1
|
Szabó Á, Galla Z, Spekker E, Szűcs M, Martos D, Takeda K, Ozaki K, Inoue H, Yamamoto S, Toldi J, Ono E, Vécsei L, Tanaka M. Oxidative and Excitatory Neurotoxic Stresses in CRISPR/Cas9-Induced Kynurenine Aminotransferase Knockout Mice: A Novel Model for Despair-Based Depression and Post-Traumatic Stress Disorder. FRONT BIOSCI-LANDMRK 2025; 30:25706. [PMID: 39862084 DOI: 10.31083/fbl25706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUNDS Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders. The majority of KYNA is produced by the aadat (kat2) gene-encoded mitochondrial kynurenine aminotransferase (KAT) isotype 2. Little is known about the consequences of deleting the KYN enzyme gene. METHODS In CRISPR/Cas9-induced aadat knockout (kat2-/-) mice, we examined the effects on emotion, memory, motor function, Trp and its metabolite levels, enzyme activities in the plasma and urine of 8-week-old males compared to wild-type mice. RESULTS Transgenic mice showed more depressive-like behaviors in the forced swim test, but not in the tail suspension, anxiety, or memory tests. They also had fewer center field and corner entries, shorter walking distances, and fewer jumping counts in the open field test. Plasma metabolite levels are generally consistent with those of urine: antioxidant KYNs, 5-hydroxyindoleacetic acid, and indole-3-acetic acid levels were lower; enzyme activities in KATs, kynureninase, and monoamine oxidase/aldehyde dehydrogenase were lower, but kynurenine 3-monooxygenase was higher; and oxidative stress and excitotoxicity indices were higher. Transgenic mice displayed depression-like behavior in a learned helplessness model, emotional indifference, and motor deficits, coupled with a decrease in KYNA, a shift of Trp metabolism toward the KYN-3-hydroxykynurenine pathway, and a partial decrease in the gut microbial Trp-indole pathway metabolite. CONCLUSIONS This is the first evidence that deleting the aadat gene induces depression-like behaviors uniquely linked to experiences of despair, which appear to be associated with excitatory neurotoxic and oxidative stresses. This may lead to the development of a double-hit preclinical model in despair-based depression, a better understanding of these complex conditions, and more effective therapeutic strategies by elucidating the relationship between Trp metabolism and PTSD pathogenesis.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Eleonóra Spekker
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Keiko Takeda
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinuyo Ozaki
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Hiromi Inoue
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sayo Yamamoto
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| |
Collapse
|
2
|
Li X, Chen K, Liu R, Zheng Z, Hou X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front Immunol 2024; 15:1496147. [PMID: 39620214 PMCID: PMC11604648 DOI: 10.3389/fimmu.2024.1496147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
The defense mechanisms of the vertebrate brain against infections are at the forefront of immunological studies. Unlike other body parts, the brain not only fends off pathogenic infections but also minimizes the risk of self-damage from immune cell induced inflammation. Some neuropeptides produced by either nerve or immune cells share remarkable similarities with antimicrobial peptides (AMPs) in terms of size, structure, amino acid composition, amphiphilicity, and net cationic charge. These similarities extend to a wide range of antibacterial activities demonstrated in vitro, effectively protecting nerve tissue from microbial threats. This review systematically examines 12 neuropeptides, pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), orexin-B (ORXB), ghrelin, substance P (SP), adrenomedullin (AM), calcitonin-gene related peptide (CGRP), urocortin-II (UCN II), neuropeptide Y (NPY), NDA-1, and catestatin (CST), identified for their antimicrobial properties, summarizing their structural features, antimicrobial effectiveness, and action mechanisms. Importantly, the majority of these antimicrobial neuropeptides (9 out of 12) also possess significant anti-inflammatory properties, potentially playing a key role in preserving immune tolerance in various disorders. However, the connection between this anti-inflammatory property and the brain's infection defense strategy has rarely been explored. Our review suggests that the combined antimicrobial and anti-inflammatory actions of neuropeptides could be integral to the brain's defense strategy against pathogens, marking an exciting direction for future research.
Collapse
Affiliation(s)
- Xiaoke Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Kaiqi Chen
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, China
| | - Zhaodi Zheng
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Dai X, Tunc U, Zhu X, Karakus S. Effect of Topical Recombinant Human Nerve Growth Factor on Corneal Epithelial Regeneration in Refractory Epithelial Keratopathy. Ocul Immunol Inflamm 2024; 32:2074-2080. [PMID: 38427335 DOI: 10.1080/09273948.2024.2322012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE To report the effect of topical application of recombinant human nerve growth factor (rhNGF) eye drops on corneal epithelial regeneration in patients with refractory epitheliopathy. METHODS A retrospective chart review was conducted on patients treated with topical rhNGF for refractory epithelial keratopathy due to stage I neurotrophic keratitis (NK). Data regarding demographics and ocular/systemic past medical history was extracted from patient charts. Visual acuity and corneal staining scores were recorded at baseline and subsequent follow-up visits at 8 weeks and 3 months. Measurements from the worse eye were used to compare before and after treatment values. RESULTS We identified 14 patients (median age 68 years, 21% male) who received rhNGF treatment for refractory epithelial keratopathy. After an 8-week treatment with topical rhNGF, the median corneal staining score in the worse eye improved from 4 to 1 (p = 0.001). All patients showed at least one-grade improvement in corneal staining at 8 weeks, with sustained effect in seven patients at 3 months. A better response was observed in eyes with post-radiation epithelial keratopathy, LASIK, and Sjogren's disease. Those with chronic use of other topical treatments and uncontrolled diabetes mellitus demonstrated incomplete responses. Eight patients reported mild-to-moderate ocular discomfort from drop application that fully resolved after completion of treatment. CONCLUSIONS Topical rhNGF was effective and safe for refractory epithelial keratopathy in our small cohort, but sustained effects were seen only in certain etiologies for up to 3 months. Further studies are needed for optimal dosing and duration based on underlying causes.
Collapse
Affiliation(s)
- Xi Dai
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ugur Tunc
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xi Zhu
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sezen Karakus
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Britten-Jones AC, Wu M, Roberts LJ, MacIsaac RJ, Jiao H, Craig JP, Chinnery HR, Downie LE. Tear neuropeptide Y as a non-invasive marker of peripheral microvascular complications in type 1 diabetes. Ocul Surf 2024; 34:309-316. [PMID: 39153598 DOI: 10.1016/j.jtos.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
AIMS To investigate tear neuropeptide Y (NPY) and substance P concentrations in individuals with type 1 diabetes, comparing those with and without both diabetic retinopathy (DR) and peripheral neuropathy. METHODS This cross-sectional study involved 41 participants with type 1 diabetes and none to moderate DR, and 22 healthy controls. Assessments included clinical ocular surface parameters, quantification of corneal nerve attributes (based on in vivo confocal microscopy imaging), DR grading, and evaluation for small and large fibre neuropathy. Concentrations of NPY and substance P in tear samples were measured using enzyme-linked immunosorbent assay. RESULTS Mean (± standard deviation) tear NPY concentrations in participants with type 1 diabetes and length-dependent small fibre neuropathy (SFN) was lower than in controls (10.84 ± 4.10 ng/mL vs 14.72 ± 3.12 ng/mL; p=0.004), but not significantly different from type 1 diabetes participants without SFN (13.39 ± 4.66 ng/mL; p=0.11). Tear NPY levels were lower in individuals with type 1 diabetes and mild/moderate non-proliferative DR (10.44 ± 3.46 ng/mL) compared to none/minimal DR (13.79 ± 4.76 ng/mL; p=0.0005) and controls. In separate linear regression models, both the presence of SFN (β = -0.75, p=0.02) and the presence of mild/moderate DR (β = -0.84, p=0.009) were significantly associated with tear NPY levels relative to controls, after adjusting for participant age, sex, and dry eye disease. There were no inter-group differences for tear substance P concentrations. CONCLUSIONS Tear NPY has potential utility as an indicator of peripheral microvascular complications associated with type 1 diabetes.
Collapse
Affiliation(s)
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Leslie J Roberts
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC, Australia; Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Richard J MacIsaac
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, VIC, Australia; Department of Diabetes & Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia; Australian Centre for Accelerating Diabetes Innovations (ACADI), University of Melbourne, Parkville, VIC Australia
| | - Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Jennifer P Craig
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Bonneau N, Potey A, Blond F, Guerin C, Baudouin C, Peyrin JM, Brignole-Baudouin F, Réaux-Le Goazigo A. Assessment of corneal nerve regeneration after axotomy in a compartmentalized microfluidic chip model with automated 3D high resolution live-imaging. Front Cell Neurosci 2024; 18:1417653. [PMID: 39076204 PMCID: PMC11285198 DOI: 10.3389/fncel.2024.1417653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Damage to the corneal nerves can result in discomfort and chronic pain, profoundly impacting the quality of life of patients. Development of novel in vitro method is crucial to better understand corneal nerve regeneration and to find new treatments for the patients. Existing in vitro models often overlook the physiology of primary sensory neurons, for which the soma is separated from the nerve endings. Methods To overcome this limitation, our novel model combines a compartmentalized microfluidic culture of trigeminal ganglion neurons from adult mice with live-imaging and automated 3D image analysis offering robust way to assess axonal regrowth after axotomy. Results Physical axotomy performed by a two-second aspiration led to a reproducible 70% axonal loss and altered the phenotype of the neurons, increasing the number of substance P-positive neurons 72 h post-axotomy. To validate our new model, we investigated axonal regeneration after exposure to pharmacological compounds. We selected various targets known to enhance or inhibit axonal regrowth and analyzed their basal expression in trigeminal ganglion cells by scRNAseq. NGF/GDNF, insulin, and Dooku-1 (Piezo1 antagonist) enhanced regrowth by 81, 74 and 157%, respectively, while Yoda-1 (Piezo1 agonist) had no effect. Furthermore, SARM1-IN-2 (Sarm1 inhibitor) inhibited axonal regrowth, leading to only 6% regrowth after 72 h of exposure (versus 34% regrowth without any compound). Discussion Combining compartmentalized trigeminal neuronal culture with advanced imaging and analysis allowed a thorough evaluation of the extent of the axotomy and subsequent axonal regrowth. This innovative approach holds great promise for advancing our understanding of corneal nerve injuries and regeneration and ultimately improving the quality of life for patients suffering from sensory abnormalities, and related conditions.
Collapse
Affiliation(s)
- Noémie Bonneau
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, Paris, France
| | - Anaïs Potey
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
| | - Camille Guerin
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, IHU FOReSIGHT, Paris, France
| | - Christophe Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Inserm-DGOS CIC 1423, IHU Foresight, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
- Hôpital Ambroise Paré, APHP, Université Versailles-Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Jean-Michel Peyrin
- UMR8246, Inserm U1130, IBPS, UPMC, Neurosciences Paris Seine, Sorbonne Université, Paris, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU FOReSIGHT, Institut de la Vision, Paris, France
- Inserm-DGOS CIC 1423, IHU Foresight, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
- Faculté de Pharmacie de Paris, Université Paris Cité, Paris, France
| | | |
Collapse
|
6
|
Chen S, Li Y, Song W, Cheng Y, Gao Y, Xie L, Huang M, Yan X. Insulin eye drops improve corneal wound healing in STZ-induced diabetic mice by regulating corneal inflammation and neuropeptide release. BMC Ophthalmol 2024; 24:155. [PMID: 38594682 PMCID: PMC11003036 DOI: 10.1186/s12886-024-03436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
INTRODUCTION In recent years, insulin eye drops have attracted increasing attention from researchers and ophthalmologists. The aim of this study was to investigate the efficacy and possible mechanism of action of insulin eye drops in diabetic mice with corneal wounds. METHODS A type 1 diabetes model was induced, and a corneal epithelial injury model of 2.5 mm was established. We used corneal fluorescein staining, hematoxylin-eosin (H-E) staining and the Cochet-Bonnet esthesiometer to examine the process of wound healing. Subsequently, the expression levels of Ki-67, IL-1β, β3-tubulin and neuropeptides, including substance P (SP) and calcitonin gene-related peptide (CGRP), were examined at 72 h after corneal injury. RESULTS Fluorescein staining demonstrated an acceleration of the recovery of corneal epithelial injury in diabetic mice compared with the saline treatment, which was further evidenced by the overexpression of Ki-67. Moreover, 72 h of insulin application attenuated the expression of inflammatory cytokines and neutrophil infiltration. Remarkably, the results demonstrated that topical insulin treatment enhanced the density of corneal epithelial nerves, as well as neuropeptide SP and CGRP release, in the healing cornea via immunofluorescence staining. CONCLUSIONS Our results indicated that insulin eye drops may accelerate corneal wound healing and decrease inflammatory responses in diabetic mice by promoting nerve regeneration and increasing levels of neuropeptides SP and CGRP.
Collapse
Affiliation(s)
- Shudi Chen
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yingsi Li
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Yuan Gao
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Luoying Xie
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Meiting Huang
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, No.8 Xishiku Avenue, 100034, Beijing, China.
| |
Collapse
|
7
|
Ma L, Yang L, Wang X, Zhao L, Bai X, Qi X, Chen Q, Li Y, Zhou Q. CGRP Released by Corneal Sensory Nerve Maintains Tear Secretion of the Lacrimal Gland. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 38635244 PMCID: PMC11033596 DOI: 10.1167/iovs.65.4.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose This study aims to elucidate the calcitonin gene-related peptide (CGRP) mediation and primary mechanism of corneal sensory nerves on tear production of the lacrimal gland. Methods Mouse corneal denervation models were constructed through surgical axotomy, pharmacologic treatment with capsaicin or resiniferatoxin, and Trpv1-Cre/DTR mice with diphtheria toxin injection. The capsaicin-treated mice received subconjunctival injection of CGRP or substance P, while the normal C57BL/6J mice were administered with CGRP receptor antagonist BIBN-4096. Furthermore, double immunostaining of c-FOS+ and choline acetyltransferase was used to evaluate the activation of the superior salivatory nucleus (SSN). Mouse lacrimal glands were collected for transcriptomic sequencing and subsequent RNA and protein expression analysis. Results The corneal denervated mice exhibited a significant reduction in corneal sensitivity and tear secretion. In capsaicin-treated mice, tear secretion decreased to 2.5 ± 0.5 mm compared to 6.3 ± 0.9 mm in control mice (P < 0.0001). However, exogenous administration of CGRP in capsaicin-treated mice increased tear secretion from 2.6 ± 0.5 mm to 4.5 ± 0.5 mm (P = 0.0009), while BIBN-4096 treatment reduced tear secretion to 3.4 ± 0.5 mm when compared to 7.3 ± 0.7 mm in control mice (P = 0.0022). Furthermore, c-FOS+ cell number in the SSN increased by twofold (P = 0.0168) after CGRP administration compared with capsaicin-treated mice. In addition, the expressions of CCNA2, Ki67, PCNA, and CDK1 in acinar cells of the lacrimal gland were impaired by corneal denervation and alleviated by CGRP administration. Conclusions CGRP released by corneal sensory nerves mediates tear secretion of the lacrimal gland, providing a new strategy for improving tear secretion in patients with neurotrophic keratitis.
Collapse
Affiliation(s)
- Linyan Ma
- Medical College, Qingdao University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Leilei Zhao
- Medical College, Qingdao University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qing Chen
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
8
|
Zidan AA, Zhu S, Elbasiony E, Najafi S, Lin Z, Singh RB, Naderi A, Yin J. Topical application of calcitonin gene-related peptide as a regenerative, antifibrotic, and immunomodulatory therapy for corneal injury. Commun Biol 2024; 7:264. [PMID: 38438549 PMCID: PMC10912681 DOI: 10.1038/s42003-024-05934-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a multifunctional neuropeptide abundantly expressed by corneal nerves. Using a murine model of corneal mechanical injury, we found CGRP levels in the cornea significantly reduced after injury. Topical application of CGRP as an eye drop accelerates corneal epithelial wound closure, reduces corneal opacification, and prevents corneal edema after injury in vivo. CGRP promotes corneal epithelial cell migration, proliferation, and the secretion of laminin. It reduces TGF-β1 signaling and prevents TGF-β1-mediated stromal fibroblast activation and tissue fibrosis. CGRP preserves corneal endothelial cell density, morphology, and pump function, thus reducing corneal edema. Lastly, CGRP reduces neutrophil infiltration, macrophage maturation, and the production of inflammatory cytokines in the cornea. Taken together, our results show that corneal nerve-derived CGRP plays a cytoprotective, pro-regenerative, anti-fibrotic, and anti-inflammatory role in corneal wound healing. In addition, our results highlight the critical role of sensory nerves in ocular surface homeostasis and injury repair.
Collapse
Affiliation(s)
- Asmaa A Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shuyan Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sheyda Najafi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhirong Lin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Wang S, Kahale F, Naderi A, Surico PL, Yin J, Dohlman T, Chen Y, Dana R. Therapeutic Effects of Stimulating the Melanocortin Pathway in Regulating Ocular Inflammation and Cell Death. Biomolecules 2024; 14:169. [PMID: 38397406 PMCID: PMC10886905 DOI: 10.3390/biom14020169] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH) and its binding receptors (the melanocortin receptors) play important roles in maintaining ocular tissue integrity and immune homeostasis. Particularly extensive studies have demonstrated the biological functions of α-MSH in both immunoregulation and cyto-protection. This review summarizes the current knowledge of both the physiological and pathological roles of α-MSH and its receptors in the eye. We focus on recent developments in the biology of α-MSH and the relevant clinical implications in treating ocular diseases.
Collapse
Affiliation(s)
- Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
- Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Francesca Kahale
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.W.); (F.K.); (A.N.); (P.L.S.); (J.Y.); (T.D.)
| |
Collapse
|
10
|
Buonfiglio F, Wasielica-Poslednik J, Pfeiffer N, Gericke A. Diabetic Keratopathy: Redox Signaling Pathways and Therapeutic Prospects. Antioxidants (Basel) 2024; 13:120. [PMID: 38247544 PMCID: PMC10812573 DOI: 10.3390/antiox13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetes mellitus, the most prevalent endocrine disorder, not only impacts the retina but also significantly involves the ocular surface. Diabetes contributes to the development of dry eye disease and induces morphological and functional corneal alterations, particularly affecting nerves and epithelial cells. These changes manifest as epithelial defects, reduced sensitivity, and delayed wound healing, collectively encapsulated in the context of diabetic keratopathy. In advanced stages of this condition, the progression to corneal ulcers and scarring further unfolds, eventually leading to corneal opacities. This critical complication hampers vision and carries the potential for irreversible visual loss. The primary objective of this review article is to offer a comprehensive overview of the pathomechanisms underlying diabetic keratopathy. Emphasis is placed on exploring the redox molecular pathways responsible for the aberrant structural changes observed in the cornea and tear film during diabetes. Additionally, we provide insights into the latest experimental findings concerning potential treatments targeting oxidative stress. This endeavor aims to enhance our understanding of the intricate interplay between diabetes and ocular complications, offering valuable perspectives for future therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| |
Collapse
|
11
|
Huang R, Su C, Zhang N, Shi C, Pu G, Ding Y, Wei W, Chen J. Cord blood-derived biologics lead to robust axonal regeneration in benzalkonium chloride-injured mouse corneas by modulating the Il-17 pathway and neuropeptide Y. Mol Med 2024; 30:2. [PMID: 38172658 PMCID: PMC10763178 DOI: 10.1186/s10020-023-00772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Umbilical cord blood-derived therapeutics, such as serum (UCS) and platelet-rich plasma (UCPRP), are popular treatment options in clinical trials and can potentially be utilized to address a clinically unmet need caused by preservatives, specifically benzalkonium chloride (BAK), present in ophthalmic formulations. As current clinical interventions for secondary injuries caused by BAK are suboptimal, this study will explore the feasibility of utilizing UCS and UCPRP for cornea treatment and investigate the underlying mechanisms associated with this approach. METHODS Mice's corneas were administered BAK to induce damage. UCS and UCPRP were then utilized to attempt to treat the injuries. Ocular tests were performed on the animals to evaluate recovery, while immunostaining, RNA-seq, and subsequent bioinformatics analysis were conducted to investigate the treatment mechanism. RESULTS BAK administration led to widespread inflammatory responses in the cornea. Subsequent treatment with UCS and UCPRP led to the downregulation of immune-related 'interactions between cytokine receptors' and 'IL-17 signaling' pathways. Although axonal enhancers such as Ngf, Rac2, Robo2, Srgap1, and Rock2 were found to be present in the injured group, robust axonal regeneration was observed only in the UCS and UCPRP treatment groups. Further analysis revealed that, as compared to normal corneas, inflammation was not restored to pre-injury levels post-treatment. Importantly, Neuropeptide Y (Npy) was also involved in regulating immune responses, indicating neuroimmune axis interactions. CONCLUSIONS Cord blood-derived therapeutics are feasible options for overcoming the sustained injuries induced by BAK in the cornea. They also have potential applications in areas where axonal regeneration is required.
Collapse
Affiliation(s)
- Ruojing Huang
- The First Affiliated Hospital of Jinan University, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Caiying Su
- The First Affiliated Hospital of Jinan University, Tianhe District, Guangzhou, 510630, Guangdong Province, China
- Peking University Shenzhen Hospital, Futian District, Shenzhen, 518036, Guangdong Province, China
| | - Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Dr, Singapore, 637459, Singapore
| | - Congying Shi
- Institution of Guangdong Cord Blood Bank, Guangdong Women and Children Hospital, Guangzhou, 510705, Guangdong Province, China
- Department of Experimental Center, Guangzhou Municipality Tianhe Nuoya Bio-Engineering Co., Ltd, Guangzhou, 510705, Guangdong Province, China
| | - Guangming Pu
- Jinan University Affiliated Heyuan Hospital, Guangzhou, 517000, Guangdong Province, China
| | - Yong Ding
- The First Affiliated Hospital of Jinan University, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Wei Wei
- Institution of Guangdong Cord Blood Bank, Guangdong Women and Children Hospital, Guangzhou, 510705, Guangdong Province, China.
- Department of Experimental Center, Guangzhou Municipality Tianhe Nuoya Bio-Engineering Co., Ltd, Guangzhou, 510705, Guangdong Province, China.
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, 510630, Guangdong Province, China.
| |
Collapse
|
12
|
Lin X, Xu P, Tian Y, Xiao H, Dong X, Wang S. Establishing a Mouse Model of Chlorpromazine-Induced Corneal Trigeminal Denervation. Transl Vis Sci Technol 2023; 12:21. [PMID: 37906054 PMCID: PMC10619696 DOI: 10.1167/tvst.12.10.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose This study aimed to establish a mouse model of chlorpromazine-induced corneal trigeminal denervation (CCTD). Methods Retrobulbar chlorpromazine injections were administered to 6- to 8-week-old C57BL/6j mice to induce corneal denervation. Additionally, apoptosis was assessed in isolated primary trigeminal ganglion cells after culturing in a conditioned medium containing chlorpromazine. Finally, the success rate of model generation, mortality and complication rates, and model-preparation learning curves were compared between the CCTD model and the electrocoagulation and axotomy models. Results Chlorpromazine retrobulbar injections resulted in trigeminal denervation, leading to a reduced blink reflex, corneal nerve density, and corneal epithelium thickness. Furthermore, 90% (9/10) of the mice developed epithelial defects, accompanied by increased apoptosis and inhibited proliferation of corneal epithelial cells. In vitro, trigeminal ganglion cell apoptosis increased after culturing in a conditioned medium containing chlorpromazine. Moreover, the CCTD model exhibited a higher success rate, longer survival rate, and lower complication rate compared to the electrocoagulation and axotomy models. Crucially, the learning curve demonstrated that the method used to generate the CCTD model was easy to learn. Conclusions The CCTD model is a user-friendly mouse model for studying corneal trigeminal denervation that offers a less invasive alternative to existing models. Translational Relevance The CCTD model serves as a valuable tool for investigating the functional mechanisms of corneal trigeminal nerves and their interactions with corneal cells.
Collapse
Affiliation(s)
- Xiongshi Lin
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Peipei Xu
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ying Tian
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Haiqi Xiao
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xing Dong
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuangyong Wang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Zidan AA, Zhu S, Elbasiony E, Najafi S, Lin Z, Singh RB, Naderi A, Yin J. Topical application of calcitonin gene-related peptide as a regenerative, antifibrotic, and immunomodulatory therapy for corneal injury. RESEARCH SQUARE 2023:rs.3.rs-3204385. [PMID: 37609298 PMCID: PMC10441448 DOI: 10.21203/rs.3.rs-3204385/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a multifunctional neuropeptide abundantly expressed by corneal nerves. Using a murine model of corneal mechanical injury, we found CGRP levels in the cornea to be significantly reduced after injury. Topical application of CGRP as an eye drop three times daily accelerates corneal epithelial wound closure, reduces corneal opacification, and prevents corneal edema after injury in vivo. We then used a series of in vitro and in vivo techniques to investigate the mechanisms underlying CGRP's functions. CGRP promotes corneal epithelial cell migration, proliferation, and the secretion of laminin. It reduces TGF-β1 signaling and prevents TGF-β1-mediated stromal fibroblast activation and tissue fibrosis. CGRP reduces corneal endothelial cell apoptosis and death, preserves cell density and morphology, and promotes their pump function, thus reducing edema. Lastly, CGRP reduces neutrophil infiltration, macrophage maturation, and the production of inflammatory cytokines in the cornea. Taken together, our results show that corneal nerve-derived CGRP plays a cyto-protective, pro-regenerative, anti-fibrotic, and anti-inflammatory role in corneal wound healing. Given that current treatment options for corneal injury and opacity are scarce, CGRP has significant therapeutic potential in this area of unmet medical needs. In addition, our results highlight the critical role of sensory nerves in ocular surface homeostasis and injury repair.
Collapse
Affiliation(s)
- Asmaa A. Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114
| | - Shuyan Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114
| | - Sheyda Najafi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114
| | - Zhirong Lin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114
| | - Amirreza Naderi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114
| |
Collapse
|
14
|
Zhao L, Zhang Y, Duan H, Yang T, Zhou Y, Ma B, Chen Y, Qi H. Clinical Characteristics and Tear Film Biomarkers in Patients With Chronic Dry Eye Disease After Femtosecond Laser-Assisted Laser in Situ Keratomileusis. J Refract Surg 2023; 39:556-563. [PMID: 37578178 DOI: 10.3928/1081597x-20230717-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
PURPOSE To investigate clinical characteristics and tear film biomarkers of patients with chronic dry eye disease (DED) following femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). METHODS Patients were divided into the chronic DED after FS-LASIK (n = 36), DED without FS-LASIK (n = 39), and normal control (without FS-LASIK; n = 34) groups. Dry eye, pain, and psychological-related symptoms were evaluated using the Ocular Surface Disease Index (OSDI), Numerical Rating Scale (NRS), Neuropathic Pain Symptom Inventory Modified for the Eye (NPSI-Eye), and Hamilton Anxiety Rating Scale (HAMA) questionnaires. Ocular surface parameters, tear cytokines, and neuropeptide concentrations were evaluated with specific tests. RESULTS The DED after FS-LASIK group showed higher corneal fluorescein staining scores, but lower OSDI and NPSI-Eye scores than the DED without FS-LASIK group (all P < .05). Corneal sensitivity and nerve density decreased in the DED after FS-LASIK group (all P < .01). Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-17A, IL-23, alpha-melanocyte stimulating hormone (α-MSH), oxytocin, and substance P levels were highest in the DED after FS-LASIK group, followed by the DED without FS-LASIK and normal control groups (all P < .05). Interferon-γ and neurotensin levels were only significantly higher in the DED after FS-LASIK group (all P < .05). CONCLUSIONS Patients with chronic DED after FS-LASIK showed milder ocular symptoms, greater epithelial damage, and higher levels of tear inflammatory cytokines and neuropeptides than patients with DED without FS-LASIK, indicating that the nervous and immune systems may play significant roles in FS-LASIK-related chronic DED development. [J Refract Surg. 2023;39(8):556-563.].
Collapse
|
15
|
Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24044114. [PMID: 36835524 PMCID: PMC9959352 DOI: 10.3390/ijms24044114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Migraine and neuropathic pain (NP) are both painful, disabling, chronic conditions which exhibit some symptom similarities and are thus considered to share a common etiology. The calcitonin gene-related peptide (CGRP) has gained credit as a target for migraine management; nevertheless, the efficacy and the applicability of CGRP modifiers warrant the search for more effective therapeutic targets for pain management. This scoping review focuses on human studies of common pathogenic factors in migraine and NP, with reference to available preclinical evidence to explore potential novel therapeutic targets. CGRP inhibitors and monoclonal antibodies alleviate inflammation in the meninges; targeting transient receptor potential (TRP) ion channels may help prevent the release of nociceptive substances, and modifying the endocannabinoid system may open a path toward discovery of novel analgesics. There may exist a potential target in the tryptophan-kynurenine (KYN) metabolic system, which is closely linked to glutamate-induced hyperexcitability; alleviating neuroinflammation may complement a pain-relieving armamentarium, and modifying microglial excitation, which is observed in both conditions, may be a possible approach. Those are several potential analgesic targets which deserve to be explored in search of novel analgesics; however, much evidence remains missing. This review highlights the need for more studies on CGRP modifiers for subtypes, the discovery of TRP and endocannabinoid modulators, knowledge of the status of KYN metabolites, the consensus on cytokines and sampling, and biomarkers for microglial function, in search of innovative pain management methods for migraine and NP.
Collapse
|
16
|
A, B, C's of Trk Receptors and Their Ligands in Ocular Repair. Int J Mol Sci 2022; 23:ijms232214069. [PMID: 36430547 PMCID: PMC9695972 DOI: 10.3390/ijms232214069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neurotrophins are a family of closely related secreted proteins that promote differentiation, development, and survival of neurons, which include nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4. All neurotrophins signal through tropomyosin receptor kinases (TrkA, TrkB, and TrkC) which are more selective to NGF, brain-derived neurotrophic factor, and neurotrophin-3, respectively. NGF is the most studied neurotrophin in the ocular surface and a human recombinant NGF has reached clinics, having been approved to treat neurotrophic keratitis. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 are less studied neurotrophins in the ocular surface, even though brain-derived neurotrophic factor is well characterized in glaucoma, retina, and neuroscience. Recently, neurotrophin analogs with panTrk activity and TrkC selectivity have shown promise as novel drugs for treating dry eye disease. In this review, we discuss the biology of the neurotrophin family, its role in corneal homeostasis, and its use in treating ocular surface diseases. There is an unmet need to investigate parenteral neurotrophins and its analogs that activate TrkB and TrkC selectively.
Collapse
|