1
|
Enderlin D, Bieri U, Gadient J, Morsy Y, Scharl M, Rüschoff JH, Hefermehl LJ, Nikitin A, Langenauer J, Engeler DS, Förster B, Obrecht F, Surber J, Scherer TP, Eberli D, Poyet C. Towards Reliable Methodology: Microbiome Analysis of Fresh Frozen vs. Formalin-Fixed Paraffin-Embedded Bladder Tissue Samples: A Feasibility Study. Microorganisms 2024; 12:2594. [PMID: 39770796 PMCID: PMC11677477 DOI: 10.3390/microorganisms12122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Studies have shown that the human microbiome influences the response to systemic immunotherapy. However, only scarce data exist on the impact of the urinary microbiome on the response rates of bladder cancer (BC) to local Bacillus Calmette-Guérin instillation therapy. We launched the prospective SILENT-EMPIRE study in 2022 to address this question. We report the results of the pilot study of SILENT-EMPIRE, which aimed to compare the microbiome between fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) samples in the cancerous tissue and adjacent healthy tissue of BC patients. Our results show that alpha diversity is increased in FF samples compared to FFPE (coverage index p = 0.041, core abundance index p = 0.008). No significant differences concerning alpha diversity could be detected between cancerous and non-cancerous tissue in the same BC patients. This study demonstrates that microbiome analysis from both FF and FFPE samples is feasible. Implementing this finding could aid in the translation of research findings into clinical practice.
Collapse
Affiliation(s)
- Dominik Enderlin
- Department of Urology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Uwe Bieri
- Department of Urology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
- Division of Urology, Department of Surgery, Kantonsspital Baden, 5404 Baden, Switzerland
| | - Jana Gadient
- Department of Urology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Jan Hendrik Rüschoff
- Department of Pathology, and Molecular Pathology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Lukas John Hefermehl
- Division of Urology, Department of Surgery, Kantonsspital Baden, 5404 Baden, Switzerland
| | - Anna Nikitin
- Division of Urology, Department of Surgery, Kantonsspital Baden, 5404 Baden, Switzerland
| | - Janine Langenauer
- Department of Urology, Cantonal Hospital of St. Gallen, School of Medicine, University of St. Gallen, 9007 St. Gallen, Switzerland
| | - Daniel Stephan Engeler
- Department of Urology, Cantonal Hospital of St. Gallen, School of Medicine, University of St. Gallen, 9007 St. Gallen, Switzerland
| | - Beat Förster
- Department of Urology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Fabian Obrecht
- Department of Urology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Jonathan Surber
- Department of Urology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Paul Scherer
- Department of Urology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
2
|
Wu B, Quan C, He Y, Matsika J, Huang J, Liu B, Chen J. Targeting gut and intratumoral microbiota: a novel strategy to improve therapy resistance in cancer with a focus on urologic tumors. Expert Opin Biol Ther 2024; 24:747-759. [PMID: 38910461 DOI: 10.1080/14712598.2024.2371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Growing attention has been drawn to urologic tumors due to their rising incidence and suboptimal clinical treatment outcomes. Cancer therapy resistance poses a significant challenge in clinical oncology, limiting the efficacy of conventional treatments and contributing to disease progression. Recent research has unveiled a complex interplay between the host microbiota and cancer cells, highlighting the role of the microbiota in modulating therapeutic responses. AREAS COVERED We used the PubMed and Web of Science search engines to identify key publications in the fields of tumor progression and urologic tumor treatment, specifically focusing on the role of the microbiota. In this review, we summarize the current literature on how microbiota influence the tumor microenvironment and anti-tumor immunity, as well as their impact on treatments for urinary system malignancies, highlighting promising future applications. EXPERT OPINION We explore how the composition and function of the gut microbiota influence the tumor microenvironment and immune response, ultimately impacting treatment outcomes. Additionally, we discuss emerging strategies targeting the microbiota to enhance therapeutic efficacy and overcome resistance. The application of antibiotics, fecal microbiota transplantation, and oncolytic bacteria has improved tumor treatment outcomes, which provides a novel insight into developing therapeutic strategies for urologic cancer.
Collapse
Affiliation(s)
- Bingquan Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juliet Matsika
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bolong Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
P AP, V AM, V AV, K A, S N, S MM, Singh ISB, Philip R. A Novel Beta-Defensin Isoform from Malabar Trevally, Carangoides malabaricus (Bloch & Schneider, 1801), an Arsenal Against Fish Bacterial Pathogens: Molecular Characterization, Recombinant Production, and Mechanism of Action. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:696-715. [PMID: 38922559 DOI: 10.1007/s10126-024-10338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Antimicrobial peptides (AMPs), including beta-defensin from fish, are a crucial class of peptide medicines. The focus of the current study is the molecular and functional attributes of CmDef, a 63-amino acid beta-defensin AMP from Malabar trevally, Carangoides malabaricus. This peptide demonstrated typical characteristics of AMPs, including hydrophobicity, amphipathic nature, and +2.8 net charge. The CmDef was recombinantly expressed and the recombinant peptide, rCmDef displayed a strong antimicrobial activity against bacterial fish pathogens with an MIC of 8 µM for V. proteolyticus and 32 µM for A. hydrophila. The E. tarda and V. harveyi showed an inhibition of 94% and 54%, respectively, at 32 µM concentration. No activity was observed against V. fluvialis and V. alginolyticus. The rCmDef has a multimode of action that exerts an antibacterial effect by membrane depolarization followed by membrane permeabilization and ROS production. rCmDef also exhibited anti-cancer activities in silico without causing hemolysis. The peptide demonstrated stability under various conditions, including different pH levels, temperatures, salts, and metal ions (KCl and CaCl2), and remained stable in the presence of proteases such as trypsin and proteinase K at concentrations up to 0.2 µg/100 µl. The strong antibacterial efficacy and non-cytotoxic nature suggest that rCmDef is a single-edged sword that can contribute significantly to aquaculture disease management.
Collapse
Affiliation(s)
- Athira P P
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Anju M V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Anooja V V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Archana K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Neelima S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Muhammed Musthafa S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
4
|
Monyók Á, Mansour B, Vadnay I, Makra N, Dunai ZA, Nemes-Nikodém É, Stercz B, Szabó D, Ostorházi E. Change in Tissue Microbiome and Related Human Beta Defensin Levels Induced by Antibiotic Use in Bladder Carcinoma. Int J Mol Sci 2024; 25:4562. [PMID: 38674148 PMCID: PMC11050017 DOI: 10.3390/ijms25084562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
It is now generally accepted that the success of antitumor therapy can be impaired by concurrent antibiotic therapy, the presence of certain bacteria, and elevated defensin levels around the tumor tissue. The aim of our current investigation was to identify the underlying changes in microbiome and defensin levels in the tumor tissue induced by different antibiotics, as well as the duration of this modification. The microbiome of the tumor tissues was significantly different from that of healthy volunteers. Comparing only the tumor samples, no significant difference was confirmed between the untreated group and the group treated with antibiotics more than 3 months earlier. However, antibiotic treatment within 3 months of analysis resulted in a significantly modified microbiome composition. Irrespective of whether Fosfomycin, Fluoroquinolone or Beta-lactam treatment was used, the abundance of Bacteroides decreased, and Staphylococcus abundance increased. Large amounts of the genus Acinetobacter were observed in the Fluoroquinolone-treated group. Regardless of the antibiotic treatment, hBD1 expression of the tumor cells consistently doubled. The increase in hBD2 and hBD3 expression was the highest in the Beta-lactam treated group. Apparently, antibiotic treatment within 3 months of sample analysis induced microbiome changes and defensin expression levels, depending on the identity of the applied antibiotic.
Collapse
Affiliation(s)
- Ádám Monyók
- Department of Urology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (Á.M.); (B.M.)
| | - Bassel Mansour
- Department of Urology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (Á.M.); (B.M.)
| | - István Vadnay
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
| | - Nóra Makra
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Zsuzsanna A. Dunai
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Éva Nemes-Nikodém
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Balázs Stercz
- Department of Medical Microbiology, Semmelweis University, 1085 Budapest, Hungary; (N.M.); (Z.A.D.); (É.N.-N.); (B.S.)
| | - Dóra Szabó
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
- Neurosurgery and Neurointervention Clinic, Semmelweis University, 1085 Budapest, Hungary
| | - Eszter Ostorházi
- Department of Pathology, Markhot Ferenc University Teaching Hospital, 3300 Eger, Hungary; (I.V.); (D.S.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
5
|
Lou K, Chi J, Wu J, Ma J, Liu S, Cui Y. Research progress on the microbiota in bladder cancer tumors. Front Cell Infect Microbiol 2024; 14:1374944. [PMID: 38650736 PMCID: PMC11033431 DOI: 10.3389/fcimb.2024.1374944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The microbiota, also referred to as the microbial community, is a crucial component of the human microenvironment. It is located predominantly in various organs, including the intestines, skin, oral cavity, respiratory tract, and reproductive tract. The microbiota maintains a symbiotic relationship with the human body, influencing physiological and pathological functions to a significant degree. There is increasing evidence linking the microbial flora to human cancers. In contrast to the traditional belief that the urethra and urine of normal individuals are sterile, recent advancements in high-throughput sequencing technology and bacterial cultivation methods have led to the discovery of specific microbial communities in the urethras of healthy individuals. Given the prevalence of bladder cancer (BCa) as a common malignancy of the urinary system, researchers have shifted their focus to exploring the connection between disease development and the unique microbial community within tumors. This shift has led to a deeper investigation into the role of microbiota in the onset, progression, metastasis, prognosis, and potential for early detection of BCa. This article reviews the existing research on the microbiota within BCa tumors and summarizes the findings regarding the roles of different microbes in various aspects of this disease.
Collapse
Affiliation(s)
- Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shu Liu
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
6
|
Chen Y, Han Z, Zhang S, Liu H, Wang K, Liu J, Liu F, Yu S, Sai N, Mai H, Zhou X, Zhou C, Wen Q, Ma L. ERK1/2-CEBPB Axis-Regulated hBD1 Enhances Anti-Tuberculosis Capacity in Alveolar Type II Epithelial Cells. Int J Mol Sci 2024; 25:2408. [PMID: 38397085 PMCID: PMC10889425 DOI: 10.3390/ijms25042408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a global health crisis with substantial morbidity and mortality rates. Type II alveolar epithelial cells (AEC-II) play a critical role in the pulmonary immune response against Mtb infection by secreting effector molecules such as antimicrobial peptides (AMPs). Here, human β-defensin 1 (hBD1), an important AMP produced by AEC-II, has been demonstrated to exert potent anti-tuberculosis activity. HBD1 overexpression effectively inhibited Mtb proliferation in AEC-II, while mice lacking hBD1 exhibited susceptibility to Mtb and increased lung tissue inflammation. Mechanistically, in A549 cells infected with Mtb, STAT1 negatively regulated hBD1 transcription, while CEBPB was the primary transcription factor upregulating hBD1 expression. Furthermore, we revealed that the ERK1/2 signaling pathway activated by Mtb infection led to CEBPB phosphorylation and nuclear translocation, which subsequently promoted hBD1 expression. Our findings suggest that the ERK1/2-CEBPB-hBD1 regulatory axis can be a potential therapeutic target for anti-tuberculosis therapy aimed at enhancing the immune response of AEC-II cells.
Collapse
Affiliation(s)
- Yaoxin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Sian Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Ke Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Jieyu Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Feichang Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Shiyun Yu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Na Sai
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Haiyan Mai
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| |
Collapse
|
7
|
Chorbińska J, Krajewski W, Nowak Ł, Małkiewicz B, Del Giudice F, Szydełko T. Urinary Microbiome in Bladder Diseases-Review. Biomedicines 2023; 11:2816. [PMID: 37893189 PMCID: PMC10604329 DOI: 10.3390/biomedicines11102816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The microbiome is the totality of microorganisms found in a specific biological niche. It has been proven that in the human body, the microbiome is responsible for its proper functioning. Dysbiosis, i.e., a disturbance in the composition of the microbiome, may be associated with the pathogenesis of many human diseases. Until recently, studies did not focus on the microbiome of the urinary tract, because, since the 19th century, there had been a dogma that urine in healthy people is sterile. Yet, advances in molecular biology techniques have allowed this dogma to be overthrown. The use of DNA sequencing has shown that the urinary tract has its own endogenous microbiome. This discovery enabled further research on the characteristics of the urine microbiomes of healthy people, as well as on the role of the urine microbiome in the pathogenesis of many urological diseases, including bladder diseases. The aim of this review is to summarize the current knowledge on the urinary microbiome in bladder diseases and to identify potential directions for further research.
Collapse
Affiliation(s)
- Joanna Chorbińska
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wrocław Medical University, 50-367 Wrocław, Poland; (W.K.); (Ł.N.); (B.M.)
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wrocław Medical University, 50-367 Wrocław, Poland; (W.K.); (Ł.N.); (B.M.)
| | - Łukasz Nowak
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wrocław Medical University, 50-367 Wrocław, Poland; (W.K.); (Ł.N.); (B.M.)
| | - Bartosz Małkiewicz
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wrocław Medical University, 50-367 Wrocław, Poland; (W.K.); (Ł.N.); (B.M.)
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Wrocław Medical University, 50-367 Wrocław, Poland;
| |
Collapse
|
8
|
Porto JG, Arbelaez MCS, Pena B, Khandekar A, Malpani A, Nahar B, Punnen S, Ritch CR, Gonzalgo ML, Parekh DJ, Marcovich R, Shah HN. The Influence of the Microbiome on Urological Malignancies: A Systematic Review. Cancers (Basel) 2023; 15:4984. [PMID: 37894351 PMCID: PMC10605095 DOI: 10.3390/cancers15204984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The microbiome, once considered peripheral, is emerging as a relevant player in the intricate web of factors contributing to cancer development and progression. These often overlooked microorganisms, in the context of urological malignancies, have been investigated primarily focusing on the gut microbiome, while exploration of urogenital microorganisms remains limited. Considering this, our systematic review delves into the complex role of these understudied actors in various neoplastic conditions, including prostate, bladder, kidney, penile, and testicular cancers. Our analysis found a total of 37 studies (prostate cancer 12, bladder cancer 20, kidney cancer 4, penile/testicular cancer 1), revealing distinct associations specific to each condition and hinting at potential therapeutic avenues and future biomarker discoveries. It becomes evident that further research is imperative to unravel the complexities of this domain and provide a more comprehensive understanding.
Collapse
Affiliation(s)
- Joao G. Porto
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | - Brandon Pena
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Archan Khandekar
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Ankur Malpani
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Bruno Nahar
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Sanoj Punnen
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Chad R. Ritch
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Mark L. Gonzalgo
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Dipen J. Parekh
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Robert Marcovich
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hemendra N. Shah
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Kim JK, Song SH, Jung G, Song B, Hong SK. Possibilities and limitations of using low biomass samples for urologic disease and microbiome research. Prostate Int 2022; 10:169-180. [PMID: 36570648 PMCID: PMC9747588 DOI: 10.1016/j.prnil.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022] Open
Abstract
With the dogma of sterile urine no longer held as truth, numerous studies have implicated distinct changes in microbial diversity and composition to diseased subgroups in both benign and malignant urological diseases, ranging from overactive bladder to bladder and prostate cancer. Further facilitated by novel and effective techniques of urine culture and sequencing, analysis of the genitourinary microbiome holds high potential to identify biomarkers for disease and prognosis. However, the low biomass of samples included in microbiome studies of the urinary tract challenge researchers to draw definitive conclusions, confounded by technical and procedural considerations that must be addressed. Lack of samples and adequate true negative controls can lead to overestimation of microbial influence with clinical relevance. As such, results from currently available studies and assessment of their limitations required a thorough understanding. The purpose of this narrative review was to summarize notable microbiome studies in the field of urology with a focus on significant findings and limitations of study design. Methodological considerations in future research are also discussed.
Collapse
Affiliation(s)
- Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Hun Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gyoohwan Jung
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byeongdo Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Urology, Seoul National University College of Medicine, Seoul, Korea,Corresponding author. Department of Urology, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam-si, Kyunggi-do, 463-707, Korea.
| |
Collapse
|
10
|
Wei Y, Sandhu E, Yang X, Yang J, Ren Y, Gao X. Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms 2022; 10:microorganisms10122353. [PMID: 36557606 PMCID: PMC9783839 DOI: 10.3390/microorganisms10122353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
As a Gram-positive cocci existing in nature, Staphylococcus has a variety of species, such as Staphylococcus aureus and Staphylococcus epidermidis, etc. Growing evidence reveals that Staphylococcus is closely related to the occurrence and development of various cancers. On the one hand, cancer patients are more likely to suffer from bacterial infection and antibiotic-resistant strain infection compared to healthy controls. On the other hand, there exists an association between staphylococcal infection and carcinogenesis. Staphylococcus often plays a pathogenic role and evades the host immune system through surface adhesion molecules, α-hemolysin, PVL (Panton-Valentine leukocidin), SEs (staphylococcal enterotoxins), SpA (staphylococcal protein A), TSST-1 (Toxic shock syndrom toxin-1) and other factors. Staphylococcal nucleases (SNases) are extracellular nucleases that serve as genomic markers for Staphylococcus aureus. Interestingly, a human homologue of SNases, SND1 (staphylococcal nuclease and Tudor domain-containing 1), has been recognized as an oncoprotein. This review is the first to summarize the reported basic and clinical evidence on staphylococci and neoplasms. Investigations on the correlation between Staphylococcus and the occurrence, development, diagnosis and treatment of breast, skin, oral, colon and other cancers, are made from the perspectives of various virulence factors and SND1.
Collapse
Affiliation(s)
- Yuannan Wei
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esha Sandhu
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xi Yang
- Department of Immunology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin 300070, China
- Correspondence: (Y.R.); (X.G.); Tel./Fax: +86-022-83336806 (X.G.)
| |
Collapse
|