1
|
Dharani V, Nishu S, Hariprasath L. PCOS and genetics: Exploring the heterogeneous role of potential genes in ovarian dysfunction, a hallmark of PCOS - A review. Reprod Biol 2025; 25:101017. [PMID: 40222066 DOI: 10.1016/j.repbio.2025.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
PCOS is an endocrine disorder that affects women of reproductive age. The root of PCOS is ovarian dysfunction, which presents as hormonal disturbances affecting normal ovarian function to cause the symptoms and complications of the disease. This dysfunction causes symptoms like impaired maturation of follicles and disorders of various origins with multiple treatment regimens that are not always clear. Therefore, the present review mainly concentrates on the genetic level of ovarian dysfunction of PCOS. The articles were identified through a vigorous literature search where search engines such as PubMed, Google Scholar, databases, and Science Direct were used, and the articles published from 2015 to 2025 were referred. We identified that the key genes involved in the ovarian dysfunctions in PCOS include CYP11A1, CYP17A1, CYP19A1, AR, FSHR, LHCGR, AMH, INSR, SHBG, IRS1, GATA4, ADIPOQ, YAP1, TCF7L2, and DENND1A, which play a role in gonadotropin action, steroidogenesis, and folliculogenesis. Furthermore, epigenetic factors and miRNAs miR-93, 222, 155, 146a, 132, 320, 27a, 483, 21, 378, 17-92 Cluster, and 375, 221 are also involved in it. Abnormal expression of these genes is known to play a critical role in the etiology and pathogenesis of PCOS. Present treatment includes the use of oral contraceptives, anti-androgen agents, insulin-sensitizing agents, and ovulation-inducing agents, and future treatment may consist of miRNA therapy, drug repositioning, and genetic markers that might be used for early identification and better management of ovarian dysfunction. Thus, the current review discusses ovarian dysfunction in PCOS, the involvement of potential genes and epigenetic factors, and miRNAs concerning ovulation and its therapeutic implications.
Collapse
Affiliation(s)
- V Dharani
- Department of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India
| | - S Nishu
- Department of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India.
| | - L Hariprasath
- Department of Biochemistry, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India
| |
Collapse
|
2
|
Pereira JD, Magalhães FMV, Tameirão FMS, Soriani FM, de O S Jorge KT, Reis FM, Cândido AL, Comim FV, Gomes KB. The possible regulatory role of miRNA-30c-5p, miRNA-545-3p and miRNA-125a-5p in women with polycystic ovary syndrome: A case-control study and signaling pathways. Mol Cell Endocrinol 2025; 599:112492. [PMID: 39952313 DOI: 10.1016/j.mce.2025.112492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Polycystic Ovary Syndrome (PCOS) is one of the most common endocrinopathy in women of reproductive age. MicroRNA (miRNAs) are small non-coding RNAs related to the control of gene expression in biological fluids. Our study analyzed the expression of miRNAs related to inflammation in individuals with PCOS compared to controls. METHODS Twenty patients with PCOS and 20 controls, matched by body mass index and age, were included in the study. The miRNAs evaluated were miRNA-30c-5p; miRNA-545-3p and miRNA-125a-5p. RESULTS The expression of the miRNAs was similar between the two groups. A positive correlation was observed between the expression of miRNA-125a-5p and LDLc levels only in the PCOS group. Subsequent analysis of biological pathways showed that miRNA-125a -5p is significantly involved in the regulation of SREBP/SREBF pathways of cholesterol biosynthesis, glycolysis, insulin receptor signaling, oxidative stress-induced senescence and estrogen-dependent gene expression. CONCLUSION The results suggest that the miRNA-125a-5p shows a potential implication to the regulation of lipid biosynthesis and LDL-c levels in PCOS women.
Collapse
Affiliation(s)
- Jessica D Pereira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda M V Magalhães
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana M S Tameirão
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico M Soriani
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina T de O S Jorge
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando M Reis
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Lúcia Cândido
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio V Comim
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Shen C, Li H, Xiao M, Jiang X, Jin J, Zhou J, Xiong B, Chen Y, Zhao M. Study on the mechanism of the Chinese herbal pair Banxia-Chenpi in ameliorating polycystic ovary syndrome based on the CYP17A1 gene. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119503. [PMID: 39961422 DOI: 10.1016/j.jep.2025.119503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a typical Traditional Chinese Medicine (TCM) couplet medicine, Arum Ternatum Thunb. (Pinellia ternata (Thunb.) Makino, known as Banxia in Chinese) and Citrus Reticulata (pericarps of Citrus reticulata Blanco, known as Chenpi in Chinese) has been widely used in clinical practice for their properties of drying dampness, resolving phlegm, relieving oppression and masses. According to the TCM theories, the imbalance in fluid metabolism could lead to the accumulation of the excess dampness and phlegm, resulting in the pathological phenotype as 'damp-phlegm syndrome'. It can further lead to polycystic ovary syndrome (PCOS) when this accumulation of the excess fluid presents in uterus, affecting women's fertility and endocrine function. Recent studies have indicated that Banxia-Chenpi herbal pair (BXCP) exhibits significant therapeutic effects on damp-phlegm syndrome, yet the precise mechanisms underlying its anti-PCOS actions remain to be fully elucidated. AIM OF THE STUDY The objective was to investigate the signaling pathway involved in steroid biosynthesis, particularly the cytochrome P450 family 17, subfamily A, member 1 (CYP17A1), and to evaluate the effects and mechanisms of BXCP in ameliorating PCOS through both in vivo and in vitro experiments. MATERIALS AND METHODS A systematic evaluation was conducted to assess BXCP's effects on serum biochemical indicators and ovarian tissue pathology in a PCOS rat model (induced by high-fat diet + letrozole) and a DHT-induced human granulosa cells (KGN) model. Core targets were screened using absorbed components analysis, bioinformatics, metabolomics, and network analysis. RT-qPCR and Western blot techniques were employed to confirm the expression of CYP17A1 and related signaling molecule expression during BXCP's amelioration of PCOS, both in vivo and in vitro. RESULTS BXCP significantly ameliorated PCOS in vivo by mitigating weight gain, regulating estrus cycles, and normalizing sex hormone levels in rats. It upregulated metabolites related to steroid biosynthesis, including cortolone and progesterone, with CYP19A1, AKR1C3, and HSD17B1 as key regulators of CYP17A1. The main BXCP components, Naringenin and Nobiletin, increased CYP17A1 and CYP19A1 protein expression while decreased AKR1C3 and HSD17B1. CONCLUSION In conclusion, BXCP ameliorates PCOS by activating the CYP17A1-centered steroid biosynthesis pathway. These findings provide new insights into BXCP's clinical potentials in the management of patients with PCOS, highlighting the importance of TCM in modern medicine.
Collapse
Affiliation(s)
- Can Shen
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, China
| | - Haotian Li
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, China
| | - Min Xiao
- Experimental Center of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan, 430061, Hubei Province, China
| | - Xiaocui Jiang
- Experimental Center of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan, 430061, Hubei Province, China
| | - Jing Jin
- Hubei Shizhen Laboratory, Wuhan, 430061, Hubei Province, China; The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, China
| | - Jiayan Zhou
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Bin Xiong
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan, 430061, Hubei Province, China.
| | - Yu Chen
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan, 430061, Hubei Province, China.
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan, 430061, Hubei Province, China.
| |
Collapse
|
4
|
Mukherjee A, Verma A, Das T, Ghosh B, Ghosh Z. Circulating microRNAs in Body Fluid: "Fingerprint" RNA Snippets Deeply Impact Reproductive Biology. Reprod Sci 2025; 32:555-574. [PMID: 39658771 DOI: 10.1007/s43032-024-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Circulating miRNAs (C-miRNAs) occuring in a cell-free form within body fluids and other extracellular environments have garnered attention in recent times. They offer deeper insight into various physiological and pathological processes which include reproductive health. This review delves into their diagnostic potential across a spectrum of reproductive disorders, including conditions affecting ovarian function, male infertility and post pregnancy issues. Through analysis of C-miRNA profiles in bodily fluids, researchers uncover crucial markers indicative of reproductive challenges. Dysregulated C-miRNAs emerge as important players in the progression of several reproductive disorders which is the main focus of this review. Advancements in technology, facilitate precise detection and quantification of C-miRNAs, paving the way for innovative diagnostic approaches. Challenges in studying C-miRNAs, such as their low abundance and variability in expression levels, underscore the need for standardized protocols and rigorous validation methods. Despite these challenges, ongoing research endeavors aim to unravel the complex regulatory roles of C-miRNAs in reproductive biology, with potential implications for clinical practice and therapeutic interventions.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Mohanpur, West Bengal, 741252, India.
| | - Arpana Verma
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Troyee Das
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Byapti Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India
| | - Zhumur Ghosh
- Department of Biological Sciences, Bose Institute, EN Block, Sector V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
5
|
Di Michele S, Fulghesu AM, Pittui E, Cordella M, Sicilia G, Mandurino G, D’Alterio MN, Vitale SG, Angioni S. Ultrasound Assessment in Polycystic Ovary Syndrome Diagnosis: From Origins to Future Perspectives-A Comprehensive Review. Biomedicines 2025; 13:453. [PMID: 40002866 PMCID: PMC11853298 DOI: 10.3390/biomedicines13020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy in women of reproductive age, characterized by a broad spectrum of clinical, metabolic, and ultrasound findings. Over time, ultrasound has evolved into a cornerstone for diagnosing polycystic ovarian morphology (PCOM), thanks to advances in probe technology, 3D imaging, and novel stromal markers. The recent incorporation of artificial intelligence (AI) further enhances diagnostic precision by reducing operator-related variability. Methods: We conducted a narrative review of English-language articles in PubMed and Embase using the keywords "PCOS", "polycystic ovary syndrome", "ultrasound", "3D ultrasound", and "ovarian stroma". Studies on diagnostic criteria, imaging modalities, stromal assessment, and machine-learning algorithms were prioritized. Additional references were identified via citation screening. Results: Conventional 2D ultrasound remains essential in clinical practice, with follicle number per ovary (FNPO) and ovarian volume (OV) functioning as primary diagnostic criteria. However, sensitivity and specificity values vary significantly depending on probe frequency, cut-off thresholds (≥12, ≥20, or ≥25 follicles), and patient characteristics (e.g., adolescence, obesity). Three-dimensional (3D) ultrasound and Doppler techniques refine PCOS diagnosis by enabling automated follicle measurements, stromal/ovarian area ratio assessments, and evaluation of vascular indices correlating strongly with hyperandrogenism. Meanwhile, AI-driven ultrasound analysis has emerged as a promising tool for minimizing observer bias and validating advanced metrics (e.g., SA/OA ratio) that may overcome traditional limitations of stroma-based criteria. Conclusions: The continual evolution of ultrasound, encompassing higher probe frequencies, 3D enhancements, and now AI-assisted algorithms, has expanded our ability to characterize PCOM accurately. Nevertheless, challenges such as operator dependency and inter-observer variability persist despite standardized protocols; the integration of AI holds promise in further enhancing diagnostic accuracy. Future directions should focus on robust AI training datasets, multicenter validation, and age-/BMI-specific cut-offs to optimize the balance between sensitivity and specificity, ultimately facilitating earlier and more precise PCOS diagnoses.
Collapse
Affiliation(s)
- Stefano Di Michele
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, SS554, 4, Monserrato, 09042 Cagliari, Italy; (A.M.F.); (E.P.); (M.C.); (G.S.); (G.M.); (M.N.D.); (S.G.V.); (S.A.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Barancheshmeh M, Najafzadehvarzi H, Shokrzadeh N, Aram C. Comparative analysis of fennel essential oil and manganese in PCOS rat model via modulating miR-145 expression and structure-based virtual screening of IGF2R protein to address insulin resistance and obesity. OBESITY MEDICINE 2025; 53:100574. [DOI: 10.1016/j.obmed.2024.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Wang S, Wang Y, Qin Q, Li J, Chen Q, Zhang Y, Li X, Liu J. Berberine Protects Against Dihydrotestosterone-Induced Human Ovarian Granulosa Cell Injury and Ferroptosis by Regulating the Circ_0097636/MiR-186-5p/SIRT3 Pathway. Appl Biochem Biotechnol 2024; 196:5265-5282. [PMID: 38153651 DOI: 10.1007/s12010-023-04825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine syndrome in women of reproductive age. Berberine (BBR) is a Chinese herbal monomer that exhibits many pharmacological properties related to PCOS treatment. This study aims to analyze the effect of BBR on a cell model of PCOS and the underlying mechanism. Human ovarian granulosa (KGN) cells were treated with dihydrotestosterone (DHT) to mimic a PCOS cell model. The RNA expression of circ_0097636, miR-186-5p, and sirtuin3 (SIRT3) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was detected by western blotting. Cell viability was analyzed by CCK-8 assay. Cell proliferation and apoptosis were investigated by 5-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry assay, respectively. The levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) were analyzed by enzyme-linked immunosorbent assays (ELISAs). Fe2+ concentration was assessed by an iron assay kit. Oxidative stress was assessed by detecting reactive oxygen species (ROS) level and malondialdehyde (MDA) level using commercial kits. The association of miR-186-5p with circ_0097636 and SIRT3 was identified by dual-luciferase reporter assay and RNA pull-down assay. Circ_0097636 expression was downregulated in the follicular fluid of PCOS patients and DHT-treated KGN cells when compared with control groups. BBR treatment partially relieved the DHT-induced inhibitory effect on cell proliferation and promoted effects on cell apoptosis, inflammation, ferroptosis, and oxidative stress in KGN cells. Additionally, circ_0097636 bound to miR-186-5p, and SIRT3 was identified as a target gene of miR-186-5p in KGN cells. BBR treatment ameliorated DHT-induced KGN cell injury by upregulating circ_0097636 and SIRT3 expression and downregulating miR-186-5p expression. Moreover, circ_0097636 overexpression protected KGN cells from DHT-induced injury by increasing SIRT3 expression. BBR ameliorated DHT-induced KGN cell injury and ferroptosis by regulating the circ_0097636/miR-186-5p/SIRT3 pathway.
Collapse
Affiliation(s)
- Suqin Wang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Department of Gynecology & Obstetrics, Fifth Hospital of Shanxi Medical University, Taiyuan City, 030012, Shanxi, China
| | - Yingfang Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang City, 471023, Henan, China
| | - Qin Qin
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Center for Reproductive Medicine, Fifth Hospital of Shanxi Medical University, No. 29, Shuangtasi Road, Yingze District, Taiyuan City, 030012, Shanxi, China
| | - Jianfang Li
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Department of Gynecology & Obstetrics, Fifth Hospital of Shanxi Medical University, Taiyuan City, 030012, Shanxi, China
| | - Qiaoyun Chen
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Center for Reproductive Medicine, Fifth Hospital of Shanxi Medical University, No. 29, Shuangtasi Road, Yingze District, Taiyuan City, 030012, Shanxi, China
| | - Ye Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China
- Center for Reproductive Medicine, Fifth Hospital of Shanxi Medical University, No. 29, Shuangtasi Road, Yingze District, Taiyuan City, 030012, Shanxi, China
| | - Xiuqing Li
- Reproductive center, Coal Central Hospital of Shanxi Province, Taiyuan City, Shanxi, China
| | - Jianrong Liu
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan City, Shanxi, China.
- Center for Reproductive Medicine, Fifth Hospital of Shanxi Medical University, No. 29, Shuangtasi Road, Yingze District, Taiyuan City, 030012, Shanxi, China.
| |
Collapse
|
8
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Rashid G, Khan NA, Elsori D, Youness RA, Hassan H, Siwan D, Seth N, Kamal MA, Rizvi S, Babker AM, Hafez W. miRNA expression in PCOS: unveiling a paradigm shift toward biomarker discovery. Arch Gynecol Obstet 2024; 309:1707-1723. [PMID: 38316651 DOI: 10.1007/s00404-024-07379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects a substantial percentage of women, estimated at around 9-21%. This condition can lead to anovulatory infertility in women of childbearing age and is often accompanied by various metabolic disturbances, including hyperandrogenism, insulin resistance, obesity, type-2 diabetes, and elevated cholesterol levels. The development of PCOS is influenced by a combination of epigenetic alterations, genetic mutations, and changes in the expression of non-coding RNAs, particularly microRNAs (miRNAs). MicroRNAs, commonly referred to as non-coding RNAs, are approximately 22 nucleotides in length and primarily function in post-transcriptional gene regulation, facilitating mRNA degradation and repressing translation. Their dynamic expression in different cells and tissues contributes to the regulation of various biological and cellular pathways. As a result, they have become pivotal biomarkers for various diseases, including PCOS, demonstrating intricate associations with diverse health conditions. The aberrant expression of miRNAs has been detected in the serum of women with PCOS, with overexpression and dysregulation of these miRNAs playing a central role in the atypical expression of endocrine hormones linked to PCOS. This review takes a comprehensive approach to explore the upregulation and downregulation of various miRNAs present in ovarian follicular cells, granulosa cells, and theca cells of women diagnosed with PCOS. Furthermore, it discusses the potential for a theragnostic approach using miRNAs to better understand and manage PCOS.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Medical Lab Technology, Amity Medical School, Amity University Haryana, Gurugram, India.
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, 110025, India
| | | | - Rana A Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo, Egypt
| | - Homa Hassan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Namrata Seth
- Department of Biotechnology, Indian Institute of Science and Technology, Bhopal, 462066, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saliha Rizvi
- Department of Biotechnology, Era University, Lucknow, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Wael Hafez
- The Medical Research Division, Department of Internal Medicine, the National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Vogt S, Handke D, Behre HM, Greither T. Decreased Serum Levels of the Insulin Resistance-Related microRNA miR-320a in Patients with Polycystic Ovary Syndrome. Curr Issues Mol Biol 2024; 46:3379-3393. [PMID: 38666942 PMCID: PMC11049427 DOI: 10.3390/cimb46040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is often associated with metabolic abnormalities in the affected patients such as obesity or a dysregulated glucose metabolism/insulin resistance (IR). IR affects the serum levels of several circulating microRNAs; however, studies on the association between IR-related microRNAs and PCOS are scarce. Therefore, we quantified the serum levels of the IR-associated microRNAs miR-93, miR-148a, miR-216a, miR-224 and miR-320a via qPCR in a cohort of 358 infertility patients, of whom 136 were diagnosed with PCOS. In bivariate correlation analyses, the serum levels of miR-93 and miR-216a were inversely associated with dipeptidyl peptidase 4 serum concentrations, and the miR-320a serum levels were significantly downregulated in PCOS patients (p = 0.02, Mann-Whitney U test). Interestingly, in all patients who achieved pregnancy after Assisted Reproductive Technology (ART) cycles, the serum levels of the five IR-associated microRNAs were significantly elevated compared to those of non-pregnant patients. In cell culture experiments, we detected a significant upregulation of miR-320a expression following testosterone stimulation over 24 and 48 h in KGN and COV434 granulosa carcinoma cells. In conclusion, we demonstrated a significantly reduced serum level of the IR-associated miR-320a in our patient cohort. This result once again demonstrates the close relationship between metabolic disorders and the dysregulation of microRNA expression patterns in PCOS.
Collapse
Affiliation(s)
| | | | | | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin-Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| |
Collapse
|
11
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
12
|
Nasser JS, Altahoo N, Almosawi S, Alhermi A, Butler AE. The Role of MicroRNA, Long Non-Coding RNA and Circular RNA in the Pathogenesis of Polycystic Ovary Syndrome: A Literature Review. Int J Mol Sci 2024; 25:903. [PMID: 38255975 PMCID: PMC10815174 DOI: 10.3390/ijms25020903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disease in females of reproductive age, affecting 4-20% of pre-menopausal women worldwide. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding, regulatory ribonucleic acid molecules found in eukaryotic cells. Abnormal miRNA expression has been associated with several diseases and could possibly explain their underlying pathophysiology. MiRNAs have been extensively studied for their potential diagnostic, prognostic, and therapeutic uses in many diseases, such as type 2 diabetes, obesity, cardiovascular disease, PCOS, and endometriosis. In women with PCOS, miRNAs were found to be abnormally expressed in theca cells, follicular fluid, granulosa cells, peripheral blood leukocytes, serum, and adipose tissue when compared to those without PCOS, making miRNAs a useful potential biomarker for the disease. Key pathways involved in PCOS, such as folliculogenesis, steroidogenesis, and cellular adhesion, are regulated by miRNA. This also highlights their importance as potential prognostic markers. In addition, recent evidence suggests a role for miRNAs in regulating the circadian rhythm (CR). CR is crucial for regulating reproduction through the various functions of the hypothalamic-pituitary-gonadal (HPG) axis and the ovaries. A disordered CR affects reproductive outcomes by inducing insulin resistance, oxidative stress, and systemic inflammation. Moreover, miRNAs were demonstrated to interact with lncRNA and circRNAs, which are thought to play a role in the pathogenesis of PCOS. This review discusses what is currently understood about miRNAs in PCOS, the cellular pathways involved, and their potential role as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jenan Sh. Nasser
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Noor Altahoo
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Sayed Almosawi
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Abrar Alhermi
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain
| |
Collapse
|
13
|
Huffman AM, Rezq S, Basnet J, Romero DG. Biomarkers in Polycystic Ovary Syndrome. CURRENT OPINION IN PHYSIOLOGY 2023; 36:100717. [PMID: 37842179 PMCID: PMC10569288 DOI: 10.1016/j.cophys.2023.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-age women. PCOS is diagnosed by the presence of two of the following three characteristics: hyperandrogenemia and/or hyperandrogenism, oligo/amenorrhea, and polycystic ovarian morphology. PCOS is associated with reproductive and non-reproductive complications, including obesity, insulin resistance and diabetes, dyslipidemia, and increased blood pressure. There is an urgent need for biomarkers that address both the reproductive and non-reproductive aspects of this complex syndrome. This review focuses on biomarkers, or potential ones, associated with the reproductive and non-reproductive aspects of PCOS, including anthropometric and clinical biomarkers, insulin and the IGF-1 system, lipids, anti-Müllerian hormone and gonadotropins, steroids, inflammatory and renal injury biomarkers, oxidative stress, and non-coding RNAs. We expect that this review will bring some light on the recent updates in the field and encourage researchers to join the exciting and promising field of PCOS biomarkers.
Collapse
Affiliation(s)
- Alexandra M. Huffman
- Department of Cell and Molecular Biology, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Mississippi Center of Excellence in Perinatal Research, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Women’s Health Research Center, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Samar Rezq
- Department of Cell and Molecular Biology, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Mississippi Center of Excellence in Perinatal Research, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Women’s Health Research Center, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Jelina Basnet
- Department of Cell and Molecular Biology, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Mississippi Center of Excellence in Perinatal Research, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Women’s Health Research Center, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Damian G. Romero
- Department of Cell and Molecular Biology, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Mississippi Center of Excellence in Perinatal Research, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Women’s Health Research Center, Jackson, Mississippi, USA, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
14
|
Pitner I, Mikuš M, Šprem Goldštajn M, Laganà AS, Chiantera V, Ferrari F, Shah M, D'Alterio MN, Vitale SG, Angioni S. Effects of different progesterone levels on reproductive outcomes in assisted reproductive technologies: from molecular basis to treatment strategies. Gynecol Endocrinol 2023; 39:2190806. [PMID: 36963420 DOI: 10.1080/09513590.2023.2190806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
PURPOSE The aim of this narrative review is to offer an overview about the role of progesterone levels on pregnancy outcome in patients undergoing assisted reproductive technologies (ARTs). METHODS A detailed computerized search of the literature was performed in the main electronic databases (MEDLINE, EMBASE, Web of Science) to determine the importance of elevated progesterone levels at different stages of the cycle for pregnancy rates in the in vitro fertilization (IVF) cycle. Our review also provides information on the differences between elevated progesterone levels and their interpretation in normal and in poorly responding women. RESULTS After careful evaluation, our search strategy yielded a total of 15 included articles, showing the possible factors that may have had an impact on the increased progesterone level before human chorionic gonadotropin (HCG) injection and the different thresholds above which the pregnancy rate was lower. Furthermore, increased progesterone on cycle day 2 or 3 could serve as a marker for increased progesterone in the late follicular phase, which is associated with a lower pregnancy rate. CONCLUSION Despite the literature data that support the negative effect of elevated progesterone on fresh cycles, due to lack of randomized controlled trials, the value of measuring progesterone in daily practice is questionable. Available evidence supports the detrimental effect of elevated progesterone in different subgroups of women, although there is still the need for defining different thresholds and durations of high progesterone exposure. The need for various thresholds for different cohorts of women, the inter-assay variability is making this decision harder.
Collapse
Affiliation(s)
- Iva Pitner
- Department of Gynecology and Obstetrics, Sestre milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Mislav Mikuš
- Department of Obstetrics and Gynecology, Clinical Hospital Center Zagreb, Zagreb, Croatia
| | - Marina Šprem Goldštajn
- Department of Obstetrics and Gynecology, Clinical Hospital Center Zagreb, Zagreb, Croatia
| | - Antonio Simone Laganà
- Unit of Gynecologic Oncology, ARNAS "Civico - Di Cristina - Benfratelli", Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Vito Chiantera
- Unit of Gynecologic Oncology, ARNAS "Civico - Di Cristina - Benfratelli", Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Federico Ferrari
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mohsin Shah
- Department of Physiology, Khyber Medical University, Peshawar, Pakistan
| | - Maurizio Nicola D'Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Salvatore Giovanni Vitale
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefano Angioni
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Zhang CH, Liu XY, Wang J. Essential Role of Granulosa Cell Glucose and Lipid Metabolism on Oocytes and the Potential Metabolic Imbalance in Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:16247. [PMID: 38003436 PMCID: PMC10671516 DOI: 10.3390/ijms242216247] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Granulosa cells are crucial for the establishment and maintenance of bidirectional communication among oocytes. Various intercellular material exchange modes, including paracrine and gap junction, are used between them to achieve the efficient delivery of granulosa cell structural components, energy substrates, and signaling molecules to oocytes. Glucose metabolism and lipid metabolism are two basic energy metabolism pathways in granulosa cells; these are involved in the normal development of oocytes. Pyruvate, produced by granulosa cell glycolysis, is an important energy substrate for oocyte development. Granulosa cells regulate changes in intrafollicular hormone levels through the processing of steroid hormones to control the development process of oocytes. This article reviews the material exchange between oocytes and granulosa cells and expounds the significance of granulosa cells in the development of oocytes through both glucose metabolism and lipid metabolism. In addition, we discuss the effects of glucose and lipid metabolism on oocytes under pathological conditions and explore its relationship to polycystic ovary syndrome (PCOS). A series of changes were found in the endogenous molecules and ncRNAs that are related to glucose and lipid metabolism in granulosa cells under PCOS conditions. These findings provide a new therapeutic target for patients with PCOS; additionally, there is potential for improving the fertility of patients with PCOS and the clinical outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Xiang-Yi Liu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China; (C.-H.Z.); (X.-Y.L.)
| | - Jing Wang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
16
|
Tsai YR, Liao YN, Kang HY. Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells 2023; 12:2189. [PMID: 37681921 PMCID: PMC10487183 DOI: 10.3390/cells12172189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological and endocrine disorder that results in irregular menstruation, incomplete follicular development, disrupted ovulation, and reduced fertility rates among affected women of reproductive age. While these symptoms can be managed through appropriate medication and lifestyle interventions, both etiology and treatment options remain limited. Here we provide a comprehensive overview of the latest advancements in cellular approaches utilized for investigating the pathophysiology of PCOS through in vitro cell models, to avoid the confounding systemic effects such as in vitro fertilization (IVF) therapy. The primary objective is to enhance the understanding of abnormalities in PCOS-associated folliculogenesis, particularly focusing on the aberrant roles of granulosa cells and other relevant cell types. Furthermore, this article encompasses analyses of the mechanisms and signaling pathways, microRNA expression and target genes altered in PCOS, and explores the pharmacological approaches considered as potential treatments. By summarizing the aforementioned key findings, this article not only allows us to appreciate the value of using in vitro cell models, but also provides guidance for selecting suitable research models to facilitate the identification of potential treatments and understand the pathophysiology of PCOS at the cellular level.
Collapse
Affiliation(s)
- Yi-Ru Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- An-Ten Obstetrics and Gynecology Clinic, Kaohsiung City 802, Taiwan
| | - Yen-Nung Liao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Center for Hormone and Reproductive Medicine Research, Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan
| |
Collapse
|
17
|
Daniele S, Chelucci E, Scarfò G, Artini PG. Molecular Research on Polycystic Ovary Syndrome (PCOS). Biomedicines 2023; 11:biomedicines11051358. [PMID: 37239028 DOI: 10.3390/biomedicines11051358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine systemic disorder with a prevalence of between 5% and 20% that commonly affects childbearing-aged women [...].
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Elisa Chelucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
18
|
Udesen PB, Sørensen AE, Svendsen R, Frisk NLS, Hess AL, Aziz M, Wissing MLM, Englund ALM, Dalgaard LT. Circulating miRNAs in Women with Polycystic Ovary Syndrome: A Longitudinal Cohort Study. Cells 2023; 12:cells12070983. [PMID: 37048055 PMCID: PMC10093401 DOI: 10.3390/cells12070983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Women with polycystic ovary syndrome (PCOS) often change their metabolic profile over time to decrease levels of androgens while often gaining a propensity for the development of the metabolic syndrome. Recent discoveries indicate that microRNAs (miRNAs) play a role in the development of PCOS and constitute potential biomarkers for PCOS. We aimed to identify miRNAs associated with the development of an impaired metabolic profile in women with PCOS, in a follow-up study, compared with women without PCOS. METHODS AND MATERIALS Clinical measurements of PCOS status and metabolic disease were obtained twice 6 years apart in a cohort of 46 women with PCOS and nine controls. All participants were evaluated for degree of metabolic disease (hypertension, dyslipidemia, central obesity, and impaired glucose tolerance). MiRNA levels were measured using Taqman® Array cards of 96 pre-selected miRNAs associated with PCOS and/or metabolic disease. RESULTS Women with PCOS decreased their levels of androgens during follow-up. Twenty-six of the miRNAs were significantly changed in circulation in women with PCOS during the follow-up, and twenty-four of them had decreased, while levels did not change in the control group. Four miRNAs were significantly different at baseline between healthy controls and women with PCOS; miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p, which were decreased in PCOS. After follow-up, miR-28-3p, miR-139-5p, and miR-376a-3p increased in PCOS women to the levels observed in healthy controls. Of these, miR-139-5p correlated with total testosterone levels (rho = 0.50, padj = 0.013), while miR-376-3p correlated significantly with the waist-hip ratio at follow-up (rho = 0.43, padj = 0.01). Predicted targets of miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p were enriched in pathways associated with Insulin/IGF signaling, interleukin signaling, the GNRH receptor pathways, and other signaling pathways. MiRNAs altered during follow-up in PCOS patients were enriched in pathways related to immune regulation, gonadotropin-releasing hormone signaling, tyrosine kinase signaling, and WNT signaling. CONCLUSIONS These studies indicate that miRNAs associated with PCOS and androgen metabolism overall decrease during a 6-year follow-up, reflecting the phenotypic change in PCOS individuals towards a less hyperandrogenic profile.
Collapse
Affiliation(s)
- Pernille B Udesen
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Koege, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Rikke Svendsen
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Nanna L S Frisk
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Anne L Hess
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mubeena Aziz
- Department of Gynecology and Obstetrics, Amager/Hvidovre Hospital, Kettegaards Allé 30, 2650 Hvidovre, Denmark
| | | | - Anne Lis M Englund
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Koege, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
19
|
Duan Y, Zhou Y, Peng Y, Shi X, Peng C. Inflammatory Markers in Women with Infertility: A Cross-Sectional Study. Int J Gen Med 2023; 16:1113-1121. [PMID: 37007911 PMCID: PMC10065428 DOI: 10.2147/ijgm.s405793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose Infertility is highly correlated with inflammation. We sought to evaluate the independent relationships between each inflammatory marker in women with infertility. Patients and Methods This cross-sectional study included 1028 infertile patients who were hospitalized at Jining Medical University between January 2016 and December 2022. NLR and PLR were the independent and dependent variables measured at baseline, respectively. Age, body mass index (BMI), and menstrual status were covariates. Based on BMI, the study population was split into two groups: Low-BMI and High-BMI. Results A stratified analysis revealed that the overweight group had significantly higher levels of WBC, platelet count, lymphocyte count, neutrophil count and NLR. Comparing the overweight group to the normal weight group, the levels were noticeably higher in the overweight group. Significantly positive correlations between NLR and PLR were found in both univariate and multiple regression analyses. Conclusion There was a significant positive correlation between NLR and PLR in infertility patients. These results will help in the search for biomarkers of infertility and in the development of infertility prediction models.
Collapse
Affiliation(s)
- Yanan Duan
- Jining Medical University, Jining, Shandong Province, 272002, People’s Republic of China
| | - Ye Zhou
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, People’s Republic of China
| | - Yiqing Peng
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, People’s Republic of China
| | - Xiuling Shi
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, People’s Republic of China
| | - Cunxu Peng
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272029, People’s Republic of China
- Correspondence: Cunxu Peng, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining City, Shandong Province, People’s Republic of China, Tel +86 13385405627, Fax +86 0530-6533898, Email
| |
Collapse
|
20
|
Singh S, Pal N, Shubham S, Sarma DK, Verma V, Marotta F, Kumar M. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J Clin Med 2023; 12:jcm12041454. [PMID: 36835989 PMCID: PMC9964744 DOI: 10.3390/jcm12041454] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder, typically characterized by anovulation, infertility, obesity, insulin resistance, and polycystic ovaries. Lifestyle or diet, environmental pollutants, genetics, gut dysbiosis, neuroendocrine alterations, and obesity are among the risk factors that predispose females to PCOS. These factors might contribute to upsurging metabolic syndrome by causing hyperinsulinemia, oxidative stress, hyperandrogenism, impaired folliculogenesis, and irregular menstrual cycles. Dysbiosis of gut microbiota may play a pathogenic role in the development of PCOS. The restoration of gut microbiota by probiotics, prebiotics, or a fecal microbiota transplant (FMT) might serve as an innovative, efficient, and noninvasive way to prevent and mitigate PCOS. This review deliberates on the variety of risk factors potentially involved in the etiology, prevalence, and modulation of PCOS, in addition to plausible therapeutic interventions, including miRNA therapy and the eubiosis of gut microbiota, that may help treat and manage PCOS.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Namrata Pal
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Swasti Shubham
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Devojit Kumar Sarma
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of MedicalSciences, Lucknow 226014, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, 20144 Milano, Lombardia, Italy
- Correspondence: (F.M.); (M.K.)
| | - Manoj Kumar
- ICMR—National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhopal 462030, India
- Correspondence: (F.M.); (M.K.)
| |
Collapse
|
21
|
Ran M, Hu S, Ouyang Q, Xie H, Zhang X, Lin Y, Li X, Hu J, Li L, He H, Liu H, Wang J. miR-202-5p Inhibits Lipid Metabolism and Steroidogenesis of Goose Hierarchical Granulosa Cells by Targeting ACSL3. Animals (Basel) 2023; 13:ani13030325. [PMID: 36766213 PMCID: PMC9913746 DOI: 10.3390/ani13030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
miRNAs are critical for steroidogenesis in granulosa cells (GCs) during ovarian follicular development. We have previously shown that miR-202-5p displays a stage-dependent expression pattern in GCs from goose follicles of different sizes, suggesting that this miRNA could be involved in the regulation of the functions of goose GCs; therefore, in this study, the effects of miR-202-5p on lipid metabolism and steroidogenesis in goose hierarchical follicular GCs (hGCs), as well as its mechanisms of action, were evaluated. Oil Red O staining and analyses of intracellular cholesterol and triglyceride contents showed that the overexpression of miR-202-5p significantly inhibited lipid deposition in hGCs; additionally, miR-202-5p significantly inhibited progesterone secretion in hGCs. A bioinformatics analysis and luciferase reporter assay indicated that Acyl-CoA synthetase long-chain family member 3 (ACSL3), which activates long-chain fatty acids for the synthesis of cellular lipids, is a potential target of miR-202-5p. ACSL3 silencing inhibited lipid deposition and estrogen secretion in hGCs. These data suggest that miR-202-5p exerts inhibitory effects on lipid deposition and steroidogenesis in goose hGCs by targeting the ACSL3 gene.
Collapse
|
22
|
Sun P, Zhang Y, Sun L, Sun N, Wang J, Ma H. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway. BMC Womens Health 2023; 23:15. [PMID: 36627631 PMCID: PMC9832680 DOI: 10.1186/s12905-022-02154-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The development of polycystic ovary syndrome (PCOS) is closely correlated with apoptosis and oxidative stress in ovarian granulosa cells. Kisspeptin plays an important role in reproductive organ function. This study aimed to explore the role of kisspeptin in PCOS and oxidative stress-triggered apoptosis of ovarian granular cells. METHODS A PCOS rat model was established by injecting dehydroepiandrosterone (DHEA) and feeding the rats a high-fat diet. The RNA and protein levels of kisspeptin were analysed by quantitative PCR, western blotting, and histological staining. Tissue damage was evaluated using haematoxylin and eosin (H&E) staining. The viability and proliferation of human granulosa cell KGN were measured using the cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and apoptosis were analysed by flow cytometry. Oxidative stress was analysed by measuring reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) levels. RESULTS Kisspeptin was downregulated in the ovarian granulosa cells of PCOS rats compared to those of control rats. Kisspeptin overexpression enhanced KGN cell proliferation and inhibited apoptosis. ROS generation was suppressed by kisspeptin, along with decreased levels of MDA and increased levels of the antioxidants GSH, SOD, and CAT. Kisspeptin activates PI3K/AKT and ERK signalling, and inactivation of ERK1/2 suppresses the protective role of kisspeptin in ovarian granulosa cells. CONCLUSION Kisspeptin improves proliferation and alleviates apoptosis and oxidative stress in ovarian granulosa cells by activating PI3K/AKT and ERK signalling.
Collapse
Affiliation(s)
- Pingping Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Yuemin Zhang
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Lilan Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Na Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Jinguang Wang
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Huagang Ma
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| |
Collapse
|