1
|
Di Sarno A, Romano F, Arianna R, Serpico D, Lavorgna M, Savastano S, Colao A, Di Somma C. Lipid Metabolism and Statin Therapy in Neurodegenerative Diseases: An Endocrine View. Metabolites 2025; 15:282. [PMID: 40278411 DOI: 10.3390/metabo15040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Background/aim: A growing body of evidence suggests a link between dyslipidemias and neurodegenerative diseases, highlighting the crucial role of lipid metabolism in the health of the central nervous system. The aim of our work was to provide an update on this topic, with a focus on clinical practice from an endocrinological point of view. Endocrinologists, being experts in the management of dyslipidemias, can play a key role in the prevention and treatment of neurodegenerative conditions, through precocious and effective lipid profile optimization. Methods: The literature was scanned to identify clinical trials and correlation studies on the association between dyslipidemia, statin therapy, and the following neurodegenerative diseases: Alzheimer's disease (AD), Parkisons's disease (PD), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). Results: Impaired lipid homeostasis, such as that frequently observed in patients affected by obesity and diabetes, is related to neurodegenerative diseases, such as AD, PD, and other cognitive deficits related to aging. AD and related dementias are now a real priority health problem. In the United States, there are approximately 7 million subjects aged 65 and older living with AD and related dementias, and this number is projected to grow to 12 million in the coming decades. Lipid-lowering therapy with statins is an effective strategy in reducing serum low-density lipoprotein cholesterol to normal range concentrations and, therefore, cardiovascular disease risk; moreover, statins have been reported to have a positive effect on neurodegenerative diseases. Conclusions: Several pieces of research have found inconsistent information following our review. There was no association between statin use and ALS incidence. More positive evidence has emerged regarding statin use and AD/PD. However, further large-scale prospective randomized control trials are required to properly understand this issue.
Collapse
Affiliation(s)
- Antonella Di Sarno
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy
| | - Fiammetta Romano
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy
| | - Rossana Arianna
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy
| | - Domenico Serpico
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy
| | - Mariarosaria Lavorgna
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy
| | - Silvia Savastano
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy
| | - Annamaria Colao
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", University of Naples Federico II, 80138 Naples, Italy
| | - Carolina Di Somma
- Section of Endocrinology, Endocrinology Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio Pansini 5, 80138 Naples, Italy
- UNESCO Chair "Education for Health and Sustainable Development", University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
2
|
Lin XT, Zhou SX, Sun ZP, Cao MY, Zhou T, Zhao LY, Chen GT. Deep eutectic solvent-based ultrasonic-assisted extraction of polyphenol from Chenopodium quinoa Willd.: Optimization and lipid-lowering activity. Food Chem 2025; 464:141733. [PMID: 39503090 DOI: 10.1016/j.foodchem.2024.141733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/21/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024]
Abstract
Hyperlipidemia poses a serious threat to human health, but its medication remains some issues including significant adverse reactions. Polyphenols exhibit great potential in lowering blood lipids and the lipid-lowering effects of quinoa polyphenols are still waiting to be explored. In this study, a deep eutectic solvent-based ultrasonic-assisted extraction method of quinoa polyphenols was developed. Then, the constituents of quinoa polyphenols after purification CQP were analyzed. Besides, their lipid-lowering activities and mechanism were explored. Results suggested that CQP comprised at least 12 kinds of polyphenols. CQP could inhibit lipase, adsorb cholesterol, inhibit oxidative stress and lipid peroxidation. Subsequent network pharmacology, cellular experiments and molecular docking revealed that CQP might influence the expression levels or bind to AKT1 and FOXO1, thereby affecting their content or activity, ultimately regulating their functions and leading to changes of the cellular lipid levels. This study lays foundation for developing novel lipid-lowering drugs and functional foods.
Collapse
Affiliation(s)
- Xiao-Tong Lin
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Si-Xuan Zhou
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhi-Peng Sun
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Ming-Yuan Cao
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tao Zhou
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li-Yan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Gui-Tang Chen
- College of Engineering/National R&D Center for Chinese Herbal Medicine Processing, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
3
|
Tang C, Wang H, Guo L, Cui Y, Zou C, Hu J, Zhang H, Yang G, Zhou W. Multifunctional Nanomedicine for Targeted Atherosclerosis Therapy: Activating Plaque Clearance Cascade and Suppressing Inflammation. ACS NANO 2025; 19:3339-3361. [PMID: 39812806 DOI: 10.1021/acsnano.4c12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression. Herein, we introduce a multifunctional nanomedicine (CEZP) targeting AS pathogenesis via a "cell efferocytosis-lipid degradation-cholesterol efflux" paradigm, with additional anti-inflammatory properties. CEZP comprises poly(lactic-co-glycolic acid) nanoparticles encapsulated within a metal-organic framework shell coordinated with zinc ions (Zn2+) and epigallocatechin gallate (EGCG), enabling CpG encapsulation. Upon intravenous administration, CEZP accumulates at AS plaque sites, facilitating macrophage uptake and orchestrating AS treatment through synergistic mechanisms. CpG enhances cellular efferocytosis, Zn2+ promotes intracellular lipid degradation, and EGCG upregulates adenosine 5'-triphosphate-binding cassette transporters for cholesterol efflux while also exhibiting antioxidant and anti-inflammatory effects. In vivo validation confirms CEZP's ability to stabilize plaques, reduce lipid burden, and modulate the macrophage phenotype. Moreover, CEZP is excreted from the body without safety concerns, offering a low-toxicity nonsurgical strategy for AS plaque eradication.
Collapse
Affiliation(s)
- Cui Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hui Wang
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Chan Zou
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jianming Hu
- First Department of Pathology, Affiliated Hospital, Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi City 832002, China
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha, Hunan 410000, China
- Hunan Engineering Research Center for Optimization of Drug Formulation and Early Clinical Evaluation, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Affiliated Hospital, Shihezi University, Shihezi City, Xinjiang 832002, China
| |
Collapse
|
4
|
Cebova M, Bulkova R, Pechanova O. Evolocumab Reduces Oxidative Stress and Lipid Peroxidation in Obese Zucker Rats. PATHOPHYSIOLOGY 2025; 32:5. [PMID: 39982361 PMCID: PMC11843848 DOI: 10.3390/pathophysiology32010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Background/Objectives: Evolocumab inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) binding to low-density lipoprotein (LDL) receptors, thus allowing more LDL receptors to remove LDL cholesterol from the blood. We aimed to determine the effects of evolocumab on the plasma lipid profile, reactive oxygen species (ROS), and nitric oxide (NO) generation in the heart of adult male obese Zucker rats. Methods: The rats were divided into lean and obese controls and obese rats treated with evolocumab subcutaneously at a dose of 10 mg/kg every two weeks. After 6 weeks, the lipid profile was determined in the plasma, and NO synthase (NOS) activity, thiobarbituric acid reactive substance (TBARS), conjugated diene (CD) concentration, and protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nuclear factor kappaB (NF-κB), endothelial NOS (eNOS), and phosphorylated eNOS (peNOS) were measured in the heart. Results: Evolocumab treatment did not reduce body weight, relative heart weight, or systolic blood pressure in obese Zucker rats. Evolocumab treatment, however, reduced plasma LDL levels, TBARS, and CD concentrations along with decreasing expression of NADPH oxidase and NF-kappaB proteins in the heart. On the other hand, evolocumab had no effect on NOS activity or eNOS and peNOS protein expression. Conclusions: Besides its lipid-lowering effect, evolocumab may exert antioxidant properties and protect cardiomyocytes from lipid peroxidation while not affecting NO production.
Collapse
Affiliation(s)
- Martina Cebova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (M.C.); (R.B.)
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Radoslava Bulkova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (M.C.); (R.B.)
| | - Olga Pechanova
- Institute of Normal and Pathological Physiology, Center of Experimental Medicine, Slovak Academy of Sciences, 813 71 Bratislava, Slovakia; (M.C.); (R.B.)
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| |
Collapse
|
5
|
Zou D, Hu Q, Liu Y, Yu L. Post-marketing pharmacovigilance study of inclisiran: mining and analyzing adverse event data from the FDA Adverse Event Reporting System database. Int J Clin Pharm 2024; 46:1419-1426. [PMID: 39192158 DOI: 10.1007/s11096-024-01784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Inclisiran, the newest lipid-lowering drug, has not shown significant safety problems in major clinical studies. However, its recent market introduction and limited clinical use have produced few reports of adverse reactions, leaving a comprehensive understanding of its long-term safety yet to be established. AIM The aim of the study was to conduct a signal detection analysis of adverse events (AEs) associated with inclisiran using FDA Adverse Event Reporting System (FAERS) datasets. METHOD Data on AEs associated with inclisiran were collected from the FAERS database from 2021 to 2023. Signal detection was conducted using the reporting odds ratio (ROR) and the information component (IC). The analysis was standardized using the Medical Dictionary for Regulatory Activities (MedDRA) and focused on System Organ Classes (SOCs) and Preferred Terms. RESULTS Of 17,307,196 AE reports, 2976 were relevant to inclisiran. The male-to-female ratio of these events was 0.74:1, predominantly in patients aged 45 to 74 years. A total of 102 AE signals associated with inclisiran were identified in 15 SOCs. Among these, 86 involved muscle injuries, liver injuries, diabetes, neurocognitive dysfunction, and other events not listed on the drug label. CONCLUSION The findings confirm all AEs documented on the drug label and in current clinical trials while also revealing new AEs such as muscle pain, elevated liver enzymes, increased blood glucose levels, and neurocognitive dysfunction. This study contributes to real-world research data, providing valuable references for rational drug use.
Collapse
Affiliation(s)
- Dan Zou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiaozhi Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Yu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
7
|
Nakamura J, Haruma K, Manabe N, Yamatsuji T, Fujiwara Y, Murao T, Fujita M, Shiotani A, Suehiro M, Kawamoto H, Haisa M, Ueno T, Kamada T, Takao T, Monobe Y, Akiyama T, Naomoto Y, Hata J. A Study of the Risk Factors for 402 Patients with Esophageal Squamous Cell Carcinoma - A Retrospective Comparison with Health Checkup Participants. Intern Med 2024; 63:3019-3024. [PMID: 38569909 PMCID: PMC11637797 DOI: 10.2169/internalmedicine.2950-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 04/05/2024] Open
Abstract
Objective Esophageal cancer is a gastrointestinal cancer with a poor prognosis. However, it is curable and can be treated endoscopically if it is detected at an early stage. The objective of this study was to identify the factors that contribute to early detection. Methods From April 2011 to December 2019, we retrospectively investigated consecutive patients diagnosed with esophageal squamous cell carcinoma (ESCC) through upper gastrointestinal endoscopy at two hospitals of Kawasaki Medical University based on medical records. The factors contributing to the early detection of ESCC were investigated by comparing patients with ESCC with those undergoing health checkups in whom no organic lesions were found in the upper gastrointestinal tract on endoscopy (controls). Patients Factors contributing to early detection were examined in 402 ESCC cases and 391 sex- and age-matched controls, and early and advanced cancers were compared along with the risk factors for ESCC. Results A multivariate analysis showed that alcohol consumption and smoking, concomitant cancer of other organs, and a low body mass index (BMI) were factors associated with ESCC (odds ratio [OR], 4.65; 95% confidence interval [CI], 2.880-7.520, OR, 3.63; 95% CI, 2.380-5.540, OR, 2.09; 95% CI, 1.330-3.270, OR, 6.38; 95% CI, 3.780-10.800), whereas dyslipidemia was significantly less common in patients with ESCC (OR, 0.545; 95% CI, 0.348-0.853). Comparing early and advanced cancers, a history of endoscopic screening was the only factor involved in early detection (OR, 7.93; 95% CI, 4.480-14.000). Conclusion The factors associated with ESCC include alcohol consumption, smoking, concomitant cancer of other organs, and a low BMI. Endoscopy in subjects with these factors may therefore be recommended for the early detection of ESCC.
Collapse
Affiliation(s)
- Jun Nakamura
- Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School, Japan
| | - Ken Haruma
- Department of General Internal Medicine 2, Kawasaki Medical School, Japan
| | - Noriaki Manabe
- Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School, Japan
| | | | | | - Takahisa Murao
- Department of Health Care Medicine, Kawasaki Medical School, Japan
| | - Minoru Fujita
- Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School, Japan
| | - Akiko Shiotani
- Division of Gastroenterology, Department of Internal Medicine, Kawasaki Medical School, Japan
| | - Mitsuhiko Suehiro
- Department of General Internal Medicine 2, Kawasaki Medical School, Japan
| | - Hirofumi Kawamoto
- Department of General Internal Medicine 2, Kawasaki Medical School, Japan
| | - Minoru Haisa
- Department of General Surgery, Kawasaki Medical School, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Japan
| | - Tomoari Kamada
- Department of Health Care Medicine, Kawasaki Medical School, Japan
| | - Toshihiro Takao
- Department of Health Care Medicine, Kawasaki Medical School, Japan
| | - Yasumasa Monobe
- Department of Pathology, Okayama Medical Laboratories Co., Ltd., Japan
| | | | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Japan
| | - Jiro Hata
- Division of Endoscopy and Ultrasonography, Department of Clinical Pathology and Laboratory Medicine, Kawasaki Medical School, Japan
| |
Collapse
|
8
|
Le MPT, Marasinghe CK, Je JY. Chitosan oligosaccharides: A potential therapeutic agent for inhibiting foam cell formation in atherosclerosis. Int J Biol Macromol 2024; 282:137186. [PMID: 39491693 DOI: 10.1016/j.ijbiomac.2024.137186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Foam cell formation is a key hallmark in atherosclerosis and associated cardiovascular diseases (CVDs). The potential anti-atherosclerotic potential of chitosan oligosaccharides (COS) was investigated using oxLDL-treated RAW264.7 murine cells. COS treatment led to a significant inhibition of lipid accumulation, as demonstrated by Oil Red O staining, and reduced levels of total cholesterol, free cholesterol, cholesterol esters, and triglycerides in.oxLDL-treated RAW264.7 cells. COS blocked cholesterol influx through down-regulating class A1 scavenger receptors (SR-A1) and cluster of differentiation 36 (CD36) expression and stimulated cholesterol efflux through up-regulating ABC transporters ABCA-1 and ABCG-1 expressions. Additionally, COS treatment stimulated nuclear signaling pathways involving peroxisome proliferator-activated receptor-γ (PPAR-γ) and liver X receptor α (LXR-α), and also led to the phosphorylation of AMP-activated protein kinase (AMPK). COS further demonstrated anti-inflammatory effects by inhibiting the production of pro-inflammatory cytokines and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in oxLDL-treated RAW264.7 cells, through suppression of NF-κB signaling. Furthermore, COS alleviated oxidative stress induced by oxLDL by activating Nrf2 signaling and enhancing the expression of antioxidant genes, including heme oxygenase-1 (HO-1), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and catalase (CAT). In conclusion, COS can be beneficial in preventing atherosclerosis and related diseases.
Collapse
Affiliation(s)
- My Phuong Thi Le
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
9
|
Zhang Y, Dong W, Zhao M, Zhang J, Li L, Ma Y, Meng X, Wang Y. Identification and Analysis of Phenolic Compounds in Vaccinium uliginosum L. and Its Lipid-Lowering Activity In Vitro. Foods 2024; 13:3438. [PMID: 39517222 PMCID: PMC11545093 DOI: 10.3390/foods13213438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccinium uliginosum L. (VU), rich in polyphenols, is an important wild berry resource primarily distributed in extremely cold regions. However, the detailed composition of Vaccinium uliginosum L. polyphenols (VUPs) has not been reported, which limits the development and utilization of VU. In this study, VU-free polyphenols (VUFPs) and VU-bound polyphenols (VUBPs) were, respectively, extracted using an ultrasonic, complex enzyme and alkali extraction method; the compositions were identified using ultra-performance liquid chromatography-electrospray ionization mass spectrometry, and lipid-lowering activity in vitro was evaluated. The results showed that 885 polyphenols and 47 anthocyanins were detected in the VUFPs and VUBPs, and 30 anthocyanin monomers were firstly detected in VU. Compared with the model group, the accumulation of lipid droplets and the total cholesterol and triglyceride contents in the high-concentration VUP group reduced by 36.95%, 65.82%, and 62.43%, respectively, and liver damage was also alleviated. It was also found that VUP can regulate the level of Asialoglycoprotein receptor 1, a new target for lipid lowering. In summary, this study provides a detailed report on VUP for the first time, confirming that VUP has lipid-lowering potential in vitro. These findings suggest new strategies and theoretical support for the development and utilization of VU, especially in the field of functional foods.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Manjun Zhao
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Jiyue Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China
| | - Li Li
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yan Ma
- Center of Experiment Teaching, Shenyang Normal University, Shenyang 110034, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang 110866, China
| |
Collapse
|
10
|
Shehata TM, Aldhubiab B, Elsewedy HS. Virgin Coconut Oil-based Nanostructured Lipid Carrier Improves the Hypolipidemic Effect of Rosuvastatin. Int J Nanomedicine 2024; 19:7945-7961. [PMID: 39130688 PMCID: PMC11313597 DOI: 10.2147/ijn.s463750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Background Monitoring noncommunicable diseases is regarded as a critical concern that has to be managed in order to avoid a wide variety of complications such as increasing blood lipid levels known as dyslipidemia. Statin drugs, mostly, Rosuvastatin (RSV) was investigated for its effectiveness in treating dyslipidemia. However, reaching the most efficient treatment is essential and improving the effect of RSV is crucial. Therefore, a combination therapy was a good approach for achieving significant benefit. Although RSV is hydrophobic, which would affect its absorption and bioavailability following oral administration, overcoming this obstacle was important. Purpose To that end, the purpose of the present investigation was to incorporate RSV into certain lipid-based nanocarriers, namely, nanostructured lipid carrier (NLC) prepared with virgin coconut oil (CCO). Methods The optimized RSV-NLC formula was selected, characterized and examined for its in vitro, kinetic, and stability profiles. Eventually, the formula was investigated for its in vivo hypolipidemic action. Results The optimized NLC formulation showed a suitable particle size (279.3±5.03 nm) with PDI 0.237 and displayed good entrapment efficiency (75.6±1.9%). Regarding in vitro release, it was efficiently prolonged for 24 h providing 93.7±1.47%. The optimized formula was established to be stable after 3 months storage at two different conditions; 4°C and 25°C. Importantly, including CCO in the development of RSV-NLC could impressively enhance lowering total cholesterol level in obese rat models, which endorse the potential synergistic action between RSV and CCO. Conclusion The study could elucidate the impact of developing NLC using CCO for improving RSV anti-hyperlipidemic activity.
Collapse
Affiliation(s)
- Tamer M Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
| | - Heba S Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 11597, Saudi Arabia
| |
Collapse
|
11
|
Apetroaei MM, Fragkiadaki P, Velescu BȘ, Baliou S, Renieri E, Dinu-Pirvu CE, Drăgănescu D, Vlăsceanu AM, Nedea MI(I, Udeanu DI, Docea AO, Tsatsakis A, Arsene AL. Pharmacotherapeutic Considerations on Telomere Biology: The Positive Effect of Pharmacologically Active Substances on Telomere Length. Int J Mol Sci 2024; 25:7694. [PMID: 39062937 PMCID: PMC11276808 DOI: 10.3390/ijms25147694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Telomeres are part of chromatin structures containing repeated DNA sequences, which function as protective caps at the ends of chromosomes and prevent DNA degradation and recombination, thus ensuring the integrity of the genome. While telomere length (TL) can be genetically inherited, TL shortening has been associated with ageing and multiple xenobiotics and bioactive substances. TL has been characterised as a reliable biomarker for the predisposition to developing chronic pathologies and their progression. This narrative review aims to provide arguments in favour of including TL measurements in a complex prognostic and diagnostic panel of chronic pathologies and the importance of assessing the effect of different pharmacologically active molecules on the biology of telomeres. Medicines used in the management of cardiovascular diseases, diabetes, schizophrenia, hormone replacement therapy at menopause, danazol, melatonin, and probiotics have been studied for their positive protective effects against TL shortening. All these classes of drugs are analysed in the present review, with a particular focus on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Stella Baliou
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Cristina Elena Dinu-Pirvu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Ana Maria Vlăsceanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Artistidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, Voutes, 71003 Heraklion, Greece; (P.F.); (S.B.); (E.R.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (C.E.D.-P.); (D.D.); (A.M.V.); (M.I.N.); (D.I.U.); (A.L.A.)
| |
Collapse
|
12
|
Charbe NB, Zacconi FC, Kowthavarapu VK, Gupta C, Palakurthi SS, Satheeshkumar R, Lokwani DK, Tambuwala MM, Palakurthi S. Targeting Allosteric Site of PCSK9 Enzyme for the Identification of Small Molecule Inhibitors: An In Silico Drug Repurposing Study. Biomedicines 2024; 12:286. [PMID: 38397888 PMCID: PMC10887305 DOI: 10.3390/biomedicines12020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The primary cause of atherosclerotic cardiovascular disease (ASCVD) is elevated levels of low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in this process by binding to the LDL receptor (LDL-R) domain, leading to reduced influx of LDL-C and decreased LDL-R cell surface presentation on hepatocytes, resulting higher circulating levels of LDL-C. As a consequence, PCSK9 has been identified as a crucial target for drug development against dyslipidemia and hypercholesterolemia, aiming to lower plasma LDL-C levels. This research endeavors to identify promising inhibitory candidates that target the allosteric site of PCSK9 through an in silico approach. To start with, the FDA-approved Drug Library from Selleckchem was selected and virtually screened by docking studies using Glide extra-precision (XP) docking mode and Smina software (Version 1.1.2). Subsequently, rescoring of 100 drug compounds showing good average docking scores were performed using Gnina software (Version 1.0) to generate CNN Score and CNN binding affinity. Among the drug compounds, amikacin, bestatin, and natamycin were found to exhibit higher docking scores and CNN affinities against the PCSK9 enzyme. Molecular dynamics simulations further confirmed that these drug molecules established the stable protein-ligand complexes when compared to the apo structure of PCSK9 and the complex with the co-crystallized ligand structure. Moreover, the MM-GBSA calculations revealed binding free energy values ranging from -84.22 to -76.39 kcal/mol, which were found comparable to those obtained for the co-crystallized ligand structure. In conclusion, these identified drug molecules have the potential to serve as inhibitors PCSK9 enzyme and these finding could pave the way for the development of new PCSK9 inhibitory drugs in future in vitro research.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL 32827, USA; (V.K.K.); (C.G.)
| | - Flavia C. Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Venkata Krishna Kowthavarapu
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL 32827, USA; (V.K.K.); (C.G.)
| | - Churni Gupta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL 32827, USA; (V.K.K.); (C.G.)
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (R.S.); (S.P.)
| | - Rajendran Satheeshkumar
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (R.S.); (S.P.)
| | - Deepak K. Lokwani
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana 443001, India;
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.S.P.); (R.S.); (S.P.)
| |
Collapse
|
13
|
Yousefi M, Fateh ST, Nikbaf-Shandiz M, Gholami F, Rastgoo S, Bagher R, Khadem A, Shiraseb F, Asbaghi O. The effect of acarbose on lipid profiles in adults: a systematic review and meta-analysis of randomized clinical trials. BMC Pharmacol Toxicol 2023; 24:65. [PMID: 37990256 PMCID: PMC10664642 DOI: 10.1186/s40360-023-00706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
PURPOSE Dyslipidemia, characterized by elevated levels of triglycerides (TG), low-density lipoprotein (LDL), total cholesterol (TC), and reduced levels of high-density lipoprotein (HDL), is a major risk factor for cardiovascular diseases (CVD). Several studies have shown the potential of acarbose in improving serum lipid markers. However, there have been conflicting results on the topic in adults. Therefore, a comprehensive systematic review and meta-analysis was conducted to assess the impact of acarbose on lipid profiles. METHODS The random-effects approach was used to combine the data, and the results were provided as weighted mean difference (WMD) with 95% confidence intervals (CI). RESULTS Our meta-analysis included a total of 74 studies with a combined sample size of 7046 participants. The results of the analysis showed that acarbose resulted in a reduction in levels of TG (WMD = - 13.43 mg/dl, 95% CI: - 19.20, - 7.67; P < 0.001) and TC (WMD = - 1.93 mg/dl, 95% CI: - 3.71, - 0.15; P = 0.033), but did not affect other lipid markers. When conducting a nonlinear dose-response analysis, we found that acarbose was associated with an increase in levels of HDL (coefficients = 0.50, P = 0.012), with the highest increase observed at a dosage of 400 mg/d. Furthermore, our findings suggested a non-linear relationship between the duration of the intervention and TC (coefficients = - 18.00, P = 0.032), with a decline observed after 50 weeks of treatment. CONCLUSION The findings of this study suggest that acarbose can reduce serum levels of TG and TC. However, no significant effects were observed on LDL or HDL levels.
Collapse
Affiliation(s)
- Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Samira Rastgoo
- Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Bagher
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Alireza Khadem
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Omid Asbaghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Takeuchi A, Ye Y, Takada K, Mori R, Nakamura T, Oda N, Mijiti M, Banno A, Nagaoka S. Pentapeptide IIAEK ameliorates cholesterol metabolism via the suppression of intestinal cholesterol absorption in mice. Biosci Biotechnol Biochem 2023; 87:1345-1353. [PMID: 37667492 DOI: 10.1093/bbb/zbad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Dietary protein-derived peptides are effective in improving dyslipidemia and hypercholesterolemia. We previously identified a novel cholesterol-lowering pentapeptide IIAEK from milk beta-lactoglobulin. However, it remains unclear whether IIAEK affects the micellar solubility of cholesterol and the bile acid-binding ability to lower cholesterol. Moreover, there is no direct evidence that IIAEK inhibits intestinal cholesterol absorption and affects hepatic cholesterol and fecal steroid excretion in vivo. Herein, we showed that IIAEK did not affect the micellar solubility of cholesterol and the bile acid-binding ability. However, we found that IIAEK decreased serum and liver cholesterol levels and increased fecal steroid excretion in mice. Interestingly, IIAEK markedly suppressed the intestinal absorption of [3H]-cholesterol in mice. In conclusion, we found that IIAEK ameliorated cholesterol metabolism by suppressing intestinal cholesterol absorption without affecting in vitro micellar solubility of cholesterol and the bile acid-binding ability in mice.
Collapse
Affiliation(s)
- Asahi Takeuchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuyang Ye
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Keigo Takada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ryosuke Mori
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Toma Nakamura
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Natsuki Oda
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Maihemuti Mijiti
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Arata Banno
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
15
|
Castro Conde A, Marzal Martín D, Campuzano Ruiz R, Fernández Olmo MR, Morillas Ariño C, Gómez Doblas JJ, Gorriz Teruel JL, Mazón Ramos P, García-Moll Marimon X, Soler Romeo MJ, León Jiménez D, Arrarte Esteban V, Obaya Rebollar JC, Escobar Cervantes C, Gorgojo Martínez JJ. Comprehensive Cardiovascular and Renal Protection in Patients with Type 2 Diabetes. J Clin Med 2023; 12:3925. [PMID: 37373620 PMCID: PMC10299569 DOI: 10.3390/jcm12123925] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetes (T2DM) is one of the main public health care problems worldwide. It is associated with a marked increased risk of developing atherosclerotic vascular disease, heart failure, chronic kidney disease and death. It is essential to act during the early phases of the disease, through the intensification of lifestyle changes and the prescription of those drugs that have been shown to reduce these complications, with the aim not only of achieving an adequate metabolic control, but also a comprehensive vascular risk control. In this consensus document, developed by the different specialists that treat these patients (endocrinologists, primary care physicians, internists, nephrologists and cardiologists), a more appropriate approach in the management of patients with T2DM or its complications is provided. A particular focus is given to the global control of cardiovascular risk factors, the inclusion of weight within the therapeutic objectives, the education of patients, the deprescription of those drugs without cardiovascular benefit, and the inclusion of GLP-1 receptor agonists and SGLT2 inhibitors as cardiovascular protective drugs, at the same level as statins, acetylsalicylic acid, or renin angiotensin system inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pilar Mazón Ramos
- Cardiology Department, Complejo Hospitalario Universitario Santiago de Compostela, 15706 A Coruña, Spain;
| | | | | | - David León Jiménez
- Internal Medicine Department, University Hospital Virgen del Rocío, 41013 Sevilla, Spain;
| | | | | | | | - Juan J. Gorgojo Martínez
- Department of Endocrinology and Nutrition, University Hospital Fundación Alcorcón, 28922 Madrid, Spain;
| |
Collapse
|
16
|
Pham V, Moroni A, Gall E, Benedetti A, Zivelonghi C, Picard F. Revascularization and Medical Therapy for Chronic Coronary Syndromes: Lessons Learnt from Recent Trials, a Literature Review. J Clin Med 2023; 12:jcm12082833. [PMID: 37109169 PMCID: PMC10141707 DOI: 10.3390/jcm12082833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Stable coronary artery disease (CAD) has recently been replaced by a new entity described as chronic coronary syndrome (CCS). This new entity has been developed based on a better understanding of the pathogenesis, the clinical characteristics, and the morbi-mortality associated to this condition as part of the dynamic spectrum of CAD. This has significant implications in the clinical management of CCS patients, that ranges from lifestyle adaptation, medical therapy targeting all the elements contributing to CAD progression (i.e., platelet aggregation, coagulation, dyslipidaemia, and systemic inflammation), to invasive strategies (i.e., revascularization). CCS is the most frequent presentation of coronary artery disease which is the first cardiovascular disease worldwide. Medical therapy is the first line therapy for these patients; however, revascularization and especially percutaneous coronary intervention remains beneficial for some of them. European and American guidelines on myocardial revascularization were released in 2018 and 2021, respectively. These guidelines provide different scenarios to help physicians choose the optimal therapy for CCS patients. Recently, several trials focusing on CCS patients have been published. We sought to synthetize the place of revascularization in CCS patients according to the latest guidelines, the lessons learnt from recent trials on revascularization and medical therapy, and future perspectives.
Collapse
Affiliation(s)
- Vincent Pham
- Department of Cardiology, Cochin Hospital, Hôpitaux Universitaire Paris Centre, Assistance Publique des Hôpitaux de Paris, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Alice Moroni
- Department of Cardiology, HartCentrum, Ziekenhuis Netwerk Antwerpen (ZNA) Middelheim, 2020 Antwerp, Belgium
| | - Emmanuel Gall
- Department of Cardiology, Cochin Hospital, Hôpitaux Universitaire Paris Centre, Assistance Publique des Hôpitaux de Paris, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Alice Benedetti
- Department of Cardiology, HartCentrum, Ziekenhuis Netwerk Antwerpen (ZNA) Middelheim, 2020 Antwerp, Belgium
| | - Carlo Zivelonghi
- Department of Cardiology, HartCentrum, Ziekenhuis Netwerk Antwerpen (ZNA) Middelheim, 2020 Antwerp, Belgium
| | - Fabien Picard
- Department of Cardiology, Cochin Hospital, Hôpitaux Universitaire Paris Centre, Assistance Publique des Hôpitaux de Paris, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France
- Faculté de Santé, Université Paris-Cité, 75006 Paris, France
| |
Collapse
|
17
|
Zhu Y, Xu Y, Han D, Zhang X, Qin C, Liu J, Tian L, Xu M, Fang Y, Zhang Y, Wang Y, Cao F. Scavenger receptor-AI targeted theranostic nanoparticles for regression of atherosclerotic plaques via ABCA1 modulation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102672. [PMID: 37044196 DOI: 10.1016/j.nano.2023.102672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in atherosclerotic formation through mediated cholesterol efflux in macrophage-derived foam cells. In this study, a scavenger receptors AI (SR-AI) targeted theranostic nanoparticles was constructed for atherosclerosis regression via ABCA1 activation in foam cells. ABCA1-upregulator 5242331 and IR780 were encapsulated in PLGA-PEG micelles which were conjugated with SR-AI targeting peptide (PP1) to formulate the nanoparticles (SAU-NPs). Immunostaining revealed that SR-AI was highly expressed both in macrophage foam cells and in atherosclerotic plaque of ApoE-/- mice. The SAU-NPs have shown more active targeting to plaque lesion with higher stability compared with non-SR-AI targeted nanoparticles. The transformation from macrophage to foam cells was inhibited by SAU-NPs carried 5242331. Cholesterol deposition was effectively reduced in foam cells by SAU-NPs through activating the LXRα-ABCA1/ABCG1/SR-BI pathway. In conclusion, theranostic SAU-NPs which carried ABCA1-upregulator 5242331 exert beneficial effects on atherosclerosis regression via LXRα activation.
Collapse
Affiliation(s)
- Yan Zhu
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), 1# Tiantan Xili, Beijing 100050, China
| | - Dong Han
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiujin Zhang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Cheng Qin
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Tian
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengqi Xu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Zhang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yabin Wang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| | - Feng Cao
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
18
|
Montelione N, Loreni F, Nenna A, Catanese V, Scurto L, Ferrisi C, Jawabra M, Gabellini T, Codispoti FA, Spinelli F, Chello M, Stilo F. Tissue Engineering and Targeted Drug Delivery in Cardiovascular Disease: The Role of Polymer Nanocarrier for Statin Therapy. Biomedicines 2023; 11:798. [PMID: 36979777 PMCID: PMC10045667 DOI: 10.3390/biomedicines11030798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Atherosclerosis-related coronary artery disease (CAD) is the leading cause of mortality and morbidity worldwide. This requires effective primary and secondary prevention in reducing the complications related to CAD; the regression or stabilization of the pathology remains the mainstay of treatment. Statins have proved to be the most effective treatment in reducing adverse effects, but there are limitations related to the administration and achievement of effective doses as well as side effects due to the lack of target-related molecular specificity. The implemented technological steps are polymers and nanoparticles for the administration of statins, as it has been seen how the conjugation of drug delivery systems (DDSs) with statins increases bioavailability by circumventing the hepatic-renal filter and increases the related target specificity, enhancing their action and decreasing side effects. Reduction of endothelial dysfunction, reduced intimal hyperplasia, reduced ischemia-reperfusion injury, cardiac regeneration, positive remodeling in the extracellular matrix, reduced neointimal growth, and increased reendothelialization are all drug-related effects of statins enhanced by binding with DDSs. Recent preclinical studies demonstrate how the effect of statins stimulates the differentiation of endogenous cardiac stem cells. Poly-lactic-co-glycolic acid (PLGA) seems to be the most promising DDS as it succeeds more than the others in enhancing the effect of the bound drug. This review intends to summarize the current evidence on polymers and nanoparticles for statin delivery in the field of cardiovascular disease, trying to shed light on this topic and identify new avenues for future studies.
Collapse
Affiliation(s)
- Nunzio Montelione
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Francesco Loreni
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Vincenzo Catanese
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Lucia Scurto
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mohamad Jawabra
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | | | - Francesco Spinelli
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Massimo Chello
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Francesco Stilo
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
- Head of Research Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
19
|
Attenuation of Hyperlipidemia by Medicinal Formulations of Emblica officinalis Synergized with Nanotechnological Approaches. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010064. [PMID: 36671636 PMCID: PMC9854976 DOI: 10.3390/bioengineering10010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The ayurvedic herb Emblica officinalis (E. officinalis) is a gift to mankind to acquire a healthy lifestyle. It has great therapeutic and nutritional importance. Emblica officinalis, also known as Indian gooseberry or Amla, is a member of the Euphorbiaceae family. Amla is beneficial for treating illnesses in all its forms. The most crucial component is a fruit, which is also the most common. It is used frequently in Indian medicine as a restorative, diuretic, liver tonic, refrigerant, stomachic, laxative, antipyretic, hair tonic, ulcer preventive, and for the common cold and fever. Hyperlipidemia is also known as high cholesterol or an increase in one or more lipid-containing blood proteins. Various phytocompounds, including polyphenols, vitamins, amino acids, fixed oils, and flavonoids, are present in the various parts of E. officinalis. E. officinalis has been linked to a variety of pharmacological effects in earlier studies, including hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. The amla-derived active ingredients and food products nevertheless encounter challenges such as instability and interactions with other food matrices. Considering the issue from this perspective, food component nanoencapsulation is a young and cutting-edge field for controlled and targeted delivery with a range of preventative activities. The nanoformulation of E. officinalis facilitates the release of active components or food ingredients, increased bioaccessibility, enhanced therapeutic activities, and digestion in the human body. Accordingly, the current review provides a summary of the phytoconstituents of E. officinalis, pharmacological actions detailing the plant E. officinalis's traditional uses, and especially hyperlipidemic activity. Correspondingly, the article describes the uses of nanotechnology in amla therapeutics and functional ingredients.
Collapse
|
20
|
Ouyang M, Li C, Hu D, Peng D, Yu B. Mechanisms of unusual response to lipid-lowering therapy: PCSK9 inhibition. Clin Chim Acta 2023; 538:113-123. [PMID: 36403664 DOI: 10.1016/j.cca.2022.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The efficacy of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition has broadened lipid-lowering therapy thus providing decreased risk in atherosclerotic cardiovascular disease. Unfortunately, the widespread use of PCSK9 inhibitors (PCSK9i), ie, monoclonal antibodies, has led to the findings of unusual responsiveness, ie, a phenomenon defined as an LDL-C reduction of <30% vs the average LDL-C reduction efficacy of 50-60%. This unusual responsiveness to PCSK9i is attributable to several factors, ie, lack of adherence, impaired absorption, poor distribution or early elimination as well as abnormal effects of PCSK9i in the presence of anti-antibodies or mutations in PCSK9 and LDLR. Unexpectedly increased lipoprotein (Lp)(a) also appear to contribute to the unusual responsiveness scenario. Identification of these responses and mechanisms underlying them are essential for effective management of LDL-C and cardiovascular risk. In this review, we describe plausible reasons underlying this phenomenon supported by findings of clinical trials. We also elaborate on the need for education and regular follow-up to improve adherence. Collectively, the review provides a summary of the past, present, and future of mechanisms and countermeasures revolving around unusual responses to PCSK9i therapy.
Collapse
Affiliation(s)
- Mingqi Ouyang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha 410011, Hunan, China.
| |
Collapse
|
21
|
Boutari C, Rizos CV, Doumas M, Liamis G, Skoumas I, Rallidis L, Garoufi A, Kolovou G, Tziomalos K, Skalidis E, Kotsis V, Sfikas G, Lambadiari V, Anagnostis P, Bilianou E, Anastasiou G, Koutagiar I, Kiouri E, Attilakos A, Kolovou V, Zacharis E, Antza C, Liberopoulos E. Prevalence of Diabetes and Its Association with Atherosclerotic Cardiovascular Disease Risk in Patients with Familial Hypercholesterolemia: An Analysis from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH). Pharmaceuticals (Basel) 2022; 16:44. [PMID: 36678541 PMCID: PMC9863379 DOI: 10.3390/ph16010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Familial hypercholesterolemia (FH) and type 2 diabetes mellitus (T2DM) are both associated with a high risk of atherosclerotic cardiovascular disease (ASCVD). Little is known about the prevalence of T2DM and its association with ASCVD risk in FH patients. This was a cross-sectional analysis from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH) including adults with FH (n = 1719, mean age 51.3 ± 14.6 years). Of FH patients, 7.2% had a diagnosis of T2DM. The prevalence of ASCVD, coronary artery disease (CAD), and stroke was higher among subjects with T2DM compared with those without (55.3% vs. 23.3%, 48.8% vs. 20.7%, 8.3% vs. 2.7%, respectively, p < 0.001). When adjusted for age, systolic blood pressure, smoking, body mass index, hypertension, waist circumference, triglyceride levels, high-density lipoprotein cholesterol levels, and gender, T2DM was significantly associated with prevalent ASCVD [OR 2.0 (95% CI 1.2−3.3), p = 0.004]. FH patients with T2DM were more likely to have undergone coronary revascularization than those without (14.2% vs. 4.5% for coronary artery bypass graft, and 23.9% vs. 11.5% for percutaneous coronary intervention, p < 0.001). T2DM is associated with an increased risk for prevalent ASCVD in subjects with FH. This may have implications for risk stratification and treatment intensity in these patients.
Collapse
Affiliation(s)
- Chrysoula Boutari
- 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Christos V. Rizos
- Department of Internal Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Michalis Doumas
- 2nd Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - George Liamis
- Department of Internal Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Skoumas
- Cardiology Clinic, Hippokration General Hospital, 54643 Athens, Greece
| | - Loukianos Rallidis
- Department of Cardiology, Medical School, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anastasia Garoufi
- 2nd Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 15452 Athens, Greece
| | - Genovefa Kolovou
- Cardiometabolic Center, Lipid Clinic, LA Apheresis Unit, Metropolitan Hospital, 15562 Athens, Greece
| | - Konstantinos Tziomalos
- 1st Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece
| | - Emmanouil Skalidis
- Cardiology Clinic, University General Hospital of Heraklion, 70013 Heraklion, Greece
| | - Vasileios Kotsis
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Papageorgiou General Hospital Thessaloniki, 56429 Thessaloniki, Greece
| | - George Sfikas
- Department of Internal Medicine, 424 General Military Training Hospital, 56429 Thessaloniki, Greece
| | - Vaia Lambadiari
- 2nd Propedeutic Internal Medicine Department and Diabetes Research Unit, National and Kapodistrian University of Athens, Attikon University General Hospital, 12462 Athens, Greece
| | | | - Eleni Bilianou
- Cardiology Clinic, “Tzaneio” General Hospital, 18536 Piraeus, Greece
| | - Georgia Anastasiou
- Department of Internal Medicine, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Iosif Koutagiar
- Cardiology Clinic, Hippokration General Hospital, 54643 Athens, Greece
| | - Estela Kiouri
- Department of Cardiology, Medical School, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Achilleas Attilakos
- Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, C’ Pediatrics Clinic, Attikon University General Hospital, 12462 Athens, Greece
| | - Vana Kolovou
- Cardiometabolic Center, Lipid Clinic, LA Apheresis Unit, Metropolitan Hospital, 15562 Athens, Greece
| | - Evangelos Zacharis
- Cardiology Clinic, University General Hospital of Heraklion, 70013 Heraklion, Greece
| | - Christina Antza
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Papageorgiou General Hospital Thessaloniki, 56429 Thessaloniki, Greece
| | - Evangelos Liberopoulos
- 1st Propedeutic Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, 17 Agiou Thoma Str., Goudi, 11527 Athens, Greece
| |
Collapse
|
22
|
Combined Therapy with Simvastatin- and Coenzyme-Q10-Loaded Nanoparticles Upregulates the Akt-eNOS Pathway in Experimental Metabolic Syndrome. Int J Mol Sci 2022; 24:ijms24010276. [PMID: 36613727 PMCID: PMC9820291 DOI: 10.3390/ijms24010276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In addition to their LDL-cholesterol-lowering effect, statins have pleiotropic beneficial effects on the cardiovascular system. However, long-term treatment with statins may be associated with serious side effects. With the aim to make statin therapy more effective, we studied the effects of simvastatin- and coenzyme-Q10-loaded polymeric nanoparticles on the lipid profile and nitric oxide (NO)/reactive oxygen species (ROS) balance in the heart and aorta of adult male obese Zucker rats. The rats were divided into an untreated group, a group treated with empty nanoparticles, and groups treated with simvastatin-, coenzyme Q10 (CoQ10)-, or a combination of simvastatin- and CoQ10-loaded nanoparticles (SIMV+CoQ10). After 6 weeks, the lipid profile in the plasma and the concentration of conjugated dienes in the liver were determined. Nitric oxide synthase (NOS) activity, Akt, endothelial NOS (eNOS), phosphorylated eNOS (p-eNOS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and nuclear factor kappaB (NF-kappaB) protein expressions were measured in the heart and aorta. All simvastatin, CoQ10, and SIMV+CoQ10 treatments decreased plasma LDL levels, but only the combined SIMV+CoQ10 treatment increased NOS activity and the expression of Akt, eNOS, and p-eNOS in both the heart and the aorta. Interestingly, NADPH oxidase in the heart and NF-kappaB protein expression in the aorta were decreased by all treatments, including nanoparticles alone. In conclusion, only combined therapy with SIMV- and CoQ10-loaded nanoparticles increased NOS activity and upregulated the Akt-eNOS pathway in obese Zucker rats, which may represent a promising tool for the treatment of cardiometabolic diseases.
Collapse
|
23
|
Li J, Xiong T, Wang T, Wang M, Wang C, Yang F, Wang X, Tan Z, Sun W. Baicalein targets CD36 to prevent foam cell formation by suppressing the excessive uptake of oxLDL and accelerating ABCA1-mediated cholesterol efflux in oxLDL-induced THP-1 macrophages. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
24
|
Brogi S, Tabanelli R, Calderone V. Combinatorial approaches for novel cardiovascular drug discovery: a review of the literature. Expert Opin Drug Discov 2022; 17:1111-1129. [PMID: 35853260 DOI: 10.1080/17460441.2022.2104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In this article, authors report an inclusive discussion about the combinatorial approach for the treatment of cardiovascular diseases (CVDs) and for counteracting the cardiovascular risk factors. The mentioned strategy was demonstrated to be useful for improving the efficacy of pharmacological treatments and in CVDs showed superior efficacy with respect to the classical monotherapeutic approach. AREAS COVERED According to this topic, authors analyzed the combinatorial treatments that are available on the market, highlighting clinical studies that demonstrated the efficacy of combinatorial drug strategies to cure CVDs and related risk factors. Furthermore, the review gives an outlook on the future perspective of this therapeutic option, highlighting novel drug targets and disease models that could help the future cardiovascular drug discovery. EXPERT OPINION The use of specifically designed and increasingly rational and effective drug combination therapies can therefore be considered the evolution of polypharmacy in cardiometabolic and CVDs. This approach can allow to intervene on multiple etiopathogenetic mechanisms of the disease or to act simultaneously on different pathologies/risk factors, using the combinations most suitable from a pharmacodynamic, pharmacokinetic, and toxicological perspective, thus finding the most appropriate therapeutic option.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
25
|
Qian J, Li Z, Zhang X, Chen J, Ding C, Yang P, Liu Y, Shi M, Ren X, Ge J. Efficacy and Tolerability of Ezetimibe/Atorvastatin Fixed-Dose Combination Versus Atorvastatin Monotherapy in Hypercholesterolemia: A Phase III, Randomized, Active-Controlled Study in Chinese Patients. Clin Ther 2022; 44:1282-1296. [DOI: 10.1016/j.clinthera.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 12/17/2022]
|
26
|
Stănciulescu LA, Scafa A, Duduianu C, Stan R, Nicolescu A, Deleanu C, Dorobanțu M. Lipoprofiling Assessed by NMR Spectroscopy in Patients with Acute Coronary Syndromes: Is There a Need for Fasting Prior to Sampling? Diagnostics (Basel) 2022; 12:diagnostics12071675. [PMID: 35885579 PMCID: PMC9319954 DOI: 10.3390/diagnostics12071675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Most patients presenting in an emergency unit with acute coronary syndromes (ACS) (which include non-ST-elevation myocardial infarction (NSTEMI), ST-elevation MI (STEMI), and unstable angina) usually meet at least two cardiovascular risk factors, such as dyslipidemia, arterial hypertension, diabetes mellitus type 2, obesity, history of or current smoking, etc. Most ACS patients suffer from a type of dyslipidemia, and in addition to this there are ACS patients rushed into the emergency units for which the feeding status is unknown. Thus, we set out to evaluate the effect of fasting on 16 blood metabolite concentrations and 114 lipoprotein parameters on one control group and a group of statin-treated ACS patients hospitalized in a cardiovascular emergency unit, using Nuclear Magnetic Resonance (NMR) spectroscopy. The results indicated trends (in terms of number of cases, but not necessarily in terms of the magnitude of the effect) for as many as four metabolites and 48 lipoproteins. The effect was defined as a trend for results showing over 70% of the cases from either one or both groups that experienced parameter changes in the same direction (i.e., either increased or decreased). In terms of magnitude, the effect is rather low, leading to the overall conclusion that in cardiovascular (CV) emergency units, the blood samples analyzed in any feeding status would provide close results and very valuable information regarding prognosis and for fast decisions on patient’s proper management.
Collapse
Affiliation(s)
- Laura-Adina Stănciulescu
- Department of Cardiology, Emergency Clinical Hospital, 014461 Bucharest, Romania; (L.-A.S.); (A.S.)
| | - Alexandru Scafa
- Department of Cardiology, Emergency Clinical Hospital, 014461 Bucharest, Romania; (L.-A.S.); (A.S.)
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050513 Bucharest, Romania;
| | - Cătălin Duduianu
- “C.D. Nenitescu” Centre of Organic Chemistry, Romanian Academy, 060023 Bucharest, Romania;
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Raluca Stan
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Alina Nicolescu
- “C.D. Nenitescu” Centre of Organic Chemistry, Romanian Academy, 060023 Bucharest, Romania;
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania
- Correspondence: (A.N.); (C.D.)
| | - Calin Deleanu
- “C.D. Nenitescu” Centre of Organic Chemistry, Romanian Academy, 060023 Bucharest, Romania;
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania
- Correspondence: (A.N.); (C.D.)
| | - Maria Dorobanțu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050513 Bucharest, Romania;
| |
Collapse
|