed the lowest cytotoxicity value on Caco-2 cells (IC50 = 7.83 ± 0.50 μM) compared with Doxorubicin (IC50 = 12.49 ± 1.10 μM). Additionally, this compound showed activation of the Bax gene (7.508-fold) and suppressed Bcl-2 (0.194-fold) compared to untreated Caco-2 cells, as revealed by the qRT-PCR technique. Moreover, compound 7 could inhibit EGFR and VEGFR-2 with sub-micromole values of 0.124 μM and 0.221 μM compared with Erlotinib (IC50 = 0.033 μM) and Sorafenib (IC50 = 0.043 μM), respectively. Further, cell cycle and apoptosis analysis demonstrated that compound 7 promoted apoptosis by increasing the apoptosis rate from 1.92 to 42.35% and the S cell accumulation ratio from 31.18 to 42.07% compared to untreated Caco-2 cells. Finally, the most active compound 7 showed good drug-likeness and toxicity profiles. Besides, molecular docking studies were performed to determine the binding mode, which is in agreement with the in vitro results. Design and synthesis a novel of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives as a new apoptotic inducers agents.![]()
Collapse
Affiliation(s)
- Reham R. Raslan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar UniversityNasr City11884CairoEgypt
| | - Sawsan A. Fouad
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Sadia A. Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Nadia A. M. Shmiess
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar UniversityNasr City11884CairoEgypt
| |
Collapse
|
28
|
Allison SJ. Novel Anti-Cancer Agents and Cellular Targets and Their Mechanism(s) of Action. Biomedicines 2022; 10:biomedicines10081767. [PMID: 35892667 PMCID: PMC9332372 DOI: 10.3390/biomedicines10081767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
29
|
Ragab A, Abusaif MS, Aboul-Magd DS, Wassel MMS, Elhagali GAM, Ammar YA. A new exploration toward adamantane derivatives as potential anti-MDR agents: Design, synthesis, antimicrobial, and radiosterilization activity as potential topoisomerase IV and DNA gyrase inhibitors. Drug Dev Res 2022; 83:1305-1330. [PMID: 35716118 DOI: 10.1002/ddr.21960] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 12/16/2022]
Abstract
Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt
| | - Gameel A M Elhagali
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
30
|
Saadon KE, Taha NMH, Mahmoud NA, Elhagali GAM, Ragab A. Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02575-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractA new series of pyridine-2-one and pyrazole derivatives were designed and synthesized based on cyanoacrylamide derivatives containing 2,4-dichlro aniline and 6-methyl 2-amino pyridine as an aryl group. Condensation of cyanoacrylamide derivatives 3a–d with different active methylene (malononitrile, ethyl cyanoacetate cyanoacetamide, and ethyl acetoacetate) in the presence of piperidine as basic catalyst afforded the corresponding pyridinone derivatives 4a–c, 5, 9, and 13. Furthermore, the reaction of cyanoacrylamide derivatives 3a–d with bi-nucleophile as hydrazine hydrate and thiosemicarbazide afforded the corresponding pyrazole derivatives 14a,b and 16. The newly designed derivatives were confirmed and established based on the elemental analysis and spectra data (IR, 1H NMR, 13C NMR, and mass). The in vitro antibacterial activity was evaluated against four bacterial strains with weak to good antibacterial activity. Moreover, the results indicated that the most active derivatives 3a, 4a, 4b, 9, and 16 might lead to antibacterial agents, especially against B. subtilis and P. vulgaris. The DFT calculations were performed to estimate its geometric structure and electronic properties. In addition, the most active pyridinone and pyrazole derivatives were further evaluated for in silico physicochemical, drug-likeness, and toxicity prediction. These derivatives obeyed all Lipinski’s and Veber’s rules without any violation and displayed non-immunotoxin, non-mutagenic, and non-cytotoxic. Molecular docking simulation was performed inside the active site of Topoisomerase IV (PDB:3FV5). It displayed binding energy ranging from -14.97 kcal/mol to -18.86 kcal/mol with hydrogen bonding and arene–cation interaction. Therefore, these derivatives were suggested to be good antibacterial agents via topoisomerase IV inhibitor.
Graphical abstract
Collapse
|