1
|
Zhao HF, Liu YS, Wang J, Wu CP, Zhou XM, Cai LR, Liu J, Liu XJ, Xu YW, Li WP, Huang GD. Nuclear transport of phosphorylated LanCL2 promotes invadopodia formation and tumor progression of glioblastoma by activating STAT3/Cortactin signaling. J Adv Res 2025; 69:139-155. [PMID: 38492734 PMCID: PMC11954814 DOI: 10.1016/j.jare.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
INTRODUCTION Our previous study showed that the abscisic acid receptor lanthionine synthetase C-like 2 (LanCL2) is a significant prognostic factor for overall survival in young glioblastoma patients. However, the role of LanCL2 in glioblastoma remains unclear yet. OBJECTIVES This study aims to investigate the role of LanCL2 in regulating in-vitro cell invasion and in-vivo tumor progression of glioblastoma and its underlying mechanism. METHODS Tyrosine 198 or 295 residue of LanCL2 was mutated using site-directed mutagenesis to block its phosphorylation. The role of LanCL2 in glioblastoma was investigated using transwell or 3D invasion assay, matrix degradation assay and intracranial xenograft model. RESULTS This study showed that nuclear transport of LanCL2 was enhanced by overexpression of LanCL2 or its ligand abscisic acid in glioblastoma cells. Knockdown of LanCL2 suppressed migration, invasion and invadopodia formation of glioblastoma cells, whereas overexpression of wild-type LanCL2 enhanced them. Blocking of Tyr295 residue phosphorylation of LanCL2 impeded its nuclear transport, retarded glioblastoma cell motility and invadopodia formation, and deceased the phosphorylation of Cortactin and STAT3. c-Met was identified as the upstream tyrosine kinase of Tyr295 residue of LanCL2, and inhibition of c-Met markedly suppressed the nuclear transport of LanCL2. Moreover, overexpression of wild-type LanCL2 significantly promoted orthotopic tumor growth of glioblastoma in vivo and led to poor survival of mice with median survival time of 33.5 days, whereas Tyr295 mutation rescued it with median survival time of 49 days. CONCLUSION Our findings suggested that Tyr295 phosphorylation is crucial to the activation and nuclear transport of LanCL2, as well as invadopodia formation and tumor progression of glioblastoma, providing the evidence of a novel signaling axis c-Met/LanCL2/STAT3/Cortactin and the first observation of the importance of Tyr295 phosphorylation to LanCL2.
Collapse
Affiliation(s)
- Hua-Fu Zhao
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Yun-Sheng Liu
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chang-Peng Wu
- Department of Neurosurgery, Shenzhen Longhua New District People's Hospital, Shenzhen 518109, China
| | - Xiu-Ming Zhou
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou 510510, China
| | - Lin-Rong Cai
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Jing Liu
- Department of Pathology, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Xiao-Jia Liu
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yan-Wen Xu
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Wei-Ping Li
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Guo-Dong Huang
- Department of Neurosurgery, Institute of Translational Medicine, Shenzhen University First Affiliated Hospital, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
2
|
Lin CY, Sassi A, Wu Y, Seaman K, Tang W, Song X, Bienenstock R, Yokota H, Sun Y, Geng F, Wang L, You L. Mechanotransduction pathways regulating YAP nuclear translocation under Yoda1 and vibration in osteocytes. Bone 2024; 190:117283. [PMID: 39413946 DOI: 10.1016/j.bone.2024.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Yes-associated protein (YAP) is a mechanosensitive protein crucial for bone remodeling. Although research has identified pathways and components involved in YAP regulation, the precise mechanisms of its localization during Piezo1 activation or vibration remain unclear. Piezo1, a mechanosensitive ion channel, allows calcium ions to flow into cells upon activation. Recent studies suggest that combining Yoda1, a Piezo1 activator, with low-magnitude high-frequency (LMHF) vibration (>30 Hz, <1 g acceleration) enhances YAP nuclear translocation. This combination potentially improves the mechanoresponse and therapeutic efficacy of LMHF vibration in bone cells. This study aims to elucidate how Yoda1 and LMHF vibration regulate mechanosensitive structures and pathways, leading to YAP nuclear translocation in MLO-Y4 osteocyte like cells. We investigated the roles of the cytoskeleton and nuclear envelope (NE) in YAP activation under combined LMHF vibration and Yoda1 treatments. Additionally, we analyzed differentially expressed genes (DEGs) in MLO-Y4 cells subjected to these treatments and in Piezo1 knockdown MLO-Y4 cells exposed to vibration. Our findings indicated that increased YAP nuclear translocation with combined treatment may result from the distinct effects of Yoda1 and vibration. Specifically, Yoda1 influenced YAP through mechanisms involving actin and NE dynamics, while LMHF vibration may modulate YAP via the interleukin 6 (IL6)/signal transducer and activator of transcription 3 (STAT3) axis. This study provides new insights and potential therapeutic targets for osteocyte-related pathologies.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Amel Sassi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Yuning Wu
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada.
| | - Kimberly Seaman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Xin Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Raphael Bienenstock
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON L8S 4L7, Canada.
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; Department of Mechanical and Materials Engineering, Queen's University, Kingston, ON K7L3N6, Canada.
| |
Collapse
|
3
|
Kong R, Ma Y, Li W, Xu Z, Gong S, Liu A, Cheng C, Zhang X, Qin J, Li S, Feng J, Jiang J. Zinc finger protein 367 exerts a cancer-promoting role in small cell lung cancer by influencing the CIT/LATS2/YAP signaling cascade. Toxicol Appl Pharmacol 2024; 489:117005. [PMID: 38880190 DOI: 10.1016/j.taap.2024.117005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
A remarkable cancer-related role of zinc finger protein 367 (ZNF367) has been demonstrated in multiple malignancies. However, whether ZNF367 has a role in small-cell lung cancer (SCLC) remains unexplored. The purpose of this work was to explore the potential role and mechanism of ZNF367 in SCLC. In silico analysis using the Gene Expression Omnibus (GEO) dataset revealed high levels of the ZNF367 transcript in SCLC. Examination of clinical tissues confirmed the significant abundance of ZNF367 in SCLC tissues compared with adjacent non-malignant tissues. The genetic depletion of ZNF367 in SCLC cells led to remarkable alterations in cell proliferation, the cell cycle, colony formation and chemosensitivity. Mechanistically, ZNF367 was shown to regulate the activation of yes-associated protein (YAP) associated with the up-regulation of phosphorylated large tumour suppressor kinase 2 (LATS2). Further investigation revealed that ZNF367 affected the LATS2-YAP cascade by regulating the expression of citron kinase (CIT). Re-expression of constitutively active YAP diminished the tumour-inhibiting function of ZNF367 depletion. Xenograft experiments confirmed the tumour-inhibiting effect of ZNF367 depletion in vivo. In summary, our results demonstrate that the inhibition of ZNF367 displays anticancer effects in SCLC by inhibiting YAP activation, suggesting it as a potential druggable oncogenic target.
Collapse
Affiliation(s)
- Ranran Kong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; Department of Thoracic Surgery, Luoyang Hospital, the Second Affiliated Hospital of Xi'an Jiaotong University, Luoyang, Henan 471003, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Wendeng Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Songyu Gong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Aoran Liu
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Chuantao Cheng
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xinwu Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Feng
- Department of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
4
|
Hsu PC, Wu BC, Wang CC, Chiu LC, Chang CH, Liu PC, Wu CE, Kuo SCH, Ju JS, Huang ACC, Lin YC, Yang CT, Ko HW. A Clinical Analysis of Anti-Programmed Death-Ligand 1 (PD-L1) Immune Checkpoint Inhibitor Treatments Combined with Chemotherapy in Untreated Extensive-Stage Small-Cell Lung Cancer. Vaccines (Basel) 2024; 12:474. [PMID: 38793725 PMCID: PMC11125689 DOI: 10.3390/vaccines12050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Real-world clinical experience of using anti-programmed death-ligand 1 (PD-L1) immune checkpoint inhibitors (ICIs) combined with chemotherapy in the first-line treatment of extensive-stage small-cell lung cancer (SCLC) patients has rarely been reported. In this study, we aimed to perform a retrospective multicenter clinical analysis of extensive-stage SCLC patients receiving first-line therapy with anti-PD-L1 ICIs combined with chemotherapy. Between November 2018 and March 2022, 72 extensive-stage SCLC patients receiving first-line atezolizumab or durvalumab in combination with chemotherapy, according to the cancer center databases of Linkou, Chiayi, and Kaohsiung Chang Gung Memorial Hospitals, were retrospectively included in the analysis. Twenty-one patients (29.2%) received atezolizumab and fifty-one (70.8%) received durvalumab. Objective response (OR) and disease control (DC) rates of 59.7% and 73.6%, respectively, were observed with first-line ICI plus chemotherapy. The median progression-free survival (PFS) was 6.63 months (95% confidence interval (CI), 5.25-8.02), and the median overall survival (OS) was 16.07 months (95% CI, 15.12-17.0) in all study patients. A high neutrophil-to-lymphocyte ratio (NLR; >4) and a high serum lactate dehydrogenase (LDH) concentration (>260 UL) were identified as independent unfavorable factors associated with shorter OS in the multivariate analysis. Regarding safety, neutropenia was the most common grade 3 treatment-related adverse event (AE), but no treatment-related deaths occurred in the study patients. First-line anti-PD-L1 ICIs combined with chemotherapy are effective and safe for male extensive-stage SCLC patients. Further therapeutic strategies may need to be developed for patients with unfavorable outcomes (e.g., baseline high NLR and serum LDH level).
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan (C.-E.W.); (Y.-C.L.)
| | - Bing-Chen Wu
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
| | - Chin-Chou Wang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan (C.-E.W.); (Y.-C.L.)
- Division of Pulmonary & Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan
| | - Li-Chung Chiu
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan (C.-E.W.); (Y.-C.L.)
| | - Chiung-Hsin Chang
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
- Department of Internal Medicine, Taoyuan Chang Gung Memorial Hospital, Taoyuan City 33378, Taiwan
| | - Ping-Chi Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Chiao-En Wu
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan (C.-E.W.); (Y.-C.L.)
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan
| | - Scott Chih-Hsi Kuo
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan (C.-E.W.); (Y.-C.L.)
| | - Jia-Shiuan Ju
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
| | - Allen Chung-Cheng Huang
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
| | - Yu-Ching Lin
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan (C.-E.W.); (Y.-C.L.)
- Division of Thoracic Oncology, Department of Respiratory and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi 613016, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi 613016, Taiwan
| | - Cheng-Ta Yang
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - How-Wen Ko
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33305, Taiwan; (P.-C.H.); (B.-C.W.); (L.-C.C.); (C.-H.C.); (S.C.-H.K.); (J.-S.J.); (A.C.-C.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan (C.-E.W.); (Y.-C.L.)
| |
Collapse
|
5
|
Sahu RK, Ruhi S, Jeppu AK, Al-Goshae HA, Syed A, Nagdev S, Widyowati R, Ekasari W, Khan J, Bhattacharjee B, Goyal M, Bhattacharya S, Jangde RK. Malignant mesothelioma tumours: molecular pathogenesis, diagnosis, and therapies accompanying clinical studies. Front Oncol 2023; 13:1204722. [PMID: 37469419 PMCID: PMC10353315 DOI: 10.3389/fonc.2023.1204722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/21/2023] Open
Abstract
The pathetic malignant mesothelioma (MM) is a extremely uncommon and confrontational tumor that evolves in the mesothelium layer of the pleural cavities (inner lining- visceral pleura and outer lining- parietal pleura), peritoneum, pericardium, and tunica vaginalis and is highly resistant to standard treatments. In mesothelioma, the predominant pattern of lesions is a loss of genes that limit tumour growth. Despite the worldwide ban on the manufacture and supply of asbestos, the prevalence of mesothelioma continues to increase. Mesothelioma presents and behaves in a variety of ways, making diagnosis challenging. Most treatments available today for MM are ineffective, and the median life expectancy is between 10 and 12 months. However, in recent years, considerable progress has already been made in understanding the genetics and molecular pathophysiology of mesothelioma by addressing hippo signaling pathway. The development and progression of MM are related to many important genetic alterations. This is related to NF2 and/or LATS2 mutations that activate the transcriptional coactivator YAP. The X-rays, CT scans, MRIs, and PET scans are used to diagnose the MM. The MM are treated with surgery, chemotherapy, first-line combination chemotherapy, second-line treatment, radiation therapy, adoptive T-cell treatment, targeted therapy, and cancer vaccines. Recent clinical trials investigating the function of surgery have led to the development of innovative approaches to the treatment of associated pleural effusions as well as the introduction of targeted medications. An interdisciplinary collaborative approach is needed for the effective care of persons who have mesothelioma because of the rising intricacy of mesothelioma treatment. This article highlights the key findings in the molecular pathogenesis of mesothelioma, diagnosis with special emphasis on the management of mesothelioma.
Collapse
Affiliation(s)
- Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sakina Ruhi
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, International Medical School (IMS), Management and Science University, Shah Alam, Selangor, Malaysia
| | - Ayesha Syed
- Department of Anatomy, Physiology, and Biochemistry, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Sanjay Nagdev
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, Madhya Pradesh, India
| | - Retno Widyowati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Wiwied Ekasari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | | | - Manoj Goyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras, Tehri Garhwal, Uttarakhand, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM’s NMIMS, Shirpur, MH, India
| | - Rajendra K. Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
6
|
Chim LK, Williams IL, Bashor CJ, Mikos AG. Tumor-associated macrophages induce inflammation and drug resistance in a mechanically tunable engineered model of osteosarcoma. Biomaterials 2023; 296:122076. [PMID: 36931102 PMCID: PMC11132719 DOI: 10.1016/j.biomaterials.2023.122076] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The tumor microenvironment is a complex and dynamic ecosystem composed of various physical cues and biochemical signals that facilitate cancer progression, and tumor-associated macrophages are especially of interest as a treatable target due to their diverse pro-tumorigenic functions. Engineered three-dimensional models of tumors more effectively mimic the tumor microenvironment than monolayer cultures and can serve as a platform for investigating specific aspects of tumor biology within a controlled setting. To study the combinatorial effects of tumor-associated macrophages and microenvironment mechanical properties on osteosarcoma, we co-cultured human osteosarcoma cells with macrophages within biomaterials-based bone tumor niches with tunable stiffness. In the first 24 h of direct interaction between the two cell types, macrophages induced an inflammatory environment consisting of high concentrations of tumor necrosis factor alpha (TNFα) and interleukin (IL)-6 within moderately stiff scaffolds. Expression of Yes-associated protein (YAP), but not its homolog, transcriptional activator with PDZ-binding motif (TAZ), in osteosarcoma cells was significantly higher than in macrophages, and co-culture of the two cells slightly upregulated YAP in both cells, although not to a significant degree. Resistance to doxorubicin treatment in osteosarcoma cells was correlated with inflammation in the microenvironment, and signal transducer and activator of transcription 3 (STAT3) inhibition diminished the inflammation-related differences in drug resistance but ultimately did not improve the efficacy of doxorubicin. This work highlights that the biochemical cues conferred by tumor-associated macrophages in osteosarcoma are highly variable, and signals derived from the immune system should be considered in the development and testing of novel drugs for cancer.
Collapse
Affiliation(s)
- Letitia K Chim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Isabelle L Williams
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
7
|
Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M, Mirzaei S, Hushmandi K, Nabavi N, Salimimoghadam S, Ren J, Rashidi M, Raesi R, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28:33. [PMID: 37085753 PMCID: PMC10122325 DOI: 10.1186/s11658-023-00438-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200032, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|