1
|
Soulié M, Stephan Y, Durand M, Lima-Posada I, Palacios-Ramírez R, Nicol L, Lopez-Andres N, Mulder P, Jaisser F. Benefit of combination therapy with dapagliflozin and eplerenone on cardiac function and fibrosis in rats with non-diabetic chronic kidney disease. Sci Rep 2024; 14:23955. [PMID: 39397161 PMCID: PMC11471824 DOI: 10.1038/s41598-024-74934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Patients with chronic kidney disease (CKD) are at a high risk of cardiovascular (CV) complications. In these patients, sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to reduce CV events. Mineralocorticoid receptor antagonists (MRAs) exert similar benefits in diabetic CKD, though their effects in non-diabetic CKD remain unclear. This study aimed to evaluated whether the combination of Dapagliflozin (DAPA) and Eplerenone (EPLE) would have positive effects on cardiorenal functions in a non-diabetic CKD model. CKD was induced in rats via 5/6 nephrectomy, followed by treatment with DAPA (5 mg/kg/day PO), EPLE (100 mg/kg/day PO) or the combination for 3 months following CKD induction. Cardiorenal functions were assessed after the treatment period. All treated groups showed reduced kidney fibrosis though plasma creatinine and urea levels remained unchanged. Compared to untreated CKD, EPLE or DAPA/EPLE reduced left ventricle (LV) end-diastolic pressure and LV end-diastolic pressure volume relationship, whereas DAPA alone did not achieve significant reductions. Compared to untreated CKD, EPLE and DAPA/EPLE improved cardiac perfusion but DAPA alone did not. Cardiac fibrosis in CKD was blunted by either DAPA or EPLE alone, with the combination showing an additive effect. In conclusion, co-treatment with DAPA and EPLE enhances diastolic function, cardiac perfusion and reduces myocardial fibrosis in non-diabetic CKD rats.
Collapse
Affiliation(s)
- M Soulié
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- INSERM U1096, Normandie Univ, UNIROUEN, Rouen, France
| | - Y Stephan
- INSERM U1096, Normandie Univ, UNIROUEN, Rouen, France
| | - M Durand
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - I Lima-Posada
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - R Palacios-Ramírez
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - L Nicol
- INSERM U1096, Normandie Univ, UNIROUEN, Rouen, France
| | - N Lopez-Andres
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - P Mulder
- INSERM U1096, Normandie Univ, UNIROUEN, Rouen, France
| | - F Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France.
- INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Université de Lorraine, Nancy, France.
| |
Collapse
|
2
|
Nascimento DVG, Alencar DF, da Silva MVB, Rocha DG, Roncari CF, Jorge RJB, Alves RDS, David RB, Ferreira e Silva WT, Galindo LCM, de Queiroz TM. Cardiovascular and Renal Effects Induced by Alpha-Lipoic Acid Treatment in Two-Kidney-One-Clip Hypertensive Rats. Biomedicines 2024; 12:1751. [PMID: 39200216 PMCID: PMC11351279 DOI: 10.3390/biomedicines12081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
α-Lipoic acid (LA) is an antioxidant of endogenous production, also obtained exogenously. Oxidative stress is closely associated with hypertension, which causes kidney injury and endothelial dysfunction. Here, we evaluated the cardiovascular and renal effects of LA in the two-kidney-one-clip (2K1C) hypertension model. The rats were divided into four groups: Sham surgery (Sham), the two-kidneys-one-clip (2K1C) group, and groups treated with LA for 14 days (Sham-LA and 2K1C-LA). No changes were observed in the pattern of food, water intake, and urinary volume. The left/right kidney weight LKw/RKw ratio was significantly higher in 2K1C animals. LA treatment did not reverse the increase in cardiac mass. In relation to vascular reactivity, there was an increase in the potency of phenylephrine (PHE) curve in the hypertensive animals treated with LA compared to the 2K1C group and also compared to the Sham group. Vasorelaxation induced by acetylcholine (Ach) and sodium nitroprusside (SNP) were not improved by treatment with LA. Urea and creatinine levels were not altered by the LA treatment. In conclusion, the morphological changes in the aorta and heart were not reversed; however, the treatment with LA mitigated the contraction increase induced by the 2K1C hypertension.
Collapse
Affiliation(s)
- Déborah Victória Gomes Nascimento
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco—UFPE, Vitória de Santo Antão 55608-680, Brazil; (D.V.G.N.); (M.V.B.d.S.); (W.T.F.e.S.); (L.C.M.G.)
| | - Darlyson Ferreira Alencar
- Department of Morphology, School of Medicine, Federal University of Ceará—UFC, Fortaleza 60430-160, Brazil; (D.F.A.); (R.J.B.J.); (R.d.S.A.)
| | - Matheus Vinicius Barbosa da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco—UFPE, Vitória de Santo Antão 55608-680, Brazil; (D.V.G.N.); (M.V.B.d.S.); (W.T.F.e.S.); (L.C.M.G.)
| | - Danilo Galvão Rocha
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará—UFC, Fortaleza 60430-160, Brazil; (D.G.R.); (C.F.R.); (R.B.D.)
| | - Camila Ferreira Roncari
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará—UFC, Fortaleza 60430-160, Brazil; (D.G.R.); (C.F.R.); (R.B.D.)
| | - Roberta Jeane Bezerra Jorge
- Department of Morphology, School of Medicine, Federal University of Ceará—UFC, Fortaleza 60430-160, Brazil; (D.F.A.); (R.J.B.J.); (R.d.S.A.)
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará—UFC, Fortaleza 60430-160, Brazil; (D.G.R.); (C.F.R.); (R.B.D.)
| | - Renata de Sousa Alves
- Department of Morphology, School of Medicine, Federal University of Ceará—UFC, Fortaleza 60430-160, Brazil; (D.F.A.); (R.J.B.J.); (R.d.S.A.)
| | - Richard Boarato David
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará—UFC, Fortaleza 60430-160, Brazil; (D.G.R.); (C.F.R.); (R.B.D.)
| | - Wylla Tatiana Ferreira e Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco—UFPE, Vitória de Santo Antão 55608-680, Brazil; (D.V.G.N.); (M.V.B.d.S.); (W.T.F.e.S.); (L.C.M.G.)
| | - Lígia Cristina Monteiro Galindo
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco—UFPE, Vitória de Santo Antão 55608-680, Brazil; (D.V.G.N.); (M.V.B.d.S.); (W.T.F.e.S.); (L.C.M.G.)
| | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco—UFPE, Vitória de Santo Antão 55608-680, Brazil; (D.V.G.N.); (M.V.B.d.S.); (W.T.F.e.S.); (L.C.M.G.)
| |
Collapse
|
3
|
Hojná S, Malínská H, Hüttl M, Vaňourková Z, Marková I, Miklánková D, Hrdlička J, Papoušek F, Neckář J, Kujal P, Behuliak M, Rauchová H, Kadlecová M, Sedmera D, Neffeová K, Zábrodská E, Olejníčková V, Zicha J, Vaněčková I. Hepatoprotective and cardioprotective effects of empagliflozin in spontaneously hypertensive rats fed a high-fat diet. Biomed Pharmacother 2024; 174:116520. [PMID: 38581924 DOI: 10.1016/j.biopha.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.
Collapse
Affiliation(s)
- Silvie Hojná
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zdeňka Vaňourková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Denisa Miklánková
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jaroslav Hrdlička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - František Papoušek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kujal
- 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Behuliak
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Rauchová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - David Sedmera
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Neffeová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Zábrodská
- 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Josef Zicha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Vaněčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Vaněčková I, Zicha J. Gliflozins in the Treatment of Non-diabetic Experimental Cardiovascular Diseases. Physiol Res 2024; 73:S377-S387. [PMID: 38634653 PMCID: PMC11412360 DOI: 10.33549/physiolres.935364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 09/04/2024] Open
Abstract
A new class of antidiabetic drugs - gliflozins (inhibitors of sodium glucose cotransporter-2; SGLT-2i) stimulate glucose and sodium excretion, thereby contributing to improved glycemic control, weight loss and blood pressure reduction in diabetic patients. Large clinical trials in patients with type 2 diabetes treated with empagliflozin, canagliflozin or dapagliflozin have demonstrated their excellent efficacy in improving many cardiovascular outcomes, including the reduction of death from cardiovascular diseases, non-fatal myocardial infarction or stroke, and hospitalization for heart failure. Moreover, the beneficial effects of SGLT-2i were also demonstrated in the decrease in proteinuria, which leads to a lower risk of progression to end-stage renal disease and thus a delay in initiation of the renal replacement therapy. Unexpectedly, their cardioprotective and renoprotective effects have been demonstrated not only in patients with diabetes but also in those without diabetes. Recently, much effort has been focused on patients with heart failure (either with reduced or preserved ejection fraction) or liver disease. Experimental studies have highlighted pleiotropic effects of SGLT-2 inhibitors beyond their natriuretic and glycosuric effects, including reduction of fibrosis, inflammation, reactive oxygen species, and others. Our results in experimental non-diabetic models of hypertension, chronic kidney disease and heart failure are partially consistent with these findings. This raises the question of whether the same mechanisms are at work in diabetic and non-diabetic conditions, and which mechanisms are responsible for the beneficial effects of gliflozins under non-diabetic conditions. Are these effects cardio-renal, metabolic, or others? This review will focus on the effects of gliflozins under different pathophysiological conditions, namely in hypertension, chronic kidney disease, and heart failure, which have been evaluated in non-diabetic rat models of these diseases. Key words: SGLT-2 inhibitor, hypertension, chronic kidney disease, heart failure, liver disease, rat.
Collapse
Affiliation(s)
- I Vaněčková
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
5
|
Abdelrahman AM, Awad AS, Abdel-Rahman EM. Sodium-Glucose Co-Transporter 2 Inhibitors: Mechanism of Action and Efficacy in Non-Diabetic Kidney Disease from Bench to Bed-Side. J Clin Med 2024; 13:956. [PMID: 38398269 PMCID: PMC10888733 DOI: 10.3390/jcm13040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are currently available for the management of type 2 diabetes mellitus. SGLT2i acts by inhibiting renal SGLT2, thereby increasing glucosuria and lowering serum glucose. Recent trials are emerging supporting a role for SGLT2i irrespective of the diabetic status pointing towards that SGLT2i have other mechanisms of actions beyond blood sugar control. In this review, we will shed light on the role of this group of medications that act as SGLT2i in non-diabetics focusing on pre-clinical and clinical data highlighting the mechanism of renoprotection and effects of SGLT2i in the non-diabetic kidneys.
Collapse
Affiliation(s)
- Aly M. Abdelrahman
- Department of Pharmacology & Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Alkhod 123, Oman;
| | - Alaa S. Awad
- Division of Nephrology, University of Florida, Jacksonville, FL 32209, USA;
| | | |
Collapse
|
6
|
Sinha F, Federlein A, Biesold A, Schwarzfischer M, Krieger K, Schweda F, Tauber P. Empagliflozin increases kidney weight due to increased cell size in the proximal tubule S3 segment and the collecting duct. Front Pharmacol 2023; 14:1118358. [PMID: 37033639 PMCID: PMC10076569 DOI: 10.3389/fphar.2023.1118358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
The inhibition of renal SGLT2 glucose reabsorption has proven its therapeutic efficacy in chronic kidney disease. SGLT2 inhibitors (SGLTi) have been intensively studied in rodent models to identify the mechanisms of SGLT2i-mediated nephroprotection. So far, the overwhelming effects from clinical trials, could only partially be reproduced in rodent models of renal injury. However, a commonly disregarded observation from these studies, is the increase in kidney weight after SGLT2i administration. Increased kidney mass often relies on tubular growth in response to reabsorption overload during glomerular hyperfiltration. Since SGLT2i suppress hyperfiltration but concomitantly increase renal weight, it seems likely that SGLT2i have a growth promoting effect on the kidney itself, independent of GFR control. This study aimed to investigate the effect of SGLT2i on kidney growth in wildtype animals, to identify enlarged nephron segments and classify the size increase as hypertrophic/hyperplastic growth or cell swelling. SGLT2i empagliflozin increased kidney weight in wildtype mice by 13% compared to controls, while bodyweight and other organs were not affected. The enlarged nephron segments were identified as SGLT2-negative distal segments of proximal tubules and as collecting ducts by histological quantification of tubular cell area. In both segments protein/DNA ratio, a marker for hypertrophic growth, was increased by 6% and 12% respectively, while tubular nuclei number (hyperplasia) was unchanged by empagliflozin. SGLT2-inhibition in early proximal tubules induces a shift of NaCl resorption along the nephron causing compensatory NaCl and H2O reabsorption and presumably cell growth in downstream segments. Consistently, in collecting ducts of empagliflozin-treated mice, mRNA expression of the Na+-channel ENaC and the H2O-channels Aqp-2/Aqp-3 were increased. In addition, the hypoxia marker Hif1α was found increased in intercalated cells of the collecting duct together with evidence for increased proton secretion, as indicated by upregulation of carbonic anhydrases and acidified urine pH in empagliflozin-treated animals. In summary, these data show that SGLT2i induce cell enlargement by hypertrophic growth and possibly cell swelling in healthy kidneys, probably as a result of compensatory glucose, NaCl and H2O hyperreabsorption of SGLT2-negative segments. Particularly affected are the SGLT2-negative proximal tubules (S3) and the collecting duct, areas of low O2 availability.
Collapse
|