1
|
Vareli A, Narayanan HV, Clark H, Jayawant E, Zhou H, Liu Y, Stott L, Simoes F, Hoffmann A, Pepper A, Pepper C, Mitchell S. Systems biology-enabled targeting of NF-κΒ and BCL2 overcomes microenvironment-mediated BH3-mimetic resistance in DLBCL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.30.626166. [PMID: 39677808 PMCID: PMC11642794 DOI: 10.1101/2024.11.30.626166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In Diffuse Large B-cell Lymphoma (DLBCL), elevated anti-apoptotic BCL2-family proteins (e.g., MCL1, BCL2, BCLXL) and NF-κB subunits (RelA, RelB, cRel) confer poor prognosis. Heterogeneous expression, regulatory complexity, and redundancy offsetting the inhibition of individual proteins, complicate the assignment of targeted therapy. We combined flow cytometry "fingerprinting", immunofluorescence imaging, and computational modeling to identify therapeutic vulnerabilities in DLBCL. The combined workflow predicted selective responses to BCL2 inhibition (venetoclax) and non-canonical NF-κB inhibition (Amgen16). Within the U2932 cell line we identified distinct resistance mechanisms to BCL2 inhibition in cellular sub-populations recapitulating intratumoral heterogeneity. Co-cultures with CD40L-expressing stromal cells, mimicking the tumor microenvironment (TME), induced resistance to BCL2 and BCLXL targeting BH3-mimetics via cell-type specific upregulation of BCLXL or MCL1. Computational models, validated experimentally, showed that basal NF-κB activation determined whether CD40 activation drove BH3-mimetic resistance through upregulation of RelB and BCLXL, or cRel and MCL1. High basal NF-κB activity could be overcome by inhibiting BTK to resensitize cells to BH3-mimetics in CD40L co-culture. Importantly, non-canonical NF-κB inhibition overcame heterogeneous compensatory BCL2 upregulation, restoring sensitivity to both BCL2- and BCLXL-targeting BH3-mimetics. Combined molecular fingerprinting and computational modelling provides a strategy for the precision use of BH3-mimetics and NF-κB inhibitors in DLBCL.
Collapse
|
2
|
Diehl C, Soberón V, Baygün S, Chu Y, Mandelbaum J, Kraus L, Engleitner T, Rudelius M, Fangazio M, Daniel C, Bortoluzzi S, Helmrath S, Singroul P, Gölling V, Osorio Barrios F, Seyhan G, Oßwald L, Kober-Hasslacher M, Zeng T, Öllinger R, Afzali AM, Korn T, Honarpisheh M, Lech M, Ul Ain Q, Pircher J, Imširović V, Jelenčić V, Wensveen FM, Passerini V, Bärthel S, Bhagat G, Dominguez-Sola D, Saur D, Steiger K, Rad R, Pasqualucci L, Weigert O, Schmidt-Supprian M. Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis. Immunity 2025; 58:124-142.e15. [PMID: 39729992 DOI: 10.1016/j.immuni.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator TNFAIP3/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not. We resolved this apparent paradox by identifying a rheostat-like cytotoxic T cell checkpoint. Cytotoxicity was instructed by and directed against B cells with high intrinsic hyperresponsiveness, while less reactive cells were spared. Removing T cell control restored a linear relationship between intrinsic B cell reactivity and lethal lymphoproliferation, lymphomagenesis, and autoinflammation. We thus identify powerful T cell-mediated negative feedback control of inherited and acquired B cell pathogenicity and define a permissive window for autoimmunity to emerge.
Collapse
Affiliation(s)
- Carina Diehl
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Valeria Soberón
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Seren Baygün
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Yuanyuan Chu
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Jonathan Mandelbaum
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Laura Kraus
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University, 80337 Munich, Germany
| | - Marco Fangazio
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Christoph Daniel
- Department of Nephropathology, Faculty of Medicine, Friedrich-Alexander University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sabrina Bortoluzzi
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Sabine Helmrath
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Pankaj Singroul
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Vanessa Gölling
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Francisco Osorio Barrios
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Gönül Seyhan
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Lena Oßwald
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; Department of Medicine III, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Maike Kober-Hasslacher
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Theodor Zeng
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ali M Afzali
- Institute for Experimental Neuroimmunology, Department of Neurology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Department of Neurology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Mohsen Honarpisheh
- Renal Division, Department of Medicine IV, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Maciej Lech
- Renal Division, Department of Medicine IV, Faculty of Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Qurrat Ul Ain
- Department of Medicine I, Faculty of Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Joachim Pircher
- Department of Medicine I, Faculty of Medicine, Ludwig-Maximilians-University, 81377 Munich, Germany; Partner site Munich Heart Alliance, DZHK (German Centre for Cardiovascular Research), 80802 Munich, Germany
| | - Vanna Imširović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Verena Passerini
- Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Faculty of Medicine, Department of Medicine III, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Stefanie Bärthel
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - David Dominguez-Sola
- Departments of Oncological Sciences and Pathology, Tisch Cancer Institute, Lipschultz Precision Immunology Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Oliver Weigert
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Faculty of Medicine, Department of Medicine III, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany.
| |
Collapse
|
3
|
Osikov MV, Korobkin EA, Fedosov AA, Sineglazova AV. The Role of Changes in the Redox Status in the Pathogenesis of Chronic Lymphocytic Leukemia. DOKL BIOCHEM BIOPHYS 2024; 519:564-570. [PMID: 39480632 DOI: 10.1134/s1607672924701217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 11/02/2024]
Abstract
Chronic lymphocytic leukemia is a hemoblastosis of CD5+ B lymphocytes with lymphocytosis, damage to the lymphatic organs, occurring in the older age group, the etiology and pathogenesis of which are not fully understood. Oxidative stress is an important factor in the regulation of stem cells and the activation of intracellular survival signaling pathways in chronic lymphocytic leukemia cells. The aim of the study was to analyze the current data on the role of redox status changes in the pathogenesis of chronic lymphocytic leukemia. A review of published relevant studies 2018-2023, scientific articles in scientific electronic bibliographic databases PubMed and Social Sciences Citation Index, devoted to the pathogenesis of chronic lymphocytic leukemia and the role of free-radical oxidation processes in it was carried out. In chronic lymphocytic leukemia, oxidative stress with a systemic excess of reactive oxygen species, an imbalance in the effectiveness of antioxidant defense is caused mainly by activation of oxidative phosphorylation in mitochondria, low levels of NADPH-oxidase type 2, increased expression of heme oxygenase-1, glutathione peroxidase and glutathione recycling enzymes, superoxide dismutase-2, thioredoxins and decreased expression of catalase. One of the mechanisms of resistance to drug therapy and oxidative stress of chronic lymphocytic leukemia cells is the intracellular signaling pathway dependent on erythroid nuclear factor-2, due to the activation of expression in cells of superoxide dismutase-2, catalase, glutathione peroxidase, peroxiredoxin-3 and -5, heme oxygenase-1, thioredoxin-1 and -2, reduced glutathione, natural killer cell activity, which is associated with lifespan, chemotaxis, proliferation, and survival. FOXO family proteins are believed to suppress carcinogenesis. FOXO3a increases the expression of superoxide dismutase-2, catalase, glutathione peroxidase, peroxiredoxin-3 and -5, and the activity of natural killer cells, which promotes the survival of tumor cells. The development of new targeted pharmacological agents that are capable of accumulating reactive oxygen species and reducing antioxidant protection due to the degradation of erythroid nuclear factor-2 and activation of NADPH-quinone oxidoreductase-1 is underway, which modernizes the therapy of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- M V Osikov
- South Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia.
- Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia.
| | - E A Korobkin
- South Ural State Medical University, Ministry of Health of the Russian Federation, Chelyabinsk, Russia
- Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russia
| | - A A Fedosov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation, Moscow, Russia
| | | |
Collapse
|
4
|
Ivanova VS, Menter T, Zaino J, Mertz KD, Hamelin B, Dirnhofer S, Kloboves-Prevodnik V, Tzankov A, Gašljević G. The Genetic Landscape of Primary Breast Marginal Zone Lymphoma Identifies a Mutational-driven Disease With Similarities to Ocular Adnexal Lymphoma. Am J Surg Pathol 2024; 48:1259-1269. [PMID: 38864239 DOI: 10.1097/pas.0000000000002257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Extranodal marginal zone lymphomas (eMZL) can occur in any organ and site of the body. Recent research has shown that they differ from organ to organ in terms of their mutational profile. In this study, we investigated a cohort of primary breast marginal zone lymphomas (PBMZL) to get a better insight into their morphologic and molecular profile. A cohort of 15 cases (14 female and 1 male) was characterized by immunohistochemistry (IHC) for 19 markers, fluorescence in situ hybridization (FISH), and high throughput sequencing (HTS) using a lymphoma panel comprising 172 genes. In addition, PCR for the specific detection of Borrelia spp. and metagenomics whole genome sequencing were performed for infectious agent profiling. Follicular colonization was observed in most cases, while lymphoepithelial lesions, though seen in many cases, were not striking. All 15 cases were negative for CD5, CD11c, and CD21 and positive for BCL2 and pan B-cell markers. There were no cases with BCL2 , BCL10 , IRF4 , MALT1 , or MYC translocation; only 1 had a BCL6 rearrangement. HTS highlighted TNFAIP3 (n=4), KMT2D (n=2), and SPEN (n=2) as the most frequently mutated genes. There were no Borrelia spp. , and no other pathogens detected in our cohort. One patient had a clinical history of erythema chronicum migrans affecting the same breast. PBMZL is a mutation-driven disease rather than fusion-driven. It exhibits mutations in genes encoding components affecting the NF-κB pathway, chromatin modifier-encoding genes, and NOTCH pathway-related genes. Its mutational profile shares similarities with ocular adnexal and nodal MZL.
Collapse
MESH Headings
- Humans
- Female
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/microbiology
- Lymphoma, B-Cell, Marginal Zone/pathology
- Middle Aged
- Mutation
- Male
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Adult
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Eye Neoplasms/genetics
- Eye Neoplasms/pathology
- Eye Neoplasms/microbiology
- DNA Mutational Analysis
- Aged, 80 and over
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Genetic Predisposition to Disease
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- Vanesa-Sindi Ivanova
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | - Joel Zaino
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Baptiste Hamelin
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | | | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | - Gorana Gašljević
- Department of Pathology, Institute of Oncology Ljubljana, Ljubljana
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
5
|
Yu C, Shen Q, Holmes AB, Mo T, Tosato A, Soni RK, Corinaldesi C, Koul S, Pasqualucci L, Hussein S, Forouhar F, Dalla-Favera R, Basso K. MEF2B C-terminal mutations enhance transcriptional activity and stability to drive B cell lymphomagenesis. Nat Commun 2024; 15:7195. [PMID: 39179580 PMCID: PMC11343756 DOI: 10.1038/s41467-024-51644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The myocyte enhancer factor 2B (MEF2B) transcription factor is frequently mutated in germinal center (GC)-derived B-cell lymphomas. Its ammino (N)-terminal mutations drive lymphomagenesis by escaping interaction with transcriptional repressors, while the function of carboxy (C)-terminal mutations remains to be elucidated. Here, we show that MEF2B C-tail is physiologically phosphorylated at specific residues and phosphorylation at serine (S)324 is impaired by lymphoma-associated mutations. Lack of phosphorylation at S324 enhances the interaction of MEF2B with the SWI/SNF chromatin remodeling complex, leading to higher transcriptional activity. In addition, these mutants show an increased protein stability due to impaired interaction with the CUL3/KLHL12 ubiquitin complex. Mice expressing a phosphorylation-deficient lymphoma-associated MEF2B mutant display GC enlargement and develop GC-derived lymphomas, when crossed with Bcl2 transgenic mice. These results unveil converging mechanisms of action for a diverse spectrum of MEF2B mutations, all leading to its dysregulation and GC B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Anna Tosato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Sanjay Koul
- Department of Biological Sciences & Geology, Queensborough Community College, City University of New York, Bayside, New York, NY, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Shafinaz Hussein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
- Departments of Microbiology & Immunology, Genetics & Development, Columbia University, New York, NY, USA.
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Li MY, Chong LC, Duns G, Lytle A, Woolcock B, Jiang A, Telenius A, Ben-Neriah S, Nawaz W, Slack GW, Elisia I, Viganò E, Aoki T, Healy S, Krystal G, Venturutti L, Scott DW, Steidl C. TRAF3 loss-of-function reveals the noncanonical NF-κB pathway as a therapeutic target in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 2024; 121:e2320421121. [PMID: 38662551 PMCID: PMC11067025 DOI: 10.1073/pnas.2320421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Here, we report recurrent focal deletions of the chr14q32.31-32 locus, including TRAF3, a negative regulator of NF-κB signaling, in de novo diffuse large B cell lymphoma (DLBCL) (24/324 cases). Integrative analysis revealed an association between TRAF3 copy number loss with accumulation of NIK, the central noncanonical (NC) NF-κB kinase, and increased NC NF-κB pathway activity. Accordingly, TRAF3 genetic ablation in isogenic DLBCL model systems caused upregulation of NIK and enhanced NC NF-κB downstream signaling. Knockdown or pharmacological inhibition of NIK in TRAF3-deficient cells differentially impaired their proliferation and survival, suggesting an acquired onco-addiction to NC NF-κB. TRAF3 ablation also led to exacerbated secretion of the immunosuppressive cytokine IL-10. Coculturing of TRAF3-deficient DLBCL cells with CD8+ T cells impaired the induction of Granzyme B and interferon (IFN) γ, which were restored following neutralization of IL-10. Our findings corroborate a direct relationship between TRAF3 genetic alterations and NC NF-κB activation, and highlight NIK as a potential therapeutic target in a defined subset of DLBCL.
Collapse
Affiliation(s)
- Michael Y. Li
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Lauren C. Chong
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerben Duns
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Andrew Lytle
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Bruce Woolcock
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Aixiang Jiang
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Waqas Nawaz
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Ingrid Elisia
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Elena Viganò
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Shannon Healy
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - Leandro Venturutti
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BCV5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BCV6T 2B5, Canada
| |
Collapse
|
7
|
Zhang L, Peng X, Ma T, Liu J, Yi Z, Bai J, Li Y, Li L, Zhang L. Natural killer cells affect the natural course, drug resistance, and prognosis of multiple myeloma. Front Cell Dev Biol 2024; 12:1359084. [PMID: 38410372 PMCID: PMC10895066 DOI: 10.3389/fcell.2024.1359084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Multiple myeloma (MM), a stage-developed plasma cell malignancy, evolves from monoclonal gammopathy of undetermined significance (MGUS) or smoldering MM (SMM). Emerging therapies including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, chimeric antigen-T/natural killer (NK) cells, bispecific T-cell engagers, selective inhibitors of nuclear export, and small-molecule targeted therapy have considerably improved patient survival. However, MM remains incurable owing to inevitable drug resistance and post-relapse rapid progression. NK cells with germline-encoded receptors are involved in the natural evolution of MGUS/SMM to active MM. NK cells actively recognize aberrant plasma cells undergoing malignant transformation but are yet to proliferate during the elimination phase, a process that has not been revealed in the immune editing theory. They are potential effector cells that have been neglected in the therapeutic process. Herein, we characterized changes in NK cells regarding disease evolution and elucidated its role in the early clinical monitoring of MM. Additionally, we systematically explored dynamic changes in NK cells from treated patients who are in remission or relapse to explore future combination therapy strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaohuan Peng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jun Bai
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Key Laboratory of the Hematology of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Tkachenko A, Kupcova K, Havranek O. B-Cell Receptor Signaling and Beyond: The Role of Igα (CD79a)/Igβ (CD79b) in Normal and Malignant B Cells. Int J Mol Sci 2023; 25:10. [PMID: 38203179 PMCID: PMC10779339 DOI: 10.3390/ijms25010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential components of BCR that are indispensable for its functionality, signal initiation, and signal transduction. CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B cells via a wide signaling network. Recent studies identified the great complexity of this signaling network and revealed the emerging role of CD79a/CD79b in signal integration. In this review, we have focused on functional features of CD79a/CD79b, summarized signaling consequences of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b interactions within BCR and related signaling cascades. We have reviewed the complex role of CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized important unresolved questions and highlighted issues that remain to be explored for better understanding of CD79a/CD79b-mediated signal transduction and the eventual identification of additional therapeutically targetable BCR signaling vulnerabilities.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50 Vestec, Czech Republic
- First Department of Internal Medicine–Hematology, General University Hospital and First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| |
Collapse
|
9
|
Mortlock SA, Asada MC, Soh PXY, Hsu WT, Lee C, Bennett PF, Taylor RM, Khatkar MS, Williamson P. Genomic Analysis of Lymphoma Risk in Bullmastiff Dogs. Vet Sci 2023; 10:703. [PMID: 38133254 PMCID: PMC10747964 DOI: 10.3390/vetsci10120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Lymphoma is the most common haematological malignancy affecting dogs and has a high incidence in the Bullmastiff breed. The aim of this study was to identify risk loci predisposing this breed to the disease. The average age of lymphoma diagnosis in 55 cases was less than 6 years, similar to the median age of 64 cases from our clinical and pathology databases. When fine-scale population structure was explored using NETVIEW, cases were distributed throughout an extended pedigree. When genotyped cases (n = 49) and dogs from the control group (n = 281) were compared in a genome-wide association analysis of lymphoma risk, the most prominent associated regions were detected on CFA13 and CFA33. The top SNPs in a 5.4 Mb region on CFA13 were significant at a chromosome-wide level, and the region was fine-mapped to ~1.2 Mb (CFA13: 25.2-26.4 Mb; CanFam3.1) with four potential functional candidates, including the MYC proto-oncogene bHLH transcription factor (MYC) and a region syntenic with the human and mouse lncRNA Pvt1 oncogene (PVT1). A 380 Kb associated region at CFA33: 7.7-8.1 Mb contained the coding sequence for SUMO specific peptidase7 (SENP7) and NFK inhibitor zeta (NFKBIZ) genes. These genes have annotations related to cancer, amongst others, and both have functional links to MYC regulation. Genomic signatures identified in lymphoma cases suggest that increased risk contributed by the regions identified by GWAS may complement a complex predisposing genetic background.
Collapse
Affiliation(s)
- Sally A. Mortlock
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Monica C. Asada
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Wei-Tse Hsu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Carol Lee
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Peter F. Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Rosanne M. Taylor
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| | - Mehar S. Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Peter Williamson
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia (M.S.K.)
| |
Collapse
|
10
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Rovsing AB, Thomsen EA, Nielsen I, Skov TW, Luo Y, Dybkaer K, Mikkelsen JG. Resistance to vincristine in DLBCL by disruption of p53-induced cell cycle arrest and apoptosis mediated by KIF18B and USP28. Br J Haematol 2023; 202:825-839. [PMID: 37190875 DOI: 10.1111/bjh.18872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
The frontline therapy R-CHOP for patients with diffuse large B-cell lymphoma (DLBCL) has remained unchanged for two decades despite numerous Phase III clinical trials investigating new alternatives. Multiple large studies have uncovered genetic subtypes of DLBCL enabling a targeted approach. To further pave the way for precision oncology, we perform genome-wide CRISPR screening to uncover the cellular response to one of the components of R-CHOP, vincristine, in the DLBCL cell line SU-DHL-5. We discover important pathways and subnetworks using gene-set enrichment analysis and protein-protein interaction networks and identify genes related to mitotic spindle organization that are essential during vincristine treatment. The inhibition of KIF18A, a mediator of chromosome alignment, using the small molecule inhibitor BTB-1 causes complete cell death in a synergistic manner when administered together with vincristine. We also identify the genes KIF18B and USP28 of which CRISPR/Cas9-directed knockout induces vincristine resistance across two DLBCL cell lines. Mechanistic studies show that lack of KIF18B or USP28 counteracts a vincristine-induced p53 response suggesting that resistance to vincristine has origin in the mitotic surveillance pathway (USP28-53BP1-p53). Collectively, our CRISPR screening data uncover potential drug targets and mechanisms behind vincristine resistance, which may support the development of future drug regimens.
Collapse
Affiliation(s)
| | | | - Ian Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Karen Dybkaer
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
12
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
13
|
Elbaz O, Shaat RM, Abd El Ghaffar HA, Shamaa S, Abdel-Masseih HM, Anber N, Mortada MI. The Prevalence of MYD88 L265P and TNFAIP3 Mutations and Their Correlations with Clinico-Hematological Profile in Egyptian Patients with Diffuse Large B Cell Lymphoma. Asian Pac J Cancer Prev 2023; 24:2485-2491. [PMID: 37505783 PMCID: PMC10676502 DOI: 10.31557/apjcp.2023.24.7.2485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) is characterized by chronic active B-cell receptor signaling and a constitutive activation of the NF-KB pathway. MYD88 L265P mutation occurs as a driving force of NF-KB overactivity in ABC-DLBCL. Nonetheless, in cases of DLBCL, the MYD88 L265P mutation has not yet been investigated in association with the tumour necrosis factor alpha induced protein3 (TNFAIP3) mutation. OBJECTIVE To investigate the frequency of MYD88 and TNFAIP3 mutations in DLBCL and their association to the clinico-hematological profile. MATERIAL AND METHODS We used real-time polymerase chain reaction in order to search for MYD88 L265P and TNFAIP3 mutations in 100 DLBCL patients. RESULTS MYD88 L265P In 20% of cases, the CT heterozygous genotype was discovered. CT heterozygous genotype was more common in ABC type, stage IV, greater IPI groups, extra-nodal infiltration, and BM infiltration. It was also linked to a shorter OS. TNFAIP3 mutation GA heterozygous genotype was detected in 18% of the patients, with ABC-DLBCL subtype accounting for 77.8%. The GA heterozygous genotype was usually related with stage IV, extranodal infiltration, and a reduced life expectancy. CONCLUSION MYD88 L265P and to lesser extent TNFAIP3 mutations are major mutations in ABC- DLBCL and may be predictive factors for poor OS in ABC- DLBCL patients.
Collapse
Affiliation(s)
- Osama Elbaz
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Rana M. Shaat
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Hasan A. Abd El Ghaffar
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Sameh Shamaa
- Medical Oncology Unit, Department of Internal Medicine, Oncology Center, Faculty of Medicine, Mansoura University, Egypt.
| | - Hanaa M. Abdel-Masseih
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Nahla Anber
- Assistant Consultant of Biochemistry, Emergency Hospital, Mansoura University, Egypt.
| | - Metwaly Ibrahim Mortada
- Hematology Unit, Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| |
Collapse
|