1
|
Zheng L, Wang Z, Liu H, Wang N, Liu J, Ma M, Jia X, Qian M, Liu Y, Li M, Wei Z, Xiang Y. Yeast-Derived Manganese and Zinc Metal-Organic Framework Composite as a Vaccine Adjuvant for Enhanced Humoral and Cellular Immune Responses. ACS NANO 2025. [PMID: 40293251 DOI: 10.1021/acsnano.5c04365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
To control pandemics, a universal adjuvant platform that can deliver antigens and stimulate the immune system that rapidly elicits humoral and cellular immune responses is needed, especially one that can stimulate the body's immune system to produce protective immunological memory. However, the design, composition, and mechanism of adjuvants have presented considerable challenges. The types of adjuvants currently approved in clinics are rare and are far from meeting the requirements of vaccine development. In this study, we prepared a yeast-derived manganese and zinc metal-organic framework (MOF) composite particle adjuvant by self-assembling Mn-MOF-74 and ZIF-8 on the surface of yeast and named it yeast@Mn-MOF-74@ZIF-8 (yMZ). yMZ was able to promote the maturation and activation of dendritic cells (DCs), enhance the uptake and presentation of antigens by DCs, increase the production of adaptive immune cells with memory, enhance humoral and cellular immune responses, and promote the activation of the germinal center. Additionally, yMZ allowed for effective control of antigen release and exhibited good biosafety in vivo. In this study, yMZ showed good adjuvant effects on subunits and inactivated vaccines, indicating that it is a next-generation adjuvant candidate with potential application prospects.
Collapse
Affiliation(s)
- Lanlan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Zi Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Hang Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Nianxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Junjun Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Mengyao Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Xinhao Jia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Mengwei Qian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Yidan Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Muzi Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Zhanyong Wei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| | - Yuqiang Xiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Province Key Laboratory for Animal Food Pathogens Surveillance, Zhengzhou 450046, P. R. China
| |
Collapse
|
2
|
Qiao Y, Wei L, Su Y, Tan Q, Yang X, Li S. Nanoparticle-Based Strategies to Enhance the Efficacy of STING Activators in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:5429-5456. [PMID: 40308645 PMCID: PMC12042967 DOI: 10.2147/ijn.s515893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in triggering innate and adaptive immune responses through type I interferon activation and immune cell recruitment, holding significant promise for cancer therapy. While STING activators targeting this pathway have been developed, their clinical application is hindered by challenges such as poor membrane permeability, rapid degradation, suboptimal pharmacokinetics, off-target biodistribution, and toxicity. Nanoparticle-based delivery systems offer a promising solution by enhancing the stability, circulation time, tumor accumulation, and intracellular release of STING activators. Furthermore, combining nanoparticle-delivered STING activators with radiotherapy, chemotherapy, phototherapy, and other immunotherapies enables synergistic antitumor effects through multimodal mechanisms, addressing resistance to monotherapies and reducing risks of recurrence and metastasis. This review outlines the immunomodulatory mechanisms of the cGAS-STING pathway, surveys current STING-targeted activators, and comprehensively discusses recent advances in nanoparticle-mediated delivery strategies for STING activation. Additionally, we explore combinatorial approaches that integrate STING-targeted nanotherapies with conventional and emerging treatments. Finally, we highlight the current status, prospects, and challenges of nanoparticle-based STING activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Qiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lingyu Wei
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Yinjie Su
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qinyuan Tan
- Department of Urology, The People’s Hospital of Jimo, Qingdao, People’s Republic of China
| | - Xuecheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shengxian Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
3
|
Liu YT, Zhang QQ, Yao SY, Zhao KY, Cui HW, Zou YL, Zhao LX. A dual-functional specific fluorescent bio-sensor based on triphenylamine for "turn-off" recognition of copper and mercury: Application in real samples and living system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125621. [PMID: 39721486 DOI: 10.1016/j.saa.2024.125621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/03/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Accurately monitoring the content of Cu2+ and Hg2+ in real samples and biological systems is of great significance in ensuring food safety and human health. Therefore, developing efficient methods for simultaneously detecting Cu2+ and Hg2+ is of great significance in living organisms and real samples. In this work, a bifunctional ratiometric and colorimetric fluorescent bio-sensor DPT-1, was designed and synthesized using triphenylamine to specifically and concurrently detect Cu2+ and Hg2+ exhibited varying degrees of fluorescence quenching through "turn-off" fluorescence. Furthermore, DPT-1 effectively detected Cu2+ and Hg2+ in various real samples, encompassing tap water, Songhua River water, and honeysuckle extract. In addition, DPT-1 exhibited remarkable performance in detecting Cu2+/Hg2+ in rice roots, living cells and zebrafish. As research progressed, the discoveries outlined in this article offered the versatile potential for holding promise for food safety monitoring and biological research.
Collapse
Affiliation(s)
- Ya-Tong Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Qian-Qian Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Si-Yi Yao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Ke-Yu Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Han-Wen Cui
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Złowocka-Perłowska E, Baszuk P, Marciniak W, Derkacz R, Tołoczko-Grabarek A, Gołębiewska K, Słojewski M, Gołąb A, Lemiński A, Soczawa M, Scott RJ, Lubiński J. Blood and Serum Copper and Zinc Levels and 10-Year Survival of Patients After Kidney Cancer Diagnosis. Nutrients 2025; 17:944. [PMID: 40289930 PMCID: PMC11944747 DOI: 10.3390/nu17060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Copper (Cu) and zinc (Zn) are essential trace elements, and an imbalance in their levels may influence the progression of cancer. The role of Cu and Zn levels in blood and serum, as well as 10-year survival rates in kidney cancer patients, remains unclear. Our objective was to determine the association between these micronutrients and mortality of kidney cancer patients. In this prospective study, we examined 284 consecutive, unselected kidney cancer patients and assessed their 10-year survival in relation to Cu and Zn levels. Methods: Micronutrient levels were measured using an inductively coupled plasma mass spectrometer. Each patient was categorized into one of four groups based on the distribution of Cu and Zn levels, ranked in increasing order. The multivariable models included factors such as age at diagnosis, gender, smoking history, type of surgery, and histopathological results. Results: We observed a significantly higher risk of all-cause mortality in patients with the highest blood or serum copper levels compared to those with the lower levels (blood: HR = 4.89; p < 0.001; serum: HR = 3.75; p < 0.001). With regard to zinc, we found a trend where lower blood or serum zinc levels (I quartile) were associated with higher mortality. Additionally, we identified a significant correlation between the Zn/Cu ratio and mortality. Conclusions: Patients in the lowest Zn/Cu ratio quartile had elevated hazard ratios compared to those in the higher quartile with HRs of 3.05 (p < 0.002) in blood and 5.72 (p < 0.001) in serum. To our knowledge, this study is the first to investigate the relationship between blood and serum levels of copper and zinc and kidney cancer survival.
Collapse
Affiliation(s)
- Elżbieta Złowocka-Perłowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (K.G.); (J.L.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (K.G.); (J.L.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Aleksandra Tołoczko-Grabarek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (K.G.); (J.L.)
| | - Katarzyna Gołębiewska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (K.G.); (J.L.)
| | - Marcin Słojewski
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (A.G.); (M.S.)
| | - Adam Gołąb
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (A.G.); (M.S.)
| | - Artur Lemiński
- Department of Biochemical Research, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Michał Soczawa
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (A.G.); (M.S.)
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, Centre for Information-Based Medicine, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia;
- Division of Molecular Medicine, Pathology North, NSW Pathology, Newcastle, NSW 2305, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (K.G.); (J.L.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| |
Collapse
|
5
|
Hu X, Ma Z, Zhang B, Wang J, Zhou Y, Li J, Liu T, Zhang J, Hong B, Zhu M, Li F, Ling D. A Single-Atom Mn/MoO 3- x Nanoagonist for Cascade cGAS/STING Activation in Tumor-Specific Catalytic Metalloimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407214. [PMID: 39498728 DOI: 10.1002/smll.202407214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/07/2024] [Indexed: 11/07/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway plays a crucial role in initiating anti-tumor immunity. Despite the development of various STING agonists, their effectiveness is often limited by suboptimal activation efficiency and poor sustainability. To address this, a Mn/MoO3- x nanoagonist featuring Mn single-atom sites is presented, designed for cascade cGAS/STING activation in tumor-specific catalytic metalloimmunotherapy. The single-atom nanoagonist (SANA) is meticulously crafted by doping Mn atoms into defective molybdenum oxide (MoO3- x), enabling robust peroxidase-mimicking catalysis and inducing severe double-stranded DNA (dsDNA) damage in tumors. Of note, Mn2+ and MoO4 2- can be responsively released from Mn/MoO3- x SANA and enhance the sensitivity of cGAS to dsDNA. Importantly, MoO4 2- with a relatively slow-release profile and facile cellular accumulation compensates for Mn2+ that has poor cellular accumulation due to continuous efflux, thus continuatively triggering the secretion of type I interferon for beyond 72 h. Remarkably, Mn/MoO3- x SANA significantly inhibits tumor growth and metastasis without supplementary STING agonists or external stimulation. This study offers a promising cascade cGAS/STING activation approach to enhance the efficacy and sustainability of catalytic metalloimmunotherapy.
Collapse
Affiliation(s)
- Xi Hu
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Zhiyuan Ma
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| | - Jie Wang
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yan Zhou
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianqi Liu
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Jingxin Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Bangzhen Hong
- School of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Mingjian Zhu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- WLA Laboratories, Shanghai, 201203, China
| |
Collapse
|
6
|
Hu X, Zhu H, Shen Y, Rao L, Li J, He X, Xu X. Metal-organic framework nanoparticles activate cGAS-STING pathway to improve radiotherapy sensitivity. J Nanobiotechnology 2025; 23:131. [PMID: 39979917 PMCID: PMC11844015 DOI: 10.1186/s12951-025-03229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Tumor immunotherapy aims to harness the immune system to identify and eliminate cancer cells. However, its full potential is hindered by the immunosuppressive nature of tumors. Radiotherapy remains a key treatment modality for local tumor control and immunomodulation within the tumor microenvironment. Yet, the efficacy of radiotherapy is often limited by tumor radiosensitivity, and traditional radiosensitizers have shown limited effectiveness in hepatocellular carcinoma (HCC). To address these challenges, we developed a novel multifunctional nanoparticle system, ZIF-8@MnCO@DOX (ZMD), designed to enhance drug delivery to tumor tissues. In the tumor microenvironment, Zn²⁺ and Mn²⁺ ions released from ZMD participate in a Fenton-like reaction, generating reactive oxygen species (ROS) that promote tumor cell death and improve radiosensitivity. Additionally, the release of doxorubicin (DOX)-an anthracycline chemotherapeutic agent-induces DNA damage and apoptosis in cancer cells. The combined action of metal ions and double-stranded DNA (dsDNA) from damaged tumor cells synergistically activates the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, thereby initiating a robust anti-tumor immune response. Both in vitro and in vivo experiments demonstrated that ZMD effectively activates the cGAS-STING pathway, promotes anti-tumor immune responses, and exerts a potent tumor-killing effect in combination with radiotherapy, leading to regression of both primary tumors and distant metastases. Our work provides a straightforward, safe, and effective strategy for combining immunotherapy with radiotherapy to treat advanced cancer.
Collapse
Affiliation(s)
- Xinyao Hu
- Cancer Center, Renmin Hospital of Wuhan University, NO. 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, NO. 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, China
| | - Lang Rao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiayi Li
- Cancer Center, Renmin Hospital of Wuhan University, NO. 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, China
| | - Xiaoqin He
- Cancer Center, Renmin Hospital of Wuhan University, NO. 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, China.
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, NO. 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
7
|
Qiu S, Xie B, Liao J, Luo J, Liu X, He L, Huang Y, Peng L. Blood trace elements in association with esophageal squamous cell carcinoma risk, aggressiveness and prognosis in a high incidence region of China. Sci Rep 2025; 15:5208. [PMID: 39939385 PMCID: PMC11822019 DOI: 10.1038/s41598-025-89060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Toxic elements exposure and imbalance in essential element homeostasis remain incomprehensive in esophageal squamous cell carcinoma (ESCC) carcinogenesis, especially in tumor progression. To reveal the toxic and essential elements inside body associated with ESCC occurrence, aggressive features and outcomes, whole blood concentrations of eight trace elements were quantified in 150 ESCC cases and 177 controls using inductively coupled plasma-mass spectrometry (ICP-MS). Concentrations of cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), arsenic (As), and selenium (Se) showed significant differences between the case and control subjects. The restricted cubic spline (RCS) analysis showed As, Zinc (Zn), and manganese (Mn) was linked with ESCC risk in a U-shaped pattern, whereas an inverted U-shaped curve for Cd (all P-non-linear < 0.05). Contrary to Se, the elements Pb, Cr and Cu were positively associated with ESCC risk. By Bayesian Kernel Machine Regression models, the mixtures of the eight trace elements were found to be significantly associated with ESCC risk and metastasis, with Cr, Mn, Cu, Zn, and Pb having a PIP of 1.000 for occurrence risk and Mn being the main contributor for metastatic risk (PIP = .6570). The weighted quantile sum (WQS) model consistently showed that Cu, Cr, Pb, and Cd ranked as the top four positive elements for ESCC risk. Multivariable logistic regression analysis indicated Pb and As were positively associated with tumor invasion (adjusted OR 3.024 [1.053-8.689]; OR 4.385 [1.271-15.126], respectively), whereas Se had the opposite trend (adjusted OR 0.261 [0.074-0.927). Patients with high Cr, Mn, or Pb showed worse overall survival (OS), and high Mn were linked to inferior progression-free survival (PFS) (all P < 0.05). Zn and Pb, and Mn and Cu were identified as independent prognostic factors for OS and PFS, respectively. This study suggests trace element disbalance in human body contributes to the risk of onset and progression of ESCC, especially in a high-incidence region. Further epidemiological and experimental studies were needed to clarify the probable pathogenic processes underpinning the potential link between trace element mixtures and ESCC.
Collapse
Affiliation(s)
- Shuyi Qiu
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, People's Republic of China
- School of Public Health, Shantou University, Shantou, 515041, People's Republic of China
| | - Bingmeng Xie
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, People's Republic of China
- School of Public Health, Shantou University, Shantou, 515041, People's Republic of China
| | - Jiahui Liao
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Jianan Luo
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Xi Liu
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, People's Republic of China
- School of Public Health, Shantou University, Shantou, 515041, People's Republic of China
| | - Lihua He
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Yiteng Huang
- Health Care Center, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China.
| | - Lin Peng
- Central Laboratory, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Qiu C, Xia F, Tu Q, Tang H, Liu Y, Liu H, Wang C, Yao H, Zhong L, Fu Y, Guo P, Chen W, Zhou X, Zou L, Gan L, Yan J, Hou Y, Zhang J, Pang H, Meng Y, Shi Q, Han G, Wang X, Wang J. Multimodal lung cancer theranostics via manganese phosphate/quercetin particle. Mol Cancer 2025; 24:43. [PMID: 39905491 PMCID: PMC11796208 DOI: 10.1186/s12943-025-02242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
The diagnosis and treatment of non-small cell lung cancer in clinical settings face serious challenges, particularly due to the lack of integration between the two processes, which limit real-time adjustments in treatment plans based on the patient's condition and drive-up treatment costs. Here, we present a multifunctional pH-sensitive core-shell nanoparticle containing quercetin (QCT), termed AHA@MnP/QCT NPs, designed for the simultaneous diagnosis and treatment of non-small cell lung cancer. Mechanistic studies indicated that QCT and Mn2+ exhibited excellent peroxidase-like (POD-like) activity, catalysing the conversion of endogenous hydrogen peroxide into highly toxic hydroxyl radicals through a Fenton-like reaction, depleting glutathione (GSH), promoting reactive oxygen species (ROS) generation in mitochondria and endoplasmic reticulum, and inducing ferroptosis. Additionally, Mn2+ could activate the cGAS-STING signalling pathway and promote the maturation of dendritic cells and infiltration of activated T cells, thus inducing tumor immunogenic cell death (ICD). Furthermore, it exhibited effective T2-weighted MRI enhancement for tumor imaging, making them valuable for clinical diagnosis. In vitro and in vivo experiments demonstrated that AHA@MnP/QCT NPs enabled non-invasive imaging and tumor treatment, which presented a one-stone-for-two-birds strategy for combining tumor diagnosis and treatment, with broad potential for clinical application in non-small cell lung cancer therapy.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingchao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yinan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongda Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - HaiLu Yao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linying Zhong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanfeng Fu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pengbo Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weiqi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinyu Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Zou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Licheng Gan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiawei Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yichong Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Jigang Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
9
|
Zhang G, Yu C, Dong Y, Su W, Xue R, Zhang P, Li Y, Wan G, Tang K, Fan X. Self-expanding cellulose sponge with enhanced hemostatic ability by tannic acid/metal ion composite coating for highly effective hemostasis of difficult-to-control bleeding wounds. BIOMATERIALS ADVANCES 2025; 166:214025. [PMID: 39244828 DOI: 10.1016/j.bioadv.2024.214025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Refractory bleeding presents a critical, life-threatening challenge, and the goal of medical professionals and researchers has always been to achieve safe and effective hemostasis for bleeding wounds. In this study, we utilized the benefits of a self-expanding cellulose sponge to control incompressible bleeding, which is achieved this by creating a tannic acid/metal ion coating on the surface and within the pores of the sponge to improve its hemostatic effectiveness. The effects of various types and concentrations of metal ions (calcium, magnesium, iron, and zinc) on hemostatic efficiency and biosafety is systematically investigated. The results from bacteriostasis and in vitro coagulation experiments identified 0.3 wt% Fe3+ as the optimal metal ion coating. Scanning electron microscope energy spectrum analysis confirmed the uniform distribution of Fe3+ within the cellulose sponge. Furthermore, the in vivo and in vitro results demonstrated that the prepared tannic acid/Fe3+ coated composite hemostatic sponge exhibits excellent coagulation ability and biocompatibility. Both the bleeding time and theblood loss in two bleeding models are significantly reduced, showing promising potential for treating extensive surface bleeding and deep penetrating wounds. Furthermore, the straightforward preparation method for this composite hemostatic sponge facilitates additional research towards market application.
Collapse
Affiliation(s)
- Guorui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chuan Yu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Yi Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Weiguo Su
- Vascular Surgery of Nankai university affiliated NanKai hospital, Tianjin 300110, China
| | - Rong Xue
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Pengcheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yijin Li
- Department of Endocrinology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China.
| | - Xialian Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, Zhengzhou 450052, China; Zhengzhou Aifuen Biotechnology Co., LTD, Zhengzhou 451100, China.
| |
Collapse
|
10
|
Soni D, Khan H, Chauhan S, Kaur A, Dhankhar S, Garg N, Singh TG. Exploring therapeutic potential: Targeting TRPM7 in neurodegenerative diseases. Int Immunopharmacol 2024; 142:113142. [PMID: 39298812 DOI: 10.1016/j.intimp.2024.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The ions Ca2+ and Mg2+, which are both present in the body, have been demonstrated to be crucial in the control of a variety of neuronal processes. Transient melastatin-7 (TRPM7) channel plays an important role in controlling Ca2+ and Mg2+ homeostasis, which is crucial for biological processes. The review will also examine how changes in TRPM7 function or expression can lead to neurodegeneration.Even though eight different TRPM channels have been found so far, the channel properties, activation mechanisms, and physiological responses exhibited by these channels can vary greatly from one another. Only TRPM6 and TRPM7 out of the eight TRPM channels were found to have a high permeability to both Ca2+ and Mg2+. In contrast to TRPM6 channels, which are not highly expressed in neuronal cells, TRPM7 channels are widely distributed throughout the nervous system, so they will be the sole focus of this article. It is possible that, in the future, for the treatment of neurodegenerative disorder new therapeutic drug targets will be developed as a direct result of research into the specific roles played by TRPM7 channels in several different neurodegenerative conditions as well as the factors that are responsible for TRPM7 channel regulation.
Collapse
Affiliation(s)
- Diksha Soni
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
11
|
Alekseeva AO, Zolotovskaia MA, Sorokin MI, Suntsova MV, Zakharova GS, Pugacheva PA, Tinkov AA, Korobeinikova TV, Sekacheva MI, Poddubskaya EV, Skalny AV, Kushlinskii NE, Buzdin AA. The First Multiomics Association Study of Trace Element and Mineral Concentration and RNA Sequencing Profiles in Human Cancers. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2274-2286. [PMID: 39865039 DOI: 10.1134/s0006297924120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/28/2025]
Abstract
Integration of various types of omics data is an important trend in contemporary molecular oncology. In this regard, high-throughput analysis of trace and essential elements in cancer biosamples is an emerging field that has not yet been sufficiently addressed. For the first time, we simultaneously obtained gene expression profiles (RNA sequencing) and essential and trace element profiles (inductively coupled plasma mass spectrometry) for a set of human cancer samples. The biosamples were formalin-fixed, paraffin-embedded primary tumor tissue blocks: 67 for colorectal cancer patients and 18 for other solid cancer types (16 types). Mass spectrometry profiles were obtained for 45 chemical elements: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Ge, Hg, I, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Pd, Pt, Rb, Sb, Sc, Se, Si, Sn, Sr, Te, Ti, Tl, Zn, U, V, W, and Zr. The expression levels were profiled for 36,596 known human genes, and the activation levels were assessed for 10,520 human intracellular molecular pathways. For the concentrations of essential elements Ca, Cu, Fe, K, Mg, Na, P, and Zn we detected statistically significant correlations on both gene expression and pathway activation levels for both colorectal cancer samples and at the pan-cancer level. In total, 222/137, 122/220, 1/0, 239/186, 71/44, 1/0, 354/294, 69/82 gene/pathway biomarkers were detected for Ca, Cu, Fe, K, Mg, Na, P, and Zn, respectively. We believe that this first-in-class database provided here will be valuable for multiomics cancer research.
Collapse
Affiliation(s)
- Arsenia O Alekseeva
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia
| | - Marianna A Zolotovskaia
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia
| | - Maksim I Sorokin
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia
| | - Maria V Suntsova
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia
| | - Galina S Zakharova
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia
| | - Polina A Pugacheva
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia
| | - Aleksey A Tinkov
- Center of Bioelementology and Human Ecology, Sechenov University, Moscow, 119435, Russia
| | | | - Marina I Sekacheva
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia
| | - Elena V Poddubskaya
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia
- Vitamed Clinic, Moscow, 117312, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, Sechenov University, Moscow, 119435, Russia
| | | | - Anton A Buzdin
- Digital Biodesign and Personalized Healthcare Research Center, Sechenov University, Moscow, 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
12
|
Kamynina M, Rozenberg JM, Kushchenko AS, Dmitriev SE, Modestov A, Kamashev D, Gaifullin N, Shaban N, Suntsova M, Emelianova A, Buzdin AA. Forced Overexpression and Knockout Analysis of SLC30A and SLC39A Family Genes Suggests Their Involvement in Establishing Resistance to Cisplatin in Human Cancer Cells. Int J Mol Sci 2024; 25:12049. [PMID: 39596116 PMCID: PMC11594112 DOI: 10.3390/ijms252212049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The metabolism of zinc and manganese plays a pivotal role in cancer progression by mediating cancer cell growth and metastasis. The SLC30A family proteins SLC30A3 and SLC30A10 mediate the efflux of zinc, manganese, and probably other transition element ions outside the cytoplasm to the extracellular space or into intracellular membrane compartments. The SLC39A family members SLC39A8 and SLC39A14 are their functional antagonists that transfer these ions into the cytoplasm. Recently, the SLC30A10 gene was suggested as a promising methylation biomarker of colorectal cancer. Here, we investigated whether forced overexpression or inactivation of SLC30A and SLC39A family genes has an impact on the phenotype of cancer cells and their sensitivity to cancer therapeutics. In the human colon adenocarcinoma HCT-15 and duodenal adenocarcinoma HuTu80 cell lines, we generated clones with knockouts of the SLC39A8 and SLC39A14 genes and forced overexpression of the SLC30A3, SLC30A10, and SLC39A8 genes. Gene expression in the mutant and control cells was assessed by RNA sequencing. The cell growth rate, mitochondrial activity, zinc accumulation, and sensitivity to the drugs cetuximab and cisplatin were investigated in functional tests. Overexpression or depletion of SLC30A or SLC39A family genes resulted in the deep reshaping of intracellular signaling and provoked hyperactivation of mitochondrial respiration. Variation in the expression of the SLC30A/SLC39A genes did not increase the sensitivity to cetuximab but significantly altered the sensitivity to cisplatin: overexpression of SLC30A10 resulted in an ~2.7-4 times increased IC50 of cisplatin, and overexpression of SLC30A3 resulted in an ~3.3 times decreased IC50 of cisplatin. The SLC30A/SLC39A genes should be considered as potential cancer drug resistance biomarkers and putative therapeutic targets.
Collapse
Affiliation(s)
- Margarita Kamynina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | | | - Artem S. Kushchenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.S.K.); (S.E.D.)
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.S.K.); (S.E.D.)
| | - Aleksander Modestov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Dmitry Kamashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Nurshat Gaifullin
- Faculty of Fundamental Medicine, Moscow State University, 119992 Moscow, Russia;
| | - Nina Shaban
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Maria Suntsova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Anna Emelianova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
| | - Anton A. Buzdin
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.M.); (D.K.); (N.S.); (M.S.); (A.E.); (A.A.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
13
|
Yuan K, Zhang C, Pan X, Hu B, Zhang J, Yang G. Immunomodulatory metal-based biomaterials for cancer immunotherapy. J Control Release 2024; 375:249-268. [PMID: 39260573 DOI: 10.1016/j.jconrel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Cancer immunotherapy, as an emerging cancer treatment approach, harnesses the patient's own immune system to effectively prevent tumor recurrence or metastasis. However, its clinical application has been significantly hindered by relatively low immune response rates. In recent years, metal-based biomaterials have been extensively studied as effective immunomodulators and potential tools for enhancing anti-tumor immune responses, enabling the reversal of immune suppression without inducing toxic side effects. This review introduces the classification of bioactive metal elements and summarizes their immune regulatory mechanisms. In addition, we discuss the immunomodulatory roles of biomaterials constructed from various metals, including aluminum, manganese, gold, calcium, zinc, iron, magnesium, and copper. More importantly, a systematic overview of their applications in enhancing immunotherapy is provided. Finally, the prospects and challenges of metal-based biomaterials with immunomodulatory functions in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Kangzhi Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinlu Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
14
|
Liu C, Tian C, Guo J, Zhang X, Wu L, Zhu L, Du B. Research Progress of Metal-Organic Frameworks as Drug Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43156-43170. [PMID: 39132713 DOI: 10.1021/acsami.4c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Metal-organic frameworks (MOFs) are composite crystalline materials created through the coordination of metal ions and organic ligands. MOFs have attracted extensive attention in the biomedical field based on the advantages of internal porosity, customizable porosity, and facile surface modification. This review examines the utilization of MOFs in drug delivery systems, focusing on the research progress from the aspects of coloading drug systems, intelligent responsive carriers, biological macromolecule stabilizers, self-driving micro/nanomotors, and multifunctional living carriers. In addition, the current challenges the research faces are also discussed. The review aims to provide a reference for the further application of MOFs as advanced drug delivery systems.
Collapse
Affiliation(s)
- Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Chaoying Tian
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Xiaodi Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Ligang Wu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Ling Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 100 Science Road, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
15
|
Li Y, Li S, Huang Z, Zhang D, Jia Q. Research progress of fluorescent composites based on cyclodextrins: Preparation strategies, fluorescence properties and applications in sensing and bioimaging. Anal Chim Acta 2024; 1316:342878. [PMID: 38969399 DOI: 10.1016/j.aca.2024.342878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024]
Abstract
Fluorescence analysis has been regarded as one of the commonly used analytical methods because of its advantages of simple operation, fast response, low cost and high sensitivity. So far, various fluorescent probes, with noble metal nanoclusters, quantum dots, organic dyes and metal organic frameworks as representatives, have been widely reported. However, single fluorescent probe often suffers from some deficiencies, such as low quantum yield, poor chemical stability, low water solubility and toxicity. To overcome these disadvantages, the introduction of cyclodextrins into fluorescent probes has become a fascinating approach. This review (with 218 references) systematically covers the research progress of fluorescent composites based on cyclodextrins in recent years. Preparation strategies, fluorescence properties, response mechanisms and applications in sensing (ions, organic pollutants, bio-related molecules, temperature, pH) and bioimaging of fluorescent composites based on cyclodextrins are summarized in detail. Finally, the current challenges and future perspectives of these composites in relative research fields are discussed.
Collapse
Affiliation(s)
- Yiqi Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songrui Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenzhen Huang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Złowocka-Perłowska E, Baszuk P, Marciniak W, Derkacz R, Tołoczko-Grabarek A, Słojewski M, Lemiński A, Soczawa M, Matuszczak M, Kiljańczyk A, Scott RJ, Lubiński J. Blood and Serum Se and Zn Levels and 10-Year Survival of Patients after a Diagnosis of Kidney Cancer. Biomedicines 2024; 12:1775. [PMID: 39200240 PMCID: PMC11351416 DOI: 10.3390/biomedicines12081775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
The aim of the project was to evaluate the association between selenium (Se) and zinc (Zn) levels in blood and serum and kidney cancer mortality. In a prospective group of 284 consecutive, unselected patients with kidney cancer, we evaluated their 10-year survival rate in relation to the levels of Se and Zn in their blood and serum. Micronutrient levels were measured using an inductively coupled plasma mass spectrometer. Patients were divided into quartiles based on the distribution of Se and Zn levels arranged in increasing order. The following variables were taken into account in the multivariable models: age at diagnosis, gender, smoking, type of surgery and histopathological examination results. We observed a statistically significant association of all-cause mortality when subgroups with low blood selenium levels were compared to patients with high selenium levels (HR = 7.74; p < 0.001). We found, in addition, that this correlation was much stronger when only men were assessed (HR = 11.6; p < 0.001). We did not find a statistically significant association for zinc alone. When we combined selenium and zinc levels (SeQI-ZnQI vs. SeQIV-ZnQIV), we observed the hazard ratio for kidney cancer death to be 12.4; p = 0.016. For patients in the highest quartile of blood zinc/selenium ratio, compared to those in the lowest, the HR was 2.53; p = 0.008. Our study suggests that selenium levels, combined selenium and zinc levels (SeQI-ZnQI vs. SeQIV-ZnQIV) and zinc-to-selenium ratio (Zn/Se) are attractive targets for clinical trials aimed at improving the survival of kidney cancer patients.
Collapse
Affiliation(s)
- Elżbieta Złowocka-Perłowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Aleksandra Tołoczko-Grabarek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Marcin Słojewski
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (M.S.)
| | - Artur Lemiński
- Department of Biochemical Research, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Michał Soczawa
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (M.S.)
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, Centre for Information-Based Medicine, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia;
- Division of Molecular Medicine, Pathology North, NSW Pathology, Newcastle, NSW 2305, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| |
Collapse
|
17
|
Fang K, Zhang H, Kong Q, Ma Y, Xiong T, Qin T, Li S, Zhu X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules 2024; 29:3704. [PMID: 39125107 PMCID: PMC11314065 DOI: 10.3390/molecules29153704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Photothermal, photodynamic and sonodynamic cancer therapies offer opportunities for precise tumor ablation and reduce side effects. The cyclic guanylate adenylate synthase-stimulator of interferon genes (cGAS-STING) pathway has been considered a potential target to stimulate the immune system in patients and achieve a sustained immune response. Combining photothermal, photodynamic and sonodynamic therapies with cGAS-STING agonists represents a newly developed cancer treatment demonstrating noticeable innovation in its impact on the immune system. Recent reviews have concentrated on diverse materials and their function in cancer therapy. In this review, we focus on the molecular mechanism of photothermal, photodynamic and sonodynamic cancer therapies and the connected role of cGAS-STING agonists in treating cancer.
Collapse
Affiliation(s)
- Kelan Fang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Huiling Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- Department of Medicine and Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunli Ma
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Tianchan Xiong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Tengyao Qin
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
18
|
Kahali S, Das SK, Kumar R, Gupta K, Kundu R, Bhattacharya B, Nath A, Venkatramani R, Datta A. A water-soluble, cell-permeable Mn(ii) sensor enables visualization of manganese dynamics in live mammalian cells. Chem Sci 2024; 15:10753-10769. [PMID: 39027293 PMCID: PMC11253179 DOI: 10.1039/d4sc00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Central roles of Mn2+ ions in immunity, brain function, and photosynthesis necessitate probes for tracking this essential metal ion in living systems. However, developing a cell-permeable, fluorescent sensor for selective imaging of Mn2+ ions in the aqueous cellular milieu has remained a challenge. This is because Mn2+ is a weak binder to ligand-scaffolds and Mn2+ ions quench fluorescent dyes leading to turn-off sensors that are not applicable for in vivo imaging. Sensors with a unique combination of Mn2+ selectivity, μM sensitivity, and response in aqueous media are necessary for not only visualizing labile cellular Mn2+ ions live, but also for measuring Mn2+ concentrations in living cells. No sensor has achieved this combination thus far. Here we report a novel, completely water-soluble, reversible, fluorescent turn-on, Mn2+ selective sensor, M4, with a K d of 1.4 μM for Mn2+ ions. M4 entered cells within 15 min of direct incubation and was applied to image Mn2+ ions in living mammalian cells in both confocal fluorescence intensity and lifetime-based set-ups. The probe was able to visualize Mn2+ dynamics in live cells revealing differential Mn2+ localization and uptake dynamics under pathophysiological versus physiological conditions. In a key experiment, we generated an in-cell Mn2+ response curve for the sensor which allowed the measurement of the endogenous labile Mn2+ concentration in HeLa cells as 1.14 ± 0.15 μM. Thus, our computationally designed, selective, sensitive, and cell-permeable sensor with a 620 nM limit of detection for Mn2+ in water provides the first estimate of endogenous labile Mn2+ levels in mammalian cells.
Collapse
Affiliation(s)
- Smitaroopa Kahali
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Sujit Kumar Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Ravinder Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Rajasree Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Baivabi Bhattacharya
- Department of Developmental Biology and Genetics, Indian Institute of Science Bangalore 560012 India
| | - Arnab Nath
- Department of Developmental Biology and Genetics, Indian Institute of Science Bangalore 560012 India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research 1 Homi Bhabha Road Mumbai 400005 India
| |
Collapse
|
19
|
Milošević N, Milanović M, Sazdanić Velikić D, Sudji J, Jovičić-Bata J, Španović M, Ševo M, Lukić Šarkanović M, Torović L, Bijelović S, Milić N. Biomonitoring Study of Toxic Metal(loid)s: Levels in Lung Adenocarcinoma Patients. TOXICS 2024; 12:490. [PMID: 39058142 PMCID: PMC11281202 DOI: 10.3390/toxics12070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Lung cancer is a leading cause of cancer deaths worldwide. The aim of this study was to investigate heavy metal(loid)s (Cd, Pb, Hg, Cr, Mn, Mo, Ni, and As) in lung cancer patients in order to elucidate their role as lung cancer environmental risk factors. Sixty-three patients of both sexes with adenocarcinoma stage IIIB or IV were enrolled in this research. The heavy metal(loid) urine concentrations were measured using ICP-MS. Arsenic was quantified above 10 μg/L in 44.44% of the samples. Nickel urinary concentrations above the ToxGuide reference levels were found in 50.79% of the samples, while lead was quantified in 9.52% of the urine samples. The urinary chromium levels were above the mean ToxGuide levels in 41.27% of the patients and were significantly higher in men in comparison with women (p = 0.035). The chromium urinary concentrations were positively associated with the CRP serum levels (p = 0.037). Cadmium was quantified in 61.90% of the samples with levels significantly higher in females than in males (p = 0.023), which was associated with smoking habits. Mercury was measured above the limit of quantification in 63.49% of the samples and was not associated with amalgam dental fillings. However, the Hg urinary concentrations were correlated positively with the ALT (p = 0.02), AST (p < 0.001), and GGT (p < 0.001) serum levels. In 46.03% of the samples, the Mo concentrations were above 32 μg/L, the mean value for healthy adults according to the ToxGuide, and 9.52% of the patients had Mn levels higher than 8 μg/L, the reference value for healthy adults based on ToxGuide data. The obtained results are preliminary, and further studies are needed to have a deeper insight into metal(loid) exposure's association with lung cancer development, progression, and survival prediction.
Collapse
Affiliation(s)
- Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Maja Milanović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Danica Sazdanić Velikić
- Institute for Pulmonary Diseases of Vojvodina, Clinic for Pulmonary Oncology, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia;
| | - Jan Sudji
- Institute of Occupational Health Novi Sad, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (M.Š.)
| | - Jelena Jovičić-Bata
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Milorad Španović
- Institute of Occupational Health Novi Sad, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (J.S.); (M.Š.)
| | - Mirjana Ševo
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- IMC Banja Luka-Center of Radiotherapy, Part of Affidea Group, 78000 Banja Luka, Bosnia and Herzegovina
| | - Mirka Lukić Šarkanović
- Clinical Center of Vojvodina, Clinic for Anesthesiology, Intensive Therapy and Pain Therapy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Ljilja Torović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| | - Sanja Bijelović
- Institute of Public Health of Vojvodina, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (N.M.); (J.J.-B.); (L.T.); (N.M.)
| |
Collapse
|
20
|
Rakhimbekova F, Kaidarova DR, Orazgalieva M, Ryspambetov Z, Buzdin A, Anapiyayev B. Cancer Incidence Relation to Heavy Metals in Soils of Kyzylorda Region of Kazakhstan. Asian Pac J Cancer Prev 2024; 25:1987-1995. [PMID: 38918660 PMCID: PMC11382870 DOI: 10.31557/apjcp.2024.25.6.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the relationship of soil pollution factors such as heavy metal ions with the incidence of cancer in the Kyzylorda region of Kazakhstan. METHODS Concentrations of heavy metal ions in the soils of different sites of Kyzylorda region, Kazakhstan, were sampled and correlated with incidence of cancer in 2021. RESULTS Chromium content in the soil exceeded maximum permissible concentration (MPC) in the samples for all sites except Kazaly and Shieli, and the highest excess of 2.8 MPC was found in Terenozek. Content of copper, lead, and cobalt ions was also increased and varied in the range 1.9-15.4, 1.2-4, and 1.2-2.44 MPC, respectively. In addition, lung cancer incidence was statistically significantly correlated with soil concentration to MPC ratio of copper, cobalt, and lead; colorectal cancer was correlated with soil concentration of chromium. Cases of invasive cancer and mutations were recorded Terenozek and Kyzylorda areas. CONCLUSION The higher the soil concentration correlate with higher cancer incidence in Kyzylorda region, Kazakhstan.
Collapse
Affiliation(s)
- Farida Rakhimbekova
- Chemical Processes and Industrial Ecology Department, Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty, 050013, Kazakhstan
| | | | - Madina Orazgalieva
- Kazakh National Research Institute of Oncology and Radiology, Kazakhstan
| | | | - Anton Buzdin
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Federation
| | - Bakytzhan Anapiyayev
- Chemical and Biochemical Engineering Department, Geology and Oil-gas Business Institute named after K.Turyssov, Satbayev University, Kazakhstan
| |
Collapse
|
21
|
Kluza K, Zawlik I, Janowska M, Kmieć A, Paszek S, Potocka N, Skrzypa M, Zuchowska A, Kluz M, Wróbel A, Baszuk P, Pietrzak S, Marciniak W, Miotla P, Lubiński J, Gronwald J, Kluz T. Study of Serum Copper and Zinc Levels and Serum Cu/Zn Ratio among Polish Women with Endometrial Cancer. Nutrients 2023; 16:144. [PMID: 38201973 PMCID: PMC10780690 DOI: 10.3390/nu16010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Micronutrients are important components for the homeostasis of the human body. The studies available in the literature of the subject on their impact on the risk of population diseases, including malignant neoplasms, are ambiguous. In this paper, the relationship between Cu and Zn serum levels and the occurrence of endometrial cancer have been analyzed. METHODS 306 patients (153 test group and 153 control group) matched for age were analyzed for Cu and Zn levels. Microelements levels were determined for sera collected during the hospitalization of patients by means of an inductively coupled plasma mass spectrometry. In addition, the Cu/Zn ratio in the population included in the study was analyzed. Univariable and multivariable analyzes were used to examine the relationship between the factors under study and the incidence of endometrial cancer. RESULTS Lower levels of elements were observed in the study group compared with the control group (Cu: 959.39 μg/L vs. 1176.42 μg/L, p < 0.001; Zn: 707.05 μg/L vs. 901.67 μg/L, p < 0.001). A statistically significant relationship with the occurrence of endometrial cancer was observed for Cu and Zn. The patients with the lowest Cu level had a significantly higher occurrence of endometrial cancer compared with reference tertile (OR 8.54; p < 0.001). Similarly, compared with the reference tertile, the patients with the lowest Zn levels had a significantly greater incidence of endometrial cancer (OR 15.0; p < 0.001). CONCLUSION The results of the study suggest an association of endometrial cancer occurrence with lower Cu and Zn serum levels.
Collapse
Affiliation(s)
- Katarzyna Kluza
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F. Szopena 2, 35-055 Rzeszow, Poland; (K.K.); (A.K.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland (N.P.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Magdalena Janowska
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F. Szopena 2, 35-055 Rzeszow, Poland; (K.K.); (A.K.)
| | - Aleksandra Kmieć
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F. Szopena 2, 35-055 Rzeszow, Poland; (K.K.); (A.K.)
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland (N.P.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland (N.P.)
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland (N.P.)
| | - Alina Zuchowska
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital, F. Szopena 2, 35-055 Rzeszow, Poland;
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (A.W.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, Alabastrowa 8, 72-003 Dobra, Poland
| | - Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Wojciech Marciniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, Alabastrowa 8, 72-003 Dobra, Poland
| | - Pawel Miotla
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (A.W.)
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Read-Gene, Grzepnica, Alabastrowa 8, 72-003 Dobra, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, F. Szopena 2, 35-055 Rzeszow, Poland; (K.K.); (A.K.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| |
Collapse
|
22
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
23
|
Zhou Z, Ou-yang C, Chen Q, Ren Z, Guo X, Lei M, Liu C, Yang X. Trafficking and effect of released DNA on cGAS-STING signaling pathway and cardiovascular disease. Front Immunol 2023; 14:1287130. [PMID: 38152400 PMCID: PMC10751357 DOI: 10.3389/fimmu.2023.1287130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Evidence from clinical research and animal studies indicates that inflammation is an important factor in the occurrence and development of cardiovascular disease (CVD). Emerging evidence shows that nucleic acids serve as crucial pathogen-associated molecular patterns (PAMPs) or non-infectious damage-associated molecular patterns (DAMPs), are released and then recognized by pattern recognition receptors (PRRs), which activates immunological signaling pathways for host defense. Mechanistically, the released nucleic acids activate cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING) to promote type I interferons (IFNs) production, which play an important regulatory function during the initiation of an innate immune response to various diseases, including CVD. This pathway represents an essential defense regulatory mechanism in an organism's innate immune system. In this review, we outline the overall profile of cGAS-STING signaling, summarize the latest findings on nucleic acid release and trafficking, and discuss their potential role in CVD. This review also sheds light on potential directions for future investigations on CVD.
Collapse
Affiliation(s)
- Zimo Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Changhan Ou-yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
24
|
Sun Z, Shao Y, Yan K, Yao T, Liu L, Sun F, Wu J, Huang Y. The Link between Trace Metal Elements and Glucose Metabolism: Evidence from Zinc, Copper, Iron, and Manganese-Mediated Metabolic Regulation. Metabolites 2023; 13:1048. [PMID: 37887373 PMCID: PMC10608713 DOI: 10.3390/metabo13101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Trace metal elements are of vital importance for fundamental biological processes. They function in various metabolic pathways after the long evolution of living organisms. Glucose is considered to be one of the main sources of biological energy that supports biological activities, and its metabolism is tightly regulated by trace metal elements such as iron, zinc, copper, and manganese. However, there is still a lack of understanding of the regulation of glucose metabolism by trace metal elements. In particular, the underlying mechanism of action remains to be elucidated. In this review, we summarize the current concepts and progress linking trace metal elements and glucose metabolism, particularly for the trace metal elements zinc, copper, manganese, and iron.
Collapse
Affiliation(s)
- Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kunhao Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lulu Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
25
|
Zheng W, Chen N, Meurens F, Zheng W, Zhu J. How Does cGAS Avoid Sensing Self-DNA under Normal Physiological Conditions? Int J Mol Sci 2023; 24:14738. [PMID: 37834184 PMCID: PMC10572901 DOI: 10.3390/ijms241914738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
cGAS is a cytosolic DNA sensor that activates innate immune responses by producing the second messenger 2'3'-cGAMP, which activates the adaptor STING. cGAS senses dsDNA in a length-dependent but sequence-independent manner, meaning it cannot discriminate self-DNA from foreign DNA. In normal physiological conditions, cellular DNA is sequestered in the nucleus by a nuclear envelope and in mitochondria by a mitochondrial membrane. When self-DNA leaks into the cytosol during cellular stress or mitosis, the cGAS can be exposed to self-DNA and activated. Recently, many studies have investigated how cGAS keeps inactive and avoids being aberrantly activated by self-DNA. Thus, this narrative review aims to summarize the mechanisms by which cGAS avoids sensing self-DNA under normal physiological conditions.
Collapse
Affiliation(s)
- Wangli Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC J2S 2M2, Canada;
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
26
|
Qayyum MA, Farooq T, Baig A, Bokhari TH, Anjum MN, Mahmood MHUR, Ashraf AR, Muddassir K, Ahmad M. Assessment of essential and toxic elemental concentrations in tumor and non-tumor tissues with risk of colorectal carcinoma in Pakistan. J Trace Elem Med Biol 2023; 79:127234. [PMID: 37302218 DOI: 10.1016/j.jtemb.2023.127234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Colorectal tumor is a major cause of cancer morbidity and mortality both in USA and around the globe. Exposure to environmental toxicants such as toxic trace elements has been implicated in colorectal malignancy. However, data linking them to this cancer are generally lacking. METHODS Accordingly, the current study was to investigate the distribution, correlation and chemometric evaluation of 20 elements (Ca, Na, Mg, K, Zn, Fe, Ag, Co, Pb, Sn, Ni, Cr, Sr, Mn, Li, Se, Cd, Cu, Hg and As) in the tumor tissues (n = 147) and adjacent non tumor tissues (n = 147) of same colorectal patients which were analyzed by flame atomic absorption spectrophometry employing nitric acid-perchloric acid based wet digestion method. RESULTS On the average, Zn (p < 0.05), Ag (p < 0.001), Pb (p < 0.001), Ni (p < 0.01), Cr (p < 0.005) and Cd (p < 0.001) showed significantly higher levels in the tumor tissues compared with the non tumor tissues of patients, whereas mean levels of Ca (p < 0.01), Na (p < 0.05), Mg (p < 0.001), Fe (p < 0.001), Sn (p < 0.05) and Se (p < 0.01), were significantly elevated in the non tumor tissues than the tissues of tumor patients. Most of the elements revealed markedly disparities in their elemental levels based on food (vegetarian/nonvegetarian) habits and smoking (smoker/nonsmoker) habits of donor groups. The correlation study and multivariate statistical analyses demonstrated some significantly divergent associations and apportionment of the elements in the tumor tissues and non tumor tissues of donors. Noticeably, variations in the elemental levels were also noted for colorectal tumor types (lymphoma, carcinoids tumor and adenocarcinoma) and stages (I, II, III, & IV) in patients. CONCLUSION Overall, the study revealed that disproportions in essential and toxic elemental concentrations in the tissues are involved in pathogenesis of the malignancy. These findings provide the data base that helps to oncologist for diagnosis and prognosis of colorectal malignant patients.
Collapse
Affiliation(s)
- Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan.
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Aqsa Baig
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | | | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | | | - Ahmad Raza Ashraf
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Khawaja Muddassir
- Division of Pulmonary Critical Care and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Muhammad Ahmad
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
27
|
Shen C, Zhang K, Yang J, Shi J, Yang C, Sun Y, Yang W. Association between metal(loid)s in serum and leukemia: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:201-213. [PMID: 37159736 PMCID: PMC10163180 DOI: 10.1007/s40201-023-00853-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 05/11/2023]
Abstract
Purpose Heavy metals and metalloids are recognized as environmental threats, which are considered highly toxic and carcinogenic. Epidemiologically, their association with leukemia is under debate. We aim to clarify the association between the heavy metal(loid)s in serum and leukemia via a systematic review and meta-analysis. Methods We searched PubMed, Embase, Google Scholar, and CNKI (China National Knowledge Infrastructure) databases for all related articles. The standardized mean difference and its 95% confidence interval was used to evaluate the association of leukemia with heavy metal(loid)s in serum. The statistical heterogeneity among studies was assessed with the Q-test and I 2 statistics. Results Among 4,119 articles related to metal(loid)s and leukemia, 21 studies met our inclusion criteria, which are all cross-sectional studies. These 21 studies involved 1,316 cases and 1,310 controls, based on which we evaluate the association of heavy metals/metalloids in serum with leukemia. Our results indicated positive differences for serum chromium, nickel, and mercury in leukemia patients, while a negative difference for serum manganese in acute lymphocytic leukemia (ALL). Conclusion Our results suggested an elevated trend of serum chromium, nickel, and mercury concentrations in leukemia patients while descending trend of serum manganese concentration in ALL patients. The result of sensitivity analysis between lead, cadmium, and leukemia and publication bias of association between chromium and leukemia also needed attention. Future research work may focus on the dose-response relationship between any of these elements and the leukemia risks, and further elucidation of how these elements are related to leukemia may shed light on the prevention and treatment of leukemia. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-023-00853-2.
Collapse
Affiliation(s)
- Chengchen Shen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Jingxuan Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Jingyi Shi
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Chan Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Yanan Sun
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| | - Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 610041 Chengdu, Sichuan People’s Republic of China
| |
Collapse
|
28
|
Naletova I, Tomasello B, Attanasio F, Pleshkan VV. Prospects for the Use of Metal-Based Nanoparticles as Adjuvants for Local Cancer Immunotherapy. Pharmaceutics 2023; 15:1346. [PMID: 37242588 PMCID: PMC10222518 DOI: 10.3390/pharmaceutics15051346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy is among the most effective approaches for treating cancer. One of the key aspects for successful immunotherapy is to achieve a strong and stable antitumor immune response. Modern immune checkpoint therapy demonstrates that cancer can be defeated. However, it also points out the weaknesses of immunotherapy, as not all tumors respond to therapy and the co-administration of different immunomodulators may be severely limited due to their systemic toxicity. Nevertheless, there is an established way through which to increase the immunogenicity of immunotherapy-by the use of adjuvants. These enhance the immune response without inducing such severe adverse effects. One of the most well-known and studied adjuvant strategies to improve immunotherapy efficacy is the use of metal-based compounds, in more modern implementation-metal-based nanoparticles (MNPs), which are exogenous agents that act as danger signals. Adding innate immune activation to the main action of an immunomodulator makes it capable of eliciting a robust anti-cancer immune response. The use of an adjuvant has the peculiarity of a local administration of the drug, which positively affects its safety. In this review, we will consider the use of MNPs as low-toxicity adjuvants for cancer immunotherapy, which could provide an abscopal effect when administered locally.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
29
|
Prognostic and Predictive Value of LIV1 Expression in Early Breast Cancer and by Molecular Subtype. Pharmaceutics 2023; 15:pharmaceutics15030938. [PMID: 36986799 PMCID: PMC10058875 DOI: 10.3390/pharmaceutics15030938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Background: LIV1 is a transmembrane protein that may become a new therapeutic target through the development of antibody–drug conjugates (ADCs). Few studies are available regarding the assessment of LIV1 expression in clinical breast cancer (BC) samples. Methods: We analyzed LIV1 mRNA expression in 8982 primary BC. We searched for correlations between LIV1 expression and clinicopathological data, including disease-free survival (DFS), overall survival (OS), pathological complete response to chemotherapy (pCR), and potential vulnerability and actionability to anti-cancer drugs used or under development in BC. Analyses were performed in the whole population and each molecular subtype separately. Results: LIV1 expression was associated with good-prognosis features and with longer DFS and OS in multivariate analysis. However, patients with high LIV1 expression displayed a lower pCR rate than patients with low expression after anthracycline-based neoadjuvant chemotherapy, including in multivariate analysis adjusted on grade and molecular subtypes. LIV1-high tumors were associated with higher probabilities of sensitivity to hormone therapy and CDK4/6 inhibitors and lower probabilities of sensitivity to immune-checkpoint inhibitors and PARP inhibitors. These observations were different according to the molecular subtypes when analyzed separately. Conclusions: These results may provide novel insights into the clinical development and use of LIV1-targeted ADCs by identifying prognostic and predictive value of LIV1 expression in each molecular subtype and associated vulnerability to other systemic therapies.
Collapse
|
30
|
Shen F, Fang Y, Wu Y, Zhou M, Shen J, Fan X. Metal ions and nanometallic materials in antitumor immunity: Function, application, and perspective. J Nanobiotechnology 2023; 21:20. [PMID: 36658649 PMCID: PMC9850565 DOI: 10.1186/s12951-023-01771-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
The slightest change in the extra/intracellular concentration of metal ions results in amplified effects by signaling cascades that regulate both cell fate within the tumor microenvironment and immune status, which influences the network of antitumor immunity through various pathways. Based on the fact that metal ions influence the fate of cancer cells and participate in both innate and adaptive immunity, they are widely applied in antitumor therapy as immune modulators. Moreover, nanomedicine possesses the advantage of precise delivery and responsive release, which can perfectly remedy the drawbacks of metal ions, such as low target selectivity and systematic toxicity, thus providing an ideal platform for metal ion application in cancer treatment. Emerging evidence has shown that immunotherapy applied with nanometallic materials may significantly enhance therapeutic efficacy. Here, we focus on the physiopathology of metal ions in tumorigenesis and discuss several breakthroughs regarding the use of nanometallic materials in antitumor immunotherapeutics. These findings demonstrate the prominence of metal ion-based nanomedicine in cancer therapy and prophylaxis, providing many new ideas for basic immunity research and clinical application. Consequently, we provide innovative insights into the comprehensive understanding of the application of metal ions combined with nanomedicine in cancer immunotherapy in the past few years.
Collapse
Affiliation(s)
- Feiyang Shen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Yan Fang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Yijia Wu
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Min Zhou
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Jianfeng Shen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xianqun Fan
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
31
|
Zhang T, Hu C, Zhang W, Ruan Y, Ma Y, Chen D, Huang Y, Fan S, Lin W, Huang Y, Liao K, Lu H, Xu JF, Pi J, Guo X. Advances of MnO 2 nanomaterials as novel agonists for the development of cGAS-STING-mediated therapeutics. Front Immunol 2023; 14:1156239. [PMID: 37153576 PMCID: PMC10154562 DOI: 10.3389/fimmu.2023.1156239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
As an essential micronutrient, manganese plays an important role in the physiological process and immune process. In recent decades, cGAS-STING pathway, which can congenitally recognize exogenous and endogenous DNA for activation, has been widely reported to play critical roles in the innate immunity against some important diseases, such as infections and tumor. Manganese ion (Mn2+) has been recently proved to specifically bind with cGAS and activate cGAS-STING pathway as a potential cGAS agonist, however, is significantly restricted by the low stability of Mn2+ for further medical application. As one of the most stable forms of manganese, manganese dioxide (MnO2) nanomaterials have been reported to show multiple promising functions, such as drug delivery, anti-tumor and anti-infection activities. More importantly, MnO2 nanomaterials are also found to be a potential candidate as cGAS agonist by transforming into Mn2+, which indicates their potential for cGAS-STING regulations in different diseased conditions. In this review, we introduced the methods for the preparation of MnO2 nanomaterials as well as their biological activities. Moreover, we emphatically introduced the cGAS-STING pathway and discussed the detailed mechanisms of MnO2 nanomaterials for cGAS activation by converting into Mn2+. And we also discussed the application of MnO2 nanomaterials for disease treatment by regulating cGAS-STING pathway, which might benefit the future development of novel cGAS-STING targeted treatments based on MnO2 nanoplatforms.
Collapse
Affiliation(s)
- Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chunmiao Hu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongemi Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| | - Xinrong Guo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
- *Correspondence: Jun-Fa Xu, ; Jiang Pi, ; Xinrong Guo,
| |
Collapse
|
32
|
Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022; 2022:5041399. [PMID: 36568636 PMCID: PMC9788889 DOI: 10.1155/2022/5041399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Collapse
Affiliation(s)
- Simon Ngigi Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|
33
|
Metal ion availability and homeostasis as drivers of metabolic evolution and enzyme function. Curr Opin Genet Dev 2022; 77:101987. [PMID: 36183585 DOI: 10.1016/j.gde.2022.101987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023]
Abstract
Metal ions are potent catalysts and have been available for cellular biochemistry at all stages of evolution. Growing evidence suggests that metal catalysis was critical for the origin of the very first metabolic reactions. With approximately 80% of modern metabolic pathways being dependent on metal ions, metallocatalysis and homeostasis continue to be essential for intracellular metabolic networks and physiology. However, the genetic network that controls metal ion homeostasis and the impact of metal availability on metabolism is poorly understood. Here, we review recent work on gene and protein evolution relevant for better understanding metal ion biology and its role in metabolism. We highlight the importance of analysing the origin and evolution of enzyme catalysis in the context of catalytically relevant metal ions, summarise unanswered questions essential for developing a comprehensive understanding of metal ion homeostasis and advocate for the consideration of metal ion properties and availability in the design and directed evolution of novel enzymes and pathways.
Collapse
|
34
|
Liu T, Zou L, Ji X, Xiao G. Chicken skin-derived collagen peptides chelated zinc promotes zinc absorption and represses tumor growth and invasion in vivo by suppressing autophagy. Front Nutr 2022; 9:960926. [PMID: 35990359 PMCID: PMC9381994 DOI: 10.3389/fnut.2022.960926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
To improve the utilization value of chicken by-products, we utilized the method of step-by-step hydrolysis with bromelain and flavourzyme to prepare low molecular weight chicken skin collagen peptides (CCP) (<5 kDa) and characterized the amino acids composition of the CCP. Then, we prepared novel CCP-chelated zinc (CCP–Zn) by chelating the CCP with ZnSO4. We found that the bioavailability of CCP–Zn is higher than ZnSO4. Besides, CCP, ZnSO4, or CCP–Zn effectively repressed the tumor growth, invasion, and migration in a Drosophila malignant tumor model. Moreover, the anti-tumor activity of CCP–Zn is higher than CCP or ZnSO4. Furthermore, the functional mechanism studies indicated that CCP, ZnSO4, or CCP–Zn inhibits tumor progression by reducing the autonomous and non-autonomous autophagy in tumor cells and the microenvironment. Therefore, this research provides in vivo evidence for utilizing chicken skin in the development of zinc supplements and cancer treatment in the future.
Collapse
Affiliation(s)
- Tengfei Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lifang Zou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|