1
|
Patel CM, Wiele SV, Kim L, Payne E, Bruno-Garcia M, Devorak A, Kaganov DE, Lau A, Guthold M, Delp MD, Crapo J, Mao XW, Willey JS. Treatment with a superoxide dismutase mimetic for joint preservation during 35 and 75 days in orbit aboard the international space station, and after 120 days recovery on Earth. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:67-78. [PMID: 39864914 DOI: 10.1016/j.lssr.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 01/28/2025]
Abstract
Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents. Cartilage and meniscal degradation in mice were measured via microCT, histology, and transcriptomics after: (1) ∼ 35 days on the ISS, (2) ∼ 35 days on the ISS followed by 120 days weight-bearing readaptation on Earth or (3) ∼ 75 days on the ISS. The study had a limited sample size, so both significant effects and generalized patterns are reported. After 35 days aboard the ISS, cartilage volume at the tibial-femoral cartilage-cartilage contact point decreased, meniscal volume decreased concurrent with an increase in pro-osteoarthritic signaling in the joint soft tissue. Similarly, a decrease in cortical and trabecular bone volume of the tibia was observed. Treatment with the SOD mimetic preserved the trabecular bone, articular cartilage and the menisci after 35 days aboard the ISS, but had limited efficacy retaining that recovery after 120 days of weight bearing, and after 75 days on orbit. Antioxidants including BuOE may serve as a potential countermeasure option to protect musculoskeletal health during spaceflight missions, and continued use may be necessary upon reaching a destination.
Collapse
Affiliation(s)
- Chirayu M Patel
- Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA
| | | | - Leslie Kim
- University of Virginia, Charlottesville, VA, USA
| | - Ethan Payne
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | | - Anne Devorak
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel E Kaganov
- Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA
| | - Anthony Lau
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, USA
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - James Crapo
- Department of Medicine Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, and University of Colorado Denver, Denver, CO, USA
| | - Xiao W Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine and Medical Center, Loma Linda, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Hardy JG. Articular cartilage loss is an unmitigated risk of human spaceflight. NPJ Microgravity 2024; 10:104. [PMID: 39543227 PMCID: PMC11564753 DOI: 10.1038/s41526-024-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Microgravity and space radiation are hazards of spaceflight that have deleterious effects on articular cartilage. Since it is not widely monitored or protected through dedicated countermeasures, articular cartilage loss is an unmitigated risk of human spaceflight. Spaceflight-induced cartilage loss will affect an astronaut's performance during a mission and long-term health after a mission. Addressing concerns for cartilage health will be critical to the continued safe and successful exploration of space.
Collapse
Affiliation(s)
- John G Hardy
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA.
| |
Collapse
|
3
|
van Loon JJWA, Berezovska OP, Bervoets TJM, Montufar-Solis D, Semeins CM, Zandieh-Doulabi B, Rodionova PNV, Duke J, Veldhuijzen JP. Growth and mineralization of fetal mouse long bones under microgravity and daily 1 g gravity exposure. NPJ Microgravity 2024; 10:80. [PMID: 39060264 PMCID: PMC11282293 DOI: 10.1038/s41526-024-00421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In a previous Space Shuttle/Spacelab experiment (STS-42), we observed direct responses of isolated fetal mouse long bones to near weightlessness. This paper aimed to verify those results and study the effects of daily 1×g exposure during microgravity on the growth and mineralization of these bones. Two experiments were conducted: one on an American Space Shuttle mission (IML-2 on STS-65) and another on a Russian Bio-Cosmos flight (Bion-10 on Cosmos-2229). Despite differences in hardware, both used 17-day-old fetal mouse metatarsals cultured for 4 days. Results showed reduced proteoglycan content under microgravity compared to 1×g conditions, with no main differences in other cellular structures. While the overall metatarsal length was unaffected, the length increase of the mineralized diaphysis was significantly reduced under microgravity. Daily 1×g exposure for at least 6 h abolished the microgravity-induced reduction in cartilage mineralization, indicating the need for long-duration exposure to 1×g as an in-flight countermeasure using artificial gravity.
Collapse
Affiliation(s)
- Jack J W A van Loon
- Department of Oral Biology, Section Oral Cell Biology, ACTA-Vrije Universiteit, Amsterdam, The Netherlands.
| | - Olga P Berezovska
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Theodorus J M Bervoets
- Department of Oral Biology, Section Oral Cell Biology, ACTA-Vrije Universiteit, Amsterdam, The Netherlands
| | - Dina Montufar-Solis
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Cor M Semeins
- Department of Oral Biology, Section Oral Cell Biology, ACTA-Vrije Universiteit, Amsterdam, The Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Biology, Section Oral Cell Biology, ACTA-Vrije Universiteit, Amsterdam, The Netherlands
| | - P Natalia V Rodionova
- Schmalhausen Institute for Zoology, National Academy of Sciences Ukraine, Kiev, Ukraine
| | - Jackie Duke
- Department of Orthodontics & Dentofacial Orthopedics, University of Texas Health Science Center, Houston, TX, USA
| | - J Paul Veldhuijzen
- Department of Oral Biology, Section Oral Cell Biology, ACTA-Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Jogdand A, Landolina M, Chen Y. Organs in orbit: how tissue chip technology benefits from microgravity, a perspective. FRONTIERS IN LAB ON A CHIP TECHNOLOGIES 2024; 3:1356688. [PMID: 38915901 PMCID: PMC11195915 DOI: 10.3389/frlct.2024.1356688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chips have become one of the most potent research tools in the biomedical field. In contrast to conventional research methods, such as 2D cell culture and animal models, tissue chips more directly represent human physiological systems. This allows researchers to study therapeutic outcomes to a high degree of similarity to actual human subjects. Additionally, as rocket technology has advanced and become more accessible, researchers are using the unique properties offered by microgravity to meet specific challenges of modeling tissues on Earth; these include large organoids with sophisticated structures and models to better study aging and disease. This perspective explores the manufacturing and research applications of microgravity tissue chip technology, specifically investigating the musculoskeletal, cardiovascular, and nervous systems.
Collapse
Affiliation(s)
- Aditi Jogdand
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Maxwell Landolina
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
5
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Translation from Microgravity Research to Earth Application. Int J Mol Sci 2022; 23:ijms231910995. [PMID: 36232297 PMCID: PMC9569622 DOI: 10.3390/ijms231910995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
|