1
|
Alghamdi A, Hussain SD, Wani K, Sabico S, Alnaami AM, Amer OE, Al‐Daghri NM. Altered Circulating Cytokine Profile Among mRNA-Vaccinated Young Adults: A Year-Long Follow-Up Study. Immun Inflamm Dis 2025; 13:e70194. [PMID: 40202571 PMCID: PMC11980434 DOI: 10.1002/iid3.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVES This longitudinal study aimed to assess the impact of COVID-19 vaccination on cytokine profile. METHODS A total of 84 Saudi subjects (57.1% females) with mean age of 27.2 ± 12.3 participated in this longitudinal study. Anthropometric data and fasting blood samples were obtained at baseline and after final vaccination, with an average follow-up duration of 14.1 ± 3.6 months for adolescents and 13.3 ± 3.0 months for adults, calculated from the first dose of vaccination. Assessment of cytokine profiles was done using commercially available assays. RESULTS After follow-up, a significant increase in weight and body mass index was observed overall (p = 0.003 and p = 0.002, respectively). Postvaccination, significant increases were observed in several cytokines, including basic fibroblast growth factor 2 (p < 0.001), interferon gamma (IFNγ) (p = 0.005), interleukin-1 beta (IL1β) (p < 0.001), IL4 (p < 0.001), IL6 (p = 0.003), IL7 (p = 0.001), IL17E (p < 0.001), monocyte chemoattractant protein-1 (MCP1) (p = 0.03), MCP3 (p = 0.001), tumor necrosis factor alpha (TNFα) (p < 0.001), and VEGFA (p < 0.001). A significant reduction was observed only in macrophage colony-stimulating factor (p < 0.001). When adjusted for age, epidermal growth factor (EGF), IL4, IL6, MCP3, TNFα, and vascular endothelial growth factor (VEGFA) remained statistically significant. Gender-based analysis revealed that men experienced greater increases in IL6 (p = 0.008), IL4 (p = 0.04), and TNFα (p = 0.015) compared to women. Age-based analysis showed that older participants had more pronounced increases in EGF (p = 0.011), IL6 (p = 0.029), MCP1 (p = 0.042), and TNFα (p = 0.017), while younger participants had a greater increase in VEGFA (p = 0.025). CONCLUSIONS The findings of this study indicated that COVID-19 vaccination resulted in an increase in cytokine levels, which signifies the persistence of the humoral immune response to messenger RNA (mRNA) vaccines. This effect may be attributed to the persistent production of spike protein and highly inflammatory nature of mRNA-lipid nanoparticle. Additionally, the results suggested differences in cytokine levels based on gender and age. Notably, the cytokine profile remains favorably altered in young adults who received mRNA vaccinations, even after 1 year.
Collapse
Affiliation(s)
- Amani Alghamdi
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Syed Danish Hussain
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Kaiser Wani
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Shaun Sabico
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Abdullah M. Alnaami
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Osama Emam Amer
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Nasser M. Al‐Daghri
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
2
|
Padilla-Bórquez DL, Matuz-Flores MG, Hernández-Bello J, Rosas-Rodríguez JA, Turrubiates-Hernández FJ, García-Arellano S, González-Estevez G, Ceja-Galvez HR, Oregon-Romero E, López-Reyes A, Muñoz-Valle JF. Influence of previous COVID-19 exposure and vaccine type (CoronaVac, ChAdOx1 nCov-19 or BNT162b2) on antibody and cytokine (Th1 or Th2) responses. Hum Vaccin Immunother 2024; 20:2394265. [PMID: 39246041 PMCID: PMC11385164 DOI: 10.1080/21645515.2024.2394265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
To achieve global herd immunity, widespread vaccination is the most effective strategy. Vaccines stimulate the immune system, generating cytokines and chemokines, isotype antibodies, and neutralizing antibodies; all these molecules collectively provide a more comprehensive characterization of the immune response post-vaccination. We conducted a longitudinal study in northwestern Mexico, involving 120 individuals before vaccination and after the first dose of the SARS-CoV-2 vaccine, and 46 individuals after their second dose. Our findings reveal that antibody levels stabilize over time; cytokine levels generally increase following the first dose but decrease after the second dose and higher than normal levels in IgG1 and IgG3 concentrations are present. Most of the innate cytokines determined in this study were higher after the first dose of the vaccine. Regardless of previous infection history, this finding suggests that the first dose of the vaccine is crucial and may stimulate immunity by enhancing the innate immune response. Conversely, increased levels of IL-4, indicative of a Th2 response, were found in individuals without prior exposure to the virus and in those vaccinated with CoronaVac. These results suggest that the immune response to COVID-19 vaccines is multi-faceted, with preexisting immunity potentiating a more robust innate response. Vaccine type plays a critical role, with genetic vaccines favoring a Th1 response and inactivated vaccines like CoronaVac skewing toward a Th2 profile.
Collapse
Affiliation(s)
- Diana Lourdes Padilla-Bórquez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Jesús Alfredo Rosas-Rodríguez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Navojoa, México
| | - Francisco Javier Turrubiates-Hernández
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Guillermo González-Estevez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Hazael Ramiro Ceja-Galvez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Secretaria de Salud, Ciudad de México, México
| | - Jose Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| |
Collapse
|
3
|
Huang Y, Wang W, Liu Y, Wang Z, Cao B. COVID-19 vaccine updates for people under different conditions. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2323-2343. [PMID: 39083202 DOI: 10.1007/s11427-024-2643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 10/22/2024]
Abstract
SARS-CoV-2 has caused global waves of infection since December 2019 and continues to persist today. The emergence of SARS-CoV-2 variants with strong immune evasion capabilities has compromised the effectiveness of existing vaccines against breakthrough infections. Therefore, it is important to determine the best utilization strategies for different demographic groups given the variety of vaccine options available. In this review, we will discuss the protective efficacy of vaccines during different stages of the epidemic and emphasize the importance of timely updates to target prevalent variants, which can significantly improve immune protection. While it is recognized that vaccine effectiveness may be lower in certain populations such as the elderly, individuals with chronic comorbidities (e.g., diabetes with poor blood glucose control, those on maintenance dialysis), or those who are immunocompromised compared to the general population, administering multiple doses can result in a strong protective immune response that outweighs potential risks. However, caution should be exercised when considering vaccines that might trigger an intense immune response in populations prone to inflammatory flare or other complications. In conclusion, individuals with special conditions require enhanced and more effective immunization strategies to prevent infection or reinfection, as well as to avoid the potential development of long COVID.
Collapse
Affiliation(s)
- Yijiao Huang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiyang Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Changping Laboratory, Beijing, 102200, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
4
|
Al Rahbani GK, Woopen C, Dunsche M, Proschmann U, Ziemssen T, Akgün K. SARS-CoV-2-Specific Immune Cytokine Profiles to mRNA, Viral Vector and Protein-Based Vaccines in Patients with Multiple Sclerosis: Beyond Interferon Gamma. Vaccines (Basel) 2024; 12:684. [PMID: 38932415 PMCID: PMC11209537 DOI: 10.3390/vaccines12060684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Disease-modifying therapies (DMTs) impact the cellular immune response to severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) vaccines in patients with multiple sclerosis (pwMS). In this study, we aim to elucidate the characteristics of the involved antigen-specific T cells via the measurement of broad cytokine profiles in pwMS on various DMTs. We examined SARS-CoV-2-specific T cell responses in whole blood cultures characterized by the release of interleukin (IL)-2, IL-4, IL-5, IL-10, IL-13, IL-17A, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α), as well as antibodies (AB) targeting the SARS-CoV-2 spike protein in pwMS following either two or three doses of mRNA or viral vector vaccines (VVV). For mRNA vaccination non-responders, the NVX-CoV2373 protein-based vaccine was administered, and immune responses were evaluated. Our findings indicate that immune responses to SARS-CoV-2 vaccines in pwMS are skewed towards a Th1 phenotype, characterized by IL-2 and IFN-γ. Additionally, a Th2 response characterized by IL-5, and to a lesser extent IL-4, IL-10, and IL-13, is observed. Therefore, the measurement of IL-2 and IL-5 levels could complement traditional IFN-γ assays to more comprehensively characterize the cellular responses to SARS-CoV-2 vaccines. Our results provide a comprehensive cytokine profile for pwMS receiving different DMTs and offer valuable insights for designing vaccination strategies in this patient population.
Collapse
Affiliation(s)
| | | | | | | | | | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, Technical University Dresden, 01307 Dresden, Germany; (G.K.A.R.); (C.W.); (M.D.); (U.P.); (T.Z.)
| |
Collapse
|
5
|
Boston RH, Guan R, Kalmar L, Beier S, Horner EC, Beristain-Covarrubias N, Yam-Puc JC, Pereyra Gerber P, Faria L, Kuroshchenkova A, Lindell AE, Blasche S, Correa-Noguera A, Elmer A, Saunders C, Bermperi A, Jose S, Kingston N, Grigoriadou S, Staples E, Buckland MS, Lear S, Matheson NJ, Benes V, Parkinson C, Thaventhiran JE, Patil KR. Stability of gut microbiome after COVID-19 vaccination in healthy and immuno-compromised individuals. Life Sci Alliance 2024; 7:e202302529. [PMID: 38316462 PMCID: PMC10844540 DOI: 10.26508/lsa.202302529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Bidirectional interactions between the immune system and the gut microbiota are key contributors to various physiological functions. Immune-associated diseases such as cancer and autoimmunity, and efficacy of immunomodulatory therapies, have been linked to microbiome variation. Although COVID-19 infection has been shown to cause microbial dysbiosis, it remains understudied whether the inflammatory response associated with vaccination also impacts the microbiota. Here, we investigate the temporal impact of COVID-19 vaccination on the gut microbiome in healthy and immuno-compromised individuals; the latter included patients with primary immunodeficiency and cancer patients on immunomodulating therapies. We find that the gut microbiome remained remarkably stable post-vaccination irrespective of diverse immune status, vaccine response, and microbial composition spanned by the cohort. The stability is evident at all evaluated levels including diversity, phylum, species, and functional capacity. Our results indicate the resilience of the gut microbiome to host immune changes triggered by COVID-19 vaccination and suggest minimal, if any, impact on microbiome-mediated processes. These findings encourage vaccine acceptance, particularly when contrasted with the significant microbiome shifts observed during COVID-19 infection.
Collapse
Affiliation(s)
- Rebecca H Boston
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rui Guan
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sina Beier
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emily C Horner
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Juan Carlos Yam-Puc
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Luisa Faria
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna Kuroshchenkova
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anna E Lindell
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Sonja Blasche
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Andrea Correa-Noguera
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Anne Elmer
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | | | - Areti Bermperi
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Sherly Jose
- NIHR Cambridge Clinical Research Facility, Cambridge, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Emily Staples
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Matthew S Buckland
- Department of Clinical Immunology, Barts Health, London, UK
- UCL GOSH Institute of Child Health Division of Infection and Immunity, Section of Cellular and Molecular Immunology, London, UK
| | - Sara Lear
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christine Parkinson
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - James Ed Thaventhiran
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust, Cambridge, UK
| | - Kiran R Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Lintala A, Vapalahti O, Nousiainen A, Kantele A, Hepojoki J. Whole Blood as a Sample Matrix in Homogeneous Time-Resolved Assay-Förster Resonance Energy Transfer-Based Antibody Detection. Diagnostics (Basel) 2024; 14:720. [PMID: 38611633 PMCID: PMC11011549 DOI: 10.3390/diagnostics14070720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The protein-L-utilizing Förster resonance energy transfer (LFRET) assay enables mix-and-read antibody detection, as demonstrated for sera from patients with, e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Zika virus, and orthohantavirus infections. In this study, we compared paired serum and whole blood (WB) samples of COVID-19 patients and SARS-CoV-2 vaccine recipients. We found that LFRET also detects specific antibodies in WB samples. In 44 serum-WB pairs from patients with laboratory-confirmed COVID-19, LFRET showed a strong correlation between the sample materials. By analyzing 89 additional WB samples, totaling 133 WB samples, we found that LFRET results were moderately correlated with enzyme-linked immunosorbent assay results for samples collected 2 to 14 months after receiving COVID-19 diagnosis. However, the correlation decreased for samples >14 months after receiving a diagnosis. When comparing the WB LFRET results to neutralizing antibody titers, a strong correlation emerged for samples collected 1 to 14 months after receiving a diagnosis. This study also highlights the versatility of LFRET in detecting antibodies directly from WB samples and suggests that it could be employed for rapidly assessing antibody responses to infectious agents or vaccines.
Collapse
Affiliation(s)
- Annika Lintala
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Hospital Diagnostic Center, 00029 Helsinki, Finland
| | - Arttu Nousiainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Anu Kantele
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Meilahti Infectious Diseases and Vaccine Research Center, MeiVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Faculty of Medicine, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Moriarty KL, Oyenuga RO, Olafuyi O, Schwartz DA. Causes and Effects of COVID-19 Vaccine Hesitancy Among Pregnant Women and its Association with Adverse Maternal, Placental, and Perinatal Outcomes. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:73-84. [PMID: 38559465 PMCID: PMC10964823 DOI: 10.59249/lpoq5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Populations identified to be severely affected by COVID-19, such as pregnant patients, require special consideration in vaccine counseling, access, and provider education. Maternal infection with COVID-19 poses a significant risk to the maternal-fetal dyad with known adverse placenta destruction [1-5]. Despite the widespread access and availability of vaccinations, vaccine hesitancy continues to persist and is highly prevalent in pregnant populations [6-9]. Addressing the multitude of social ecological factors surrounding vaccine hesitancy can aid in providing holistic counseling [10]. However, such factors are foremost shaped by maternal concern over possible fetal effects from vaccination. While changes in policy can help foster vaccine access and acceptance, increasing global provider education and incorporation of motivational interviewing skills are the first steps towards increasing maternal acceptance.
Collapse
Affiliation(s)
- Kristen Lee Moriarty
- Department of Obstetrics & Gynecology, University
of Connecticut School of Medicine, Farmington, CT, USA
| | - Roselyn O. Oyenuga
- Department of Obstetrics & Gynecology, University
of Connecticut School of Medicine, Farmington, CT, USA
| | - Olatoyosi Olafuyi
- Department of Obstetrics & Gynecology, University
of Connecticut School of Medicine, Farmington, CT, USA
| | | |
Collapse
|
8
|
Samanta S, Banerjee J, Das A, Das S, Ahmed R, Das S, Pal A, Ali KM, Mukhopadhyay R, Giri B, Dash SK. Enhancing Immunological Memory: Unveiling Booster Doses to Bolster Vaccine Efficacy Against Evolving SARS-CoV-2 Mutant Variants. Curr Microbiol 2024; 81:91. [PMID: 38311669 DOI: 10.1007/s00284-023-03597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
A growing number of re-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals has sparked discussions about the potential need for a booster vaccine dosage to counteract declining antibody levels and new strains. The protective immunity produced by vaccinations, and past illnesses relies on immunological memory. CD4 + T cells, CD8 + T cells, B cells, and long-lasting antibody responses are all components of the adaptive immune system that can generate and maintain this immunological memory. Since novel mutant variants have emerged one after the other, the world has been hit by repeated waves. Various vaccine formulations against SARS-CoV-2 have been administered across the globe. Thus, estimating the efficacy of those vaccines against gradually developed mutant stains is the essential parameter regarding the fate of those vaccine formulations and the necessity of booster doses and their frequency. In this review, focus has also been given to how vaccination stacks up against moderate and severe acute infections in terms of the longevity of the immune cells, neutralizing antibody responses, etc. However, hybrid immunity shows a greater accuracy of re-infection of variants of concern (VOCs) of SARS-CoV-2 than infection and immunization. The review conveys knowledge of detailed information about several marketed vaccines and the status of their efficacy against specific mutant strains of SARS-CoV-2. Furthermore, this review discusses the status of immunological memory after infection, mixed infection, and vaccination.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Aparna Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sourav Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Amitava Pal
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Kazi Monjur Ali
- Department of Nutrition, Maharajadhiraj Uday Chand Women's College, B.C. Road, Bardhaman, 713104, West Bengal, India
| | - Rupanjan Mukhopadhyay
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
9
|
Onishi A, Matsumura-Kimoto Y, Mizutani S, Isa R, Fujino T, Tsukamoto T, Miyashita A, Okumura K, Nishiyama D, Hirakawa K, Shimura K, Kaneko H, Kiyota M, Kawata E, Takahashi R, Kobayashi T, Uchiyama H, Uoshima N, Nukui Y, Shimura Y, Inaba T, Kuroda J. Negative impact of immunoparesis in response to anti-SARS-CoV-2 mRNA vaccination of patients with multiple myeloma. Int J Hematol 2024; 119:50-61. [PMID: 38082201 DOI: 10.1007/s12185-023-03680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
Multiple myeloma reduces cellular and humoral immunity. Optimal prediction of antibody response to anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in patients with MM and related disorders is essential to prevent coronavirus disease 2019 (COVID-19) during the SARS-CoV-2 pandemic. This study analyzed the humoral response to the anti-SARS-CoV-2 messenger ribonucleic acid (mRNA) vaccine and its associated factor in 83 patients from June to November 2021 at seven member institutions of the Kyoto Clinical Hematology Study Group. SARS-CoV-2 neutralizing antibody (nAb) was measured from 12 to 210 days. The result revealed that 40 (48.2%) patients with MM and 59 (100%) healthy controls became seropositive after vaccination. Receiver operating characteristic curve analysis identified serum immunoglobulin (Ig) M of > 18 mg/dL at vaccination as the optimal threshold level associated with seropositivity in the whole cohort. Moreover, the multivariate analysis identified serum IgM of > 18 mg/dL as the independent predictor for a favorable response. Serum IgA level was positively associated with vaccine response in a sub-cohort. Our findings indicate a significant association between immunoparesis and impaired humoral response against mRNA vaccination, including that against SARS-CoV-2, and that serum non-M-protein Ig levels can serve as surrogate biomarkers of nAb production ability.
Collapse
Affiliation(s)
- Akio Onishi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
- Department of Hematology, Japan Community Health Care Organization Kyoto Kuramaguchi Medical Center, Kyoto, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Akihiro Miyashita
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Keita Okumura
- Faculty of Clinical Laboratory, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daichi Nishiyama
- Department of Hematology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Koichi Hirakawa
- Department of Hematology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Kazuho Shimura
- Department of Hematology, Aiseikai Yamashina Hospital, Kyoto, Japan
| | - Hiroto Kaneko
- Department of Hematology, Aiseikai Yamashina Hospital, Kyoto, Japan
| | - Miki Kiyota
- Department of Hematology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Eri Kawata
- Department of Hematology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Ryoichi Takahashi
- Department of Hematology, Omihachiman Community Medical Center, Omihachiman, Japan
| | - Tsutomu Kobayashi
- Department of Hematology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Hitoji Uchiyama
- Department of Hematology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Nobuhiko Uoshima
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yoko Nukui
- Division of Infection Control & Molecular Laboratory Medicine, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Tohru Inaba
- Faculty of Clinical Laboratory, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Division of Infection Control & Molecular Laboratory Medicine, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
10
|
Barreto MDS, da Silva BS, Santos RS, Silva DMRR, Silva EED, Moura PHM, de Souza JB, Santana LADM, Fonseca DLM, Filgueiras IS, Guimarães AG, Cabral-Marques O, Schimke LF, Borges LP. COVID-19 Vaccination and Serological Profile of a Brazilian University Population. Life (Basel) 2023; 13:1925. [PMID: 37763328 PMCID: PMC10532467 DOI: 10.3390/life13091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND COVID-19 led to the suspension academic activities worldwide, affecting millions of students and staff. METHODS In this study, we evaluated the presence of IgM and IgG anti-SARS-CoV-2 antibodies in an academic population during the return to classes after a one-year suspension. The study took place over five months at a Brazilian university and included 942 participants. RESULTS We found that most participants had reactive IgG and non-reactive IgM. All received at least one dose, and 940 received two or more doses, of different COVID-19 vaccines. We obtained a higher average of memory antibodies (IgG) in participants who received the CoronaVac/ChAdOx1 combination. IgG was consistently distributed for each vaccine group, but individuals who completed the vaccination schedule had higher levels. There were no differences between antibodies and gender, presence of symptoms, and previous COVID-19 infection, but older participants (>53 years) and contacts of infected individuals had higher IgM levels. CONCLUSION This study makes significant contributions to the assessment of antibodies in the academic environment, allowing us to infer that most participants had memory immunity and low indications of recent infection when returning to face-to-face classes, as well as demonstrating the need to monitor immunity and update vaccinations.
Collapse
Affiliation(s)
- Marina dos Santos Barreto
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Beatriz Soares da Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Ronaldy Santana Santos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Deise Maria Rego Rodrigues Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Eloia Emanuelly Dias Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Pedro Henrique Macedo Moura
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Jessiane Bispo de Souza
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | | | - Dennyson Leandro M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo 05508-090, SP, Brazil;
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Adriana Gibara Guimarães
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| | - Otavio Cabral-Marques
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo 05508-090, SP, Brazil;
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Department of Medicine, Division of Molecular Medicine, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo 01246-903, SP, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, SP, Brazil
| | - Lena F. Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Department of Medicine, Division of Molecular Medicine, School of Medicine, University of São Paulo, São Paulo 01246-903, SP, Brazil
| | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil; (M.d.S.B.); (B.S.d.S.); (R.S.S.); (D.M.R.R.S.); (E.E.D.S.); (P.H.M.M.); (J.B.d.S.); (A.G.G.)
| |
Collapse
|
11
|
Han S, Lee P, Choi HJ. Non-Invasive Vaccines: Challenges in Formulation and Vaccine Adjuvants. Pharmaceutics 2023; 15:2114. [PMID: 37631328 PMCID: PMC10458847 DOI: 10.3390/pharmaceutics15082114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.
Collapse
Affiliation(s)
| | | | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.H.); (P.L.)
| |
Collapse
|
12
|
Yue C, Wang P, Tian J, Gao GF, Liu K, Liu WJ. Seeing the T cell Immunity of SARS-CoV-2 and SARS-CoV: Believing the Epitope-Oriented Vaccines. Int J Biol Sci 2023; 19:4052-4060. [PMID: 37705735 PMCID: PMC10496500 DOI: 10.7150/ijbs.80468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/07/2023] [Indexed: 09/15/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 stimulated vigorous research efforts in immunology and vaccinology. In addition to innate immune responses, both virus-specific humoral and cellular immune responses are of importance for viral clearance. T cell epitopes play a central role in T cell-based immune responses. Herein, we summarized the peptide/major histocompatibility complex (pMHC) structures of the SARS-CoV-2-derived T cell epitopes available in the Protein Data Bank (PDB) and proposed the challenge and opportunities for using of T cell epitopes in future vaccine development efforts. A total of 27 SARS-CoV-2 related pMHC structures and five complexes with T cell receptors were retrieved. The peptides are mainly distributed on spike (S), nucleocapsid (N), and ORF1ab proteins. Most peptides are conserved among variants of concerns (VOCs) for SARS-CoV-2, except for several mutated peptides located in the S protein. The structures of human leukocyte antigen (HLA) complexed with seven epitopes derived from SARS-CoV were also retrieved, which showed a potential cross T cell immunity with SARS-CoV-2. Structural studies of antigenic peptides from SARS-CoV-2 and SARS-CoV help to visualize the processes and the mechanisms of cross T cell immunity. T cell epitope-oriented vaccines are potential next-generation vaccines for SARS-CoV-2, which are worthy of further investigation.
Collapse
Affiliation(s)
- Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyan Wang
- Department of Pathogen Biology & Microbiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinmin Tian
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
13
|
Rcheulishvili N, Mao J, Papukashvili D, Feng S, Liu C, Wang X, He Y, Wang PG. Design, evaluation, and immune simulation of potentially universal multi-epitope mpox vaccine candidate: focus on DNA vaccine. Front Microbiol 2023; 14:1203355. [PMID: 37547674 PMCID: PMC10403236 DOI: 10.3389/fmicb.2023.1203355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Monkeypox (mpox) is a zoonotic infectious disease caused by the mpox virus. Mpox symptoms are similar to smallpox with less severity and lower mortality. As yet mpox virus is not characterized by as high transmissibility as some severe acute respiratory syndrome 2 (SARS-CoV-2) variants, still, it is spreading, especially among men who have sex with men (MSM). Thus, taking preventive measures, such as vaccination, is highly recommended. While the smallpox vaccine has demonstrated considerable efficacy against the mpox virus due to the antigenic similarities, the development of a universal anti-mpox vaccine remains a necessary pursuit. Recently, nucleic acid vaccines have garnered special attention owing to their numerous advantages compared to traditional vaccines. Importantly, DNA vaccines have certain advantages over mRNA vaccines. In this study, a potentially universal DNA vaccine candidate against mpox based on conserved epitopes was designed and its efficacy was evaluated via an immunoinformatics approach. The vaccine candidate demonstrated potent humoral and cellular immune responses in silico, indicating the potential efficacy in vivo and the need for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
14
|
Mueller-Enz M, Woopen C, Katoul Al Rahbani G, Haase R, Dunsche M, Ziemssen T, Akgün K. NVX-CoV2373-induced T- and B-cellular immunity in immunosuppressed people with multiple sclerosis that failed to respond to mRNA and viral vector SARS-CoV-2 vaccines. Front Immunol 2023; 14:1081933. [PMID: 37545513 PMCID: PMC10399811 DOI: 10.3389/fimmu.2023.1081933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Importance Immunological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is important, especially in people with multiple sclerosis (pwMS) on immunosuppressive therapies. Objective This study aims to determine whether adjuvanted protein-based vaccine NVX-CoV2373 is able to induce an immune response to SARS-CoV-2 in pwMS with inadequate responses to prior triple mRNA/viral vector vaccination. Design setting and participants We conducted a single-center, prospective longitudinal cohort study at the MS Center in Dresden, Germany. In total, 65 participants were included in the study in accordance with the following eligibility criteria: age > 18 years, immunomodulatory treatment, and insufficient T-cellular and humoral response to prior vaccination with at least two doses of SARS-CoV-2 mRNA (BNT162b2, mRNA-1273) or viral vector vaccines (AZD1222, Ad26.COV2.S). Interventions Intramuscular vaccination with two doses of NVX-CoV2373 at baseline and 3 weeks of follow-up. Main outcomes and measures The development of SARS-CoV-2-specific antibodies and T-cell responses was evaluated. Results For the final analysis, data from 47 patients on stable treatment with sphingosine-1-phosphate receptor (S1PR) modulators and 17 on ocrelizumab were available. The tolerability of the NVX-CoV2373 vaccination was overall good and comparable to the one reported for the general population. After the second NVX-CoV2373 vaccination, 59% of S1PR-modulated patients developed antispike IgG antibodies above the predefined cutoff of 200 binding antibody units (BAU)/ml (mean, 1,204.37 [95% CI, 693.15, 2,092.65] BAU/ml), whereas no clinically significant T-cell response was found. In the subgroup of the patients on ocrelizumab treatment, 23.5% developed antispike IgG > 200 BAU/ml (mean, 116.3 [95% CI, 47.04, 287.51] BAU/ml) and 53% showed positive spike-specific T-cellular responses (IFN-gamma release to antigen 1: mean, 0.2 [95% CI, 0.11, 0.31] IU/ml; antigen 2: mean, 0.24 [95% CI, 0.14, 0.37]) after the second vaccination. Conclusions Vaccination with two doses of NVX-CoV2373 was able to elicit a SARS-CoV-2-specific immune response in pwMS lacking adequate immune responses to previous mRNA/viral vector vaccination. For patients receiving S1PR modulators, an increase in anti-SARS-CoV-2 IgG antibodies was detected after NVX-CoV2373 vaccination, whereas in ocrelizumab-treated patients, the increase of antiviral T-cell responses was more pronounced. Our data may impact clinical decision-making by influencing the preference for NVX-CoV2373 vaccination in pwMS receiving treatment with S1PR modulation or anti-CD20 treatment.
Collapse
|
15
|
Dormeshkin D, Katsin M, Stegantseva M, Golenchenko S, Shapira M, Dubovik S, Lutskovich D, Kavaleuski A, Meleshko A. Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein. Vaccines (Basel) 2023; 11:1014. [PMID: 37376403 DOI: 10.3390/vaccines11061014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/29/2023] Open
Abstract
The potential of immune-evasive mutation accumulation in the SARS-CoV-2 virus has led to its rapid spread, causing over 600 million confirmed cases and more than 6.5 million confirmed deaths. The huge demand for the rapid development and deployment of low-cost and effective vaccines against emerging variants has renewed interest in DNA vaccine technology. Here, we report the rapid generation and immunological evaluation of novel DNA vaccine candidates against the Wuhan-Hu-1 and Omicron variants based on the RBD protein fused with the Potato virus X coat protein (PVXCP). The delivery of DNA vaccines using electroporation in a two-dose regimen induced high-antibody titers and profound cellular responses in mice. The antibody titers induced against the Omicron variant of the vaccine were sufficient for effective protection against both Omicron and Wuhan-Hu-1 virus infections. The PVXCP protein in the vaccine construct shifted the immune response to the favorable Th1-like type and provided the oligomerization of RBD-PVXCP protein. Naked DNA delivery by needle-free injection allowed us to achieve antibody titers comparable with mRNA-LNP delivery in rabbits. These data identify the RBD-PVXCP DNA vaccine platform as a promising solution for robust and effective SARS-CoV-2 protection, supporting further translational study.
Collapse
Affiliation(s)
- Dmitri Dormeshkin
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | - Mikalai Katsin
- Immunofusion, LLC, 210004 Vitebsk, Belarus
- Imunovakcina, UAB, LT-08102 Vilnius, Lithuania
| | | | | | - Michail Shapira
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | - Simon Dubovik
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | | | - Anton Kavaleuski
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Alexander Meleshko
- Immunofusion, LLC, 210004 Vitebsk, Belarus
- Imunovakcina, UAB, LT-08102 Vilnius, Lithuania
| |
Collapse
|
16
|
Prompetchara E, Ketloy C, Alameh MG, Tharakhet K, Kaewpang P, Yostrerat N, Pitakpolrat P, Buranapraditkun S, Manopwisedjaroen S, Thitithanyanont A, Jongkaewwattana A, Hunsawong T, Im-Erbsin R, Reed M, Wijagkanalan W, Patarakul K, Techawiwattanaboon T, Palaga T, Lam K, Heyes J, Weissman D, Ruxrungtham K. Immunogenicity and protective efficacy of SARS-CoV-2 mRNA vaccine encoding secreted non-stabilized spike in female mice. Nat Commun 2023; 14:2309. [PMID: 37085495 PMCID: PMC10120480 DOI: 10.1038/s41467-023-37795-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Establishment of an mRNA vaccine platform in low- and middle-income countries (LMICs) is important to enhance vaccine accessibility and ensure future pandemic preparedness. Here, we describe the preclinical studies of "ChulaCov19", a SARS-CoV-2 mRNA encoding prefusion-unstabilized ectodomain spike protein encapsulated in lipid nanoparticles (LNP). In female BALB/c mice, ChulaCov19 at 0.2, 1, 10, and 30 μg elicits robust neutralizing antibody (NAb) and T cell responses in a dose-dependent relationship. The geometric mean titers (GMTs) of NAb against wild-type (WT, Wuhan-Hu1) virus are 1,280, 11,762, 54,047, and 62,084, respectively. Higher doses induce better cross-NAb against Delta (B.1.617.2) and Omicron (BA.1 and BA.4/5) variants. This elicited immunogenicity is significantly higher than those induced by homologous CoronaVac or AZD1222 vaccination. In a heterologous prime-boost study, ChulaCov19 booster dose generates a 7-fold increase of NAb against Wuhan-Hu1 WT virus and also significantly increases NAb response against Omicron (BA.1 and BA.4/5) when compared to homologous CoronaVac or AZD1222 vaccination. Challenge studies show that ChulaCov19 protects human-ACE-2-expressing female mice from COVID-19 symptoms, prevents viremia and significantly reduces tissue viral load. Moreover, anamnestic NAb response is undetectable in challenge animals. ChulaCov19 is therefore a promising mRNA vaccine candidate either as a primary or boost vaccination and has entered clinical development.
Collapse
Affiliation(s)
- Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kittipan Tharakhet
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Papatsara Kaewpang
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nongnaphat Yostrerat
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patrawadee Pitakpolrat
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supranee Buranapraditkun
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Taweewan Hunsawong
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Rawiwan Im-Erbsin
- Department of Veterinary Medicine, USAMD-AFRIMS, Bangkok, 10400, Thailand
| | - Matthew Reed
- Department of Veterinary Medicine, USAMD-AFRIMS, Bangkok, 10400, Thailand
| | | | - Kanitha Patarakul
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerasit Techawiwattanaboon
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanapat Palaga
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kieu Lam
- Genevant Sciences Corporation, Vancouver, BC, V5T 4T5, Canada
| | - James Heyes
- Genevant Sciences Corporation, Vancouver, BC, V5T 4T5, Canada
| | - Drew Weissman
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Integrated Frontier Biotechnology for Emerging Disease, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Medicine, and School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
17
|
Fogolari M, Leoni BD, De Cesaris M, Italiano R, Davini F, Miccoli GA, Donati D, Clerico L, Stanziale A, Savini G, Petrosillo N, Ciccozzi M, Sommella L, Riva E, Fazii P, Angeletti S. Neutralizing Antibodies against SARS-CoV-2 Beta and Omicron Variants Inhibition Comparison after BNT162b2 mRNA Booster Doses with a New PETIA sVNT Assay. Diagnostics (Basel) 2023; 13:889. [PMID: 36900033 PMCID: PMC10000738 DOI: 10.3390/diagnostics13050889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Monitoring antibody response following SARS-CoV-2 vaccination is strategic, and neutralizing antibodies represent the gold standard. The neutralizing response to Beta and Omicron VOCs was evaluated versus the gold standard by a new commercial automated assay. METHODS Serum samples from 100 healthcare workers from the Fondazione Policlinico Universitario Campus Biomedico and the Pescara Hospital were collected. IgG levels were determined by chemiluminescent immunoassay (Abbott Laboratories, Wiesbaden, Germany) and serum neutralization assay as the gold standard. Moreover, a new commercial immunoassay, the PETIA test Nab (SGM, Rome, Italy), was used for neutralization evaluation. Statistical analysis was performed with R software, version 3.6.0. RESULTS Anti-SARS-CoV-2 IgG titers decayed during the first ninety days after the vaccine second dose. The following booster dose significantly (p < 0.001) increased IgG levels. A correlation between IgG expression and neutralizing activity modulation was found with a significant increase after the second and the third booster dose (p < 0.05. Compared to the Beta variant of the virus, the Omicron VOC was associated with a significantly larger quantity of IgG antibodies needed to achieve the same degree of neutralization. The best Nab test cutoff for high neutralization titer (≥1:80) was set for both Beta and Omicron variants. CONCLUSION This study correlates vaccine-induced IgG expression and neutralizing activity using a new PETIA assay, suggesting its usefulness for SARS-CoV2 infection management.
Collapse
Affiliation(s)
- Marta Fogolari
- Clinical Laboratory Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Unit of Clinical Laboratory Science, Department of Medicine and Surgery, University Campus Bio-Medico, 00128 Rome, Italy
| | | | - Marina De Cesaris
- Clinical Laboratory Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | | | - Flavio Davini
- Clinical Laboratory Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Unit of Clinical Laboratory Science, Department of Medicine and Surgery, University Campus Bio-Medico, 00128 Rome, Italy
| | - Ginevra Azzurra Miccoli
- Infection Prevention and Control Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Daniele Donati
- Infection Prevention and Control Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Luigi Clerico
- Clinical Microbiology and Virology, Spirito Santo Hospital, 65122 Pescara, Italy
| | - Andrea Stanziale
- Clinical Microbiology and Virology, Spirito Santo Hospital, 65122 Pescara, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G Caporale’, 64100 Teramo, Italy
| | - Nicola Petrosillo
- Infection Prevention and Control Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Lorenzo Sommella
- Health Management, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Elisabetta Riva
- Clinical Laboratory Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Unit of Virology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Paolo Fazii
- Clinical Microbiology and Virology, Spirito Santo Hospital, 65122 Pescara, Italy
| | - Silvia Angeletti
- Clinical Laboratory Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Unit of Clinical Laboratory Science, Department of Medicine and Surgery, University Campus Bio-Medico, 00128 Rome, Italy
| |
Collapse
|
18
|
Meurisse M, Catteau L, van Loenhout JAF, Braeye T, De Mot L, Serrien B, Blot K, Cauët E, Van Oyen H, Cuypers L, Robert A, Van Goethem N. Homologous and Heterologous Prime-Boost Vaccination: Impact on Clinical Severity of SARS-CoV-2 Omicron Infection among Hospitalized COVID-19 Patients in Belgium. Vaccines (Basel) 2023; 11:vaccines11020378. [PMID: 36851257 PMCID: PMC9961733 DOI: 10.3390/vaccines11020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
We investigated effectiveness of (1) mRNA booster vaccination versus primary vaccination only and (2) heterologous (viral vector-mRNA) versus homologous (mRNA-mRNA) prime-boost vaccination against severe outcomes of BA.1, BA.2, BA.4 or BA.5 Omicron infection (confirmed by whole genome sequencing) among hospitalized COVID-19 patients using observational data from national COVID-19 registries. In addition, it was investigated whether the difference between the heterologous and homologous prime-boost vaccination was homogenous across Omicron sub-lineages. Regression standardization (parametric g-formula) was used to estimate counterfactual risks for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality under exposure to different vaccination schedules. The estimated risk for severe COVID-19 and in-hospital mortality was significantly lower with an mRNA booster vaccination as compared to only a primary vaccination schedule (RR = 0.59 [0.33; 0.85] and RR = 0.47 [0.15; 0.79], respectively). No significance difference was observed in the estimated risk for severe COVID-19, ICU admission and in-hospital mortality with a heterologous compared to a homologous prime-boost vaccination schedule, and this difference was not significantly modified by the Omicron sub-lineage. Our results support evidence that mRNA booster vaccination reduced the risk of severe COVID-19 disease during the Omicron-predominant period.
Collapse
Affiliation(s)
- Marjan Meurisse
- Department of Epidemiology and public health, Sciensano, 1070 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
- Correspondence:
| | - Lucy Catteau
- Department of Epidemiology and public health, Sciensano, 1070 Brussels, Belgium
| | | | - Toon Braeye
- Department of Epidemiology and public health, Sciensano, 1070 Brussels, Belgium
| | - Laurane De Mot
- Department of Epidemiology and public health, Sciensano, 1070 Brussels, Belgium
| | - Ben Serrien
- Department of Epidemiology and public health, Sciensano, 1070 Brussels, Belgium
| | - Koen Blot
- Department of Epidemiology and public health, Sciensano, 1070 Brussels, Belgium
| | - Emilie Cauët
- Department of Epidemiology and public health, Sciensano, 1070 Brussels, Belgium
| | - Herman Van Oyen
- Department of Public Health and Primary Care, Ghent University, 9000 Ghent, Belgium
| | - Lize Cuypers
- Department of Laboratory Medicine, National Reference Center for Respiratory Pathogens, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Nina Van Goethem
- Department of Epidemiology and public health, Sciensano, 1070 Brussels, Belgium
| |
Collapse
|
19
|
Onishi A, Matsumura-Kimoto Y, Mizutani S, Tsukamoto T, Fujino T, Miyashita A, Nishiyama D, Shimura K, Kaneko H, Kawata E, Takahashi R, Kobayashi T, Uchiyama H, Uoshima N, Nukui Y, Shimura Y, Inaba T, Kuroda J. Impact of Treatment with Anti-CD20 Monoclonal Antibody on the Production of Neutralizing Antibody Against Anti-SARS-CoV-2 Vaccination in Mature B-Cell Neoplasms. Infect Drug Resist 2023; 16:509-519. [PMID: 36721633 PMCID: PMC9884434 DOI: 10.2147/idr.s396271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Background and Purpose Anti-CD20 monoclonal antibodies (MoAbs), rituximab (RIT), and obinutuzumab (OBZ) are the central components of immunochemotherapy for B-cell lymphoma (BCL). However, these agents potentially cause B-cell depletion, resulting in the impairment of antibody (Ab) production. During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, the optimal prediction of Ab response against anti-SARS-CoV-2 vaccination is critically important in patients with BCL treated by B-cell depletion therapeutics to prevent coronavirus disease 2019 (COVID-19). Patients and Methods We investigated the effect of using RIT and/or OBZ on the Ab response in 131 patients with various types of BCL who received the second SARS-CoV-2 mRNA vaccine either after, during, or before immunochemotherapy containing B-cell-depleting moiety between June and November 2021 at seven institutes belonging to the Kyoto Clinical Hematology Study Group. The SARS-Cov-2 neutralizing Ab (nAb) was measured from 14 to 207 days after the second vaccination dose using the iFlash3000 automatic analyzer and the iFlash-2019-nCoV Nab kit. Results Among 86 patients who received the vaccine within 12 months after B-cell depletion therapy, 8 (9.3%) were seropositive. In 30 patients who received the vaccine after 12 months from B-cell depletion therapy, 22 (73%) were seropositive. In 15 patients who were subjected to B-cell depletion therapy after vaccination, 2 (13%) were seropositive. The multivariate analysis indicated that an interval of 12 months between B-cell depletion therapy and the subsequent vaccination was significantly associated with effective Ab production. Receiver operating characteristic curve analysis identified the optimal threshold period after anti-CD20 MoAb treatment, which determines the seropositivity against SARS-CoV-2, to be 342 days. Conclusion The use of anti-CD20 MoAb within 12 months before vaccination is a critical risk for poor Ab response against anti-SARS-CoV-2 vaccination in patients with BCL.
Collapse
Affiliation(s)
- Akio Onishi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Hematology, Japan Community Health Care Organization Kyoto Kuramaguchi Medical Center, Kyoto, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Fujino
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Miyashita
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Daichi Nishiyama
- Department of Hematology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Kazuho Shimura
- Department of Hematology, Aiseikai Yamashina Hospital, Kyoto, Japan
| | - Hiroto Kaneko
- Department of Hematology, Aiseikai Yamashina Hospital, Kyoto, Japan
| | - Eri Kawata
- Department of Hematology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Ryoichi Takahashi
- Department of Hematology, Omihachiman Community Medical Center, Omihachiman, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Hematology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Hitoji Uchiyama
- Department of Hematology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Nobuhiko Uoshima
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yoko Nukui
- Division of Infection Control & Molecular Laboratory Medicine, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tohru Inaba
- Division of Infection Control & Molecular Laboratory Medicine, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Singh DD, Han I, Choi EH, Yadav DK. A Clinical Update on SARS-CoV-2: Pathology and Development of Potential Inhibitors. Curr Issues Mol Biol 2023; 45:400-433. [PMID: 36661514 PMCID: PMC9857284 DOI: 10.3390/cimb45010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome) is highly infectious and causes severe acute respiratory distress syndrome (SARD), immune suppression, and multi-organ failure. For SARS-CoV-2, only supportive treatment options are available, such as oxygen supportive therapy, ventilator support, antibiotics for secondary infections, mineral and fluid treatment, and a significant subset of repurposed effective drugs. Viral targeted inhibitors are the most suitable molecules, such as ACE2 (angiotensin-converting enzyme-2) and RBD (receptor-binding domain) protein-based inhibitors, inhibitors of host proteases, inhibitors of viral proteases 3CLpro (3C-like proteinase) and PLpro (papain-like protease), inhibitors of replicative enzymes, inhibitors of viral attachment of SARS-CoV-2 to the ACE2 receptor and TMPRSS2 (transmembrane serine proteinase 2), inhibitors of HR1 (Heptad Repeat 1)-HR2 (Heptad Repeat 2) interaction at the S2 protein of the coronavirus, etc. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Targeting the cathepsin L proteinase, peptide analogues, monoclonal antibodies, and protein chimaeras as RBD inhibitors interferes with the spike protein's ability to fuse to the membrane. Even with the tremendous progress made, creating effective drugs remains difficult. To develop COVID-19 treatment alternatives, clinical studies are examining a variety of therapy categories, including antibodies, antivirals, cell-based therapy, repurposed diagnostic medicines, and more. In this article, we discuss recent clinical updates on SARS-CoV-2 infection, clinical characteristics, diagnosis, immunopathology, the new emergence of variant, SARS-CoV-2, various approaches to drug development and treatment options. The development of therapies has been complicated by the global occurrence of many SARS-CoV-2 mutations. Discussion of this manuscript will provide new insight into drug pathophysiology and drug development.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of R&D Center, Arontier Co., Seoul 06735, Republic of Korea
- Correspondence: (I.H.); (D.K.Y.); Tel.: +82-2-597-0365 (I.H. & D.K.Y.)
| |
Collapse
|
21
|
Asim M, Khan NA, Osmonaliev K, Sathian B. The emergence of novel infectious diseases and the public health impact of mass gathering events: risks and challenges. Nepal J Epidemiol 2022; 12:1238-1241. [PMID: 36741771 PMCID: PMC9886557 DOI: 10.3126/nje.v12i4.50997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/02/2023] Open
Abstract
To date, there is the continuous emergence of novel infectious diseases endangering individuals' health and well-being worldwide. Over the past few decades, around forty contagious diseases, such as Severe Acute Respiratory Syndrome coronavirus-1 (SARS), Middle East Respiratory Syndrome coronavirus (MERS), Ebola, Zika, and newly, COVID-19 and Monkeypox outbreaks, have been reported globally. Zoonotic transmission is the major cause of these emerging infections in humans. These, whether caused by previously unknown pathogens or by those already well-known to science, heighten global concerns about the spread of communicable diseases and the resulting increase in death and disability.
Collapse
Affiliation(s)
- Mohammad Asim
- Clinical Research, Trauma and Vascular Surgery, Department of Surgery, Hamad General Hospital, Doha, Qatar,Correspondence: Dr. Mohammad Asim Ph.D, Clinical Research, Trauma and Vascular Surgery, Department of Surgery, Hamad General Hospital, Doha, Qatar.
| | - Naushad Ahmad Khan
- Clinical Research, Trauma and Vascular Surgery, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | | | - Brijesh Sathian
- Geriatrics and long term care department, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar,Centre for Midwifery, Maternal and Perinatal Health, Bournemouth University, Bournemouth, UK
| |
Collapse
|
22
|
Preliminary In Vivo Evidence of Oral Selenium Supplementation as a Potentiating Agent on a Vector-Based COVID-19 Vaccine in BALB/c Mice. Vaccines (Basel) 2022; 11:vaccines11010057. [PMID: 36679902 PMCID: PMC9863471 DOI: 10.3390/vaccines11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Evidence of efficacy and toxicity of oral selenium supplementation in vaccine administration against severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) in mice models is scarce. In this study, 4 × 109 virus particles (40 µL) dose of Janssen COVID-19 intramuscular injection vaccine was supplemented with a commercial selenium supplement and sodium selenite orally in BALB/c mice (N = 18). Qualitative determination of anti-spike IgG antibody response using indirect Enzyme-Linked Immunosorbent Assay (ELISA) showed significant (p ≤ 0.001) increase in anti-spike IgG antibody response for mice groups immunized with vaccine and supplemented selenium. Furthermore, cytokine profiling using real-time quantitative polymerase chain reaction also showed an increase in IL-6 and IL-10 mRNA levels normalized using hypoxanthine phosphoribosyl transferase 1 (Hprt1) and glyceraldehyde 3-phosphate dehydrogenase (Gadph) housekeeping genes. There was no statistical significance (p < 0.465) among treated and untreated groups for alanine transaminase (ALT), aspartate transaminase (AST), urea, and creatinine parameters. The study presents preliminary findings and suggests that supplementing Janssen COVID-19 vaccines with selenium can generate more robust immune responses.
Collapse
|
23
|
Taieb A, Mounira EE. Pilot Findings on SARS-CoV-2 Vaccine-Induced Pituitary Diseases: A Mini Review from Diagnosis to Pathophysiology. Vaccines (Basel) 2022; 10:vaccines10122004. [PMID: 36560413 PMCID: PMC9786744 DOI: 10.3390/vaccines10122004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Since the emergence of the COVID-19 pandemic at the end of 2019, a massive vaccination campaign has been undertaken rapidly and worldwide. Like other vaccines, the COVID-19 vaccine is not devoid of side effects. Typically, the adverse side effects of vaccination include transient headache, fever, and myalgia. Endocrine organs are also affected by adverse effects. The major SARS-CoV-2 vaccine-associated endocrinopathies reported since the beginning of the vaccination campaign are thyroid and pancreas disorders. SARS-CoV-2 vaccine-induced pituitary diseases have become more frequently described in the literature. We searched PubMed/MEDLINE for commentaries, case reports, and case series articles reporting pituitary disorders following SARS-CoV-2 vaccination. The search was reiterated until September 2022, in which eight case reports were found. In all the cases, there were no personal or familial history of pituitary disease described. All the patients described had no previous SARS-CoV-2 infection prior to the vaccination episode. Regarding the type of vaccines administered, 50% of the patients received (BNT162b2; Pfizer-BioNTech) and 50% received (ChAdOx1 nCov-19; AstraZeneca). In five cases, the pituitary disorder developed after the first dose of the corresponding vaccine. Regarding the types of pituitary disorder, five were hypophysitis (variable clinical aspects ranging from pituitary lesion to pituitary stalk thickness) and three were pituitary apoplexy. The time period between vaccination and pituitary disorder ranged from one to seven days. Depending on each case's follow-up time, a complete remission was obtained in all the apoplexy cases but in only three patients with hypophysitis (persistence of the central diabetes insipidus). Both quantity and quality of the published data about pituitary inconveniences after COVID-19 vaccination are limited. Pituitary disorders, unlike thyroid disorders, occur very quickly after COVID-19 vaccination (less than seven days for pituitary disorders versus two months for thyroid disease). This is partially explained by the ease of reaching the pituitary, which is a small gland. Therefore, this gland is rapidly overspread, which explains the speed of onset of pituitary symptoms (especially ADH deficiency which is a rapid onset deficit with evocative symptoms). Accordingly, these pilot findings offer clinicians a future direction to be vigilant for possible pituitary adverse effects of vaccination. This will allow them to accurately orient patients for medical assistance when they present with remarkable symptoms, such as asthenia, polyuro-polydipsia, or severe headache, following a COVID-19 vaccination.
Collapse
Affiliation(s)
- Ach Taieb
- Department of Endocrinology, University Hospital of Farhat Hached Sousse, Sousse 4000, Tunisia
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4000, Tunisia
- Laboratory of Exercice Physiology and Pathophysiology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4000, Tunisia
- Correspondence:
| | - El Euch Mounira
- Faculty of Medicine of Sousse, University of Sousse, Sousse 4000, Tunisia
- Department of Internal Medicine, University Hospital of Charles Nicoles, Tunis 4074, Tunisia
| |
Collapse
|