1
|
Bal Albayrak MG, Simsek T, Akpinar G, Kasap M, Canturk NZ. Proteomic insights into lymph node metastasis in breast cancer subtypes: Key biomarkers and pathways. Pathol Res Pract 2025; 269:155938. [PMID: 40179440 DOI: 10.1016/j.prp.2025.155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Breast cancer (BC) is a significant global cause of death in women, primarily due to its diversity and metastatic potential. METHODS BC, healthy lymph node (HL), and metastatic lymph node (ML) tissues were collected from 19 patients diagnosed with infiltrating ductal carcinoma. Protein isolation was performed, followed by two-dimensional gel electrophoresis (2DE) and mass spectrometry (MALDI-TOF/TOF) to identify differentially expressed proteins. Bioinformatic analyses, including protein-protein interaction networks and molecular pathways, were conducted using STRING. Kaplan-Meier analysis was performed with KM plotter to evaluate the prognostic significance of identified proteins. Receiver operating characteristic (ROC) curves were generated using TCGA and GTEx data from UCSC Xena and easyROC to assess diagnostic relevance. RESULTS Distinct pathways related to cytoskeletal regulation, immune modulation, and oxidative stress response were enriched in each subtype. Key proteins such as TUBA1C, CCT6A, and Vimentin (LNA), CAPZB and ENO1 (LNB), GSTO1 (HER2 OE), and CORO1A and LAP3 (TNBC) were identified as significant in driving metastatic behavior. KM survival analysis showed that CAPZB (LNB) and CORO1A (TNBC) were associated with patient outcomes, while GSTO1 was linked to improved distant metastasis-free survival in HER2 OE. ROC analysis highlighted CAPZB as a strong diagnostic marker. CONCLUSIONS These findings form a basis for comprehending the molecular mechanisms underlying metastasis in different subtypes of breast cancer. They may lead to the identification of new therapeutic targets for customized interventions against invasion and metastasis. Further validation is required to confirm their clinical utility in larger cohorts.
Collapse
Affiliation(s)
| | - Turgay Simsek
- Department of General Surgery, Medical School, Kocaeli University, Kocaeli 41001, Turkiye
| | - Gurler Akpinar
- Department of Medical Biology, Medical School, Kocaeli University, Kocaeli 41001, Turkiye.
| | - Murat Kasap
- Department of Medical Biology, Medical School, Kocaeli University, Kocaeli 41001, Turkiye
| | - Nuh Zafer Canturk
- Department of General Surgery, Medical School, Kocaeli University, Kocaeli 41001, Turkiye
| |
Collapse
|
2
|
Miyano K, Okamoto S, Ojima F, Takenouchi Y, Yamamoto R, Matsui K, Azuhata M, Inoue M, Kajikawa M, Yamauchi A, Kuribayashi F, Nishimatsu SI. NADPH oxidase subunit p22 phox: A marker of oxidase-dependent oxidative stress and target for stress suppression in nonphagocytic cells. J Immunol Methods 2025; 539:113850. [PMID: 40081522 DOI: 10.1016/j.jim.2025.113850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/11/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Reactive oxygen species (ROS)-producing NADPH oxidase (Nox) family proteins are involved in host defense. The overproduction of ROS leads to oxidative stress, which is associated with a myriad of diseases. The Nox subunit p22phox is essential for Nox1-4 activity, and p22phox and Nox2 proteins are mutually stabilized in phagocytic cells. This study investigated the suitability of p22phox protein as a marker of Nox activity. To avoid contamination by phagocytic p22phox, we developed global Cybb (encoding Nox2)-knockout mice and analyzed p22phox stability and the expression profiles of Nox proteins in lysates of various tissues. We found that consistent with Nox2 in phagocytic cells, p22phox protein was detected when Nox1-4 were coexpressed in nonphagocytic cells. Furthermore, p22phox protein degradation was suppressed by Nox1-4, suggesting that p22phox is a suitable marker of Nox family-dependent oxidative stress. Thus, we examined p22phox protein levels in tissue lysates prepared from Cybb-knockout mice to avoid the contamination of phagocytic p22phox. Cybb-knockout mice show moderately reduced p22phox protein levels in lung tissue, suggesting that Nox2 and other Nox family members stabilized p22phox protein. Paradoxically, this result implied that p22phox knockdown concurrently suppressed various Nox family-dependent oxidative stress mechanisms, and this was confirmed by the suppression of Nox family-dependent directed migration in p22phox-knockdown A549 human lung epithelial cells. Therefore, p22phox not only served as a marker of Nox-dependent oxidative stress but also as a target to suppress this stress in various tissues and cells.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Natural Sciences, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan.
| | - Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Fumiya Ojima
- Department of Natural Sciences, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Risa Yamamoto
- Fifth Year Medical Student in fiscal year of 2024, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Kimika Matsui
- Fifth Year Medical Student in fiscal year of 2024, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Misaki Azuhata
- Fifth Year Medical Student in fiscal year of 2024, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Mariko Inoue
- Central Research Institute, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| | - Shin-Ichiro Nishimatsu
- Department of Natural Sciences, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
3
|
Sakib S, Andoy NMO, Yang JYC, Galang A, Sullan RMA, Zou S. Antimicrobial and anti-inflammatory effects of polyethyleneimine-modified polydopamine nanoparticles on a burn-injured skin model. Biomater Sci 2025; 13:1770-1783. [PMID: 39995391 DOI: 10.1039/d4bm01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Chronic infections involving bacterial biofilms pose significant treatment challenges due to the resilience of biofilms against existing antimicrobials. Here, we introduce a nanomaterial-based platform for treating Staphylococcus epidermidis biofilms, both in isolation and within a biofilm-infected burn skin model. Our approach leverages biocompatible and photothermal polydopamine nanoparticles (PDNP), functionalized with branched polyethyleneimine (PEI) and loaded with the antibiotic rifampicin, to target bacteria dwelling within biofilms. A key innovation of our method is its ability to not only target planktonic S. epidermidis but also effectively tackle biofilm-embedded bacteria. We demonstrated that PDNP-PEI interacts effectively with the bacterial surface, facilitating laser-activated photothermal eradication of planktonic S. epidermidis. In a 3D skin burn injury model, PDNP-PEI demonstrates anti-inflammatory and reactive oxygen species (ROS)-scavenging effects, reducing inflammatory cytokine levels and promoting healing. The rifampicin-loaded PDNP-PEI (PDNP-PEI-Rif) platform further shows significant efficacy against bacteria inside biofilms. The PDNP-PEI-Rif retained its immunomodulatory activity and efficiently eradicated biofilms grown on our burn-injured 3D skin model, effectively addressing the challenges of biofilm-related infections. This achievement marks a significant advancement in infection management, with the potential for a transformative impact on clinical practice.
Collapse
Affiliation(s)
- Sadman Sakib
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Nesha May O Andoy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
| | - Jessica Y C Yang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
| | - Anna Galang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON, M1C 1A4 Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| | - Shan Zou
- Metrology Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| |
Collapse
|
4
|
Oktavia NS, Mustika A, Hidayati AN. Mechanism of the effect of Piper crocatum extract on wound healing of Wistar rats post-excision mammary tumor based on IL-10 level, TGF-β1 expression, VEGF expression, Collagen density, and clinical features. Open Vet J 2025; 15:1264-1278. [PMID: 40276181 PMCID: PMC12017729 DOI: 10.5455/ovj.2025.v15.i3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 04/26/2025] Open
Abstract
Background The incidence of wound complications after breast cancer surgery is > 30%. Delayed wound healing increases the risk of systemic recurrence up to three-fold after excisional surgery for primary breast cancer. Patients with breast malignant tumors exhibit immune system dysfunction while T cells play a major role in the inflammatory process of wound healing. The time required to achieve wound closure depends on the severity of the wound. The content of Piper crocatum ethanol extract contains alkaloids, flavonoids, tannins, steroids, and polyphenols. Flavonoid and polyphenol compounds are antioxidant, antidiabetic, anticancer, antiseptic, and anti-inflammatory. Aim To determine whether P. crocatum extract increases interleukin-10 (IL-10) levels, TGF-β1 and VEGF expression, collagen density, and the clinical features of wounds, and how the mechanism works on wound healing of Wistar rats after excision of mammary tumors. Methods This study used 35 female Wistar rats, 30 mammary tumor models by injecting 3-5% benzopyrene as much as 50 mg/Kg.BW in 5 injections into the mammary glands/mammae every 2 days as much as 10 mg/kg.BW. Thirty rats were divided into 5 groups; red betel extract gel 50%, 25%, and 12.5%; povidone iodine group as a positive control; and carboxymethyl cellulose natrium (CMC na) group as a negative control, 5 normal wounds as controls. Treatment was given 2 times a day for 14 days. Results Multiple linear regression results; P. crocatum extract decreased IL-10 levels by -0.64 (p = 0.025), decreased TGF-β1 expression -0.832 (p = 0.001), increased VEGF expression by 0.638 (p = 0.026), and decreased collagen density by -0.605 (p = 0.037) in mammary tumor post-excision rat wounds. Conclusion There is an effect of P. crocatum extract on the wound of Wistar rats after excision of mammary tumor by the mechanism of decreased IL-10 levels and TGF-β1 expression, increased VEGF expression, and decreased collagen density through increased VEGF expression is studied in this article.
Collapse
Affiliation(s)
- Nike Sari Oktavia
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Midwifery, Polytechnic of Health Ministry of Health Padang, Padang, Indonesia
| | - Arifa Mustika
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Afif Nurul Hidayati
- Department of Dermatology Venereology and Aesthetics, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dermatology and Venereology, Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Airlangga Teaching Hospital, Surabaya, Indonesia
| |
Collapse
|
5
|
Mohammadi G, Safari M, Karimi M, Iranpanah A, Farzaei MH, Fakhri S, Echeverría J. Preparation and characterization of Pistacia atlantica oleo-gum-resin-loaded electrospun nanofibers and evaluating its wound healing activity in two rat models of skin scar and burn wound. Front Pharmacol 2024; 15:1474981. [PMID: 39654617 PMCID: PMC11625589 DOI: 10.3389/fphar.2024.1474981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Background A growing body of research is dedicated to developing new therapeutic agents for wound healing with fewer adverse effects. One of the proceedings being taken today in wound healing research is to identify promising biological materials that not only heal wounds but also vanish scarring. The effectiveness of nanofibers like polyvinyl alcohol (PVA), in improving wound healing can be related to their unique properties. Pistacia atlantica Desf. subsp. kurdica (Zohary) Rech. f. (PAK) [Anacardiaceae], also known as "Baneh" in traditional Iranian medicine, is one of the most effective herbal remedies for the treatment of different diseases like skin injuries due to its numerous pharmacological and biological properties, including anti-inflammatory, antioxidant, and anti-bacterial effects. Purpose Our study aimed to evaluate the wound-healing activity of nanofibers containing PVA/PAK oleo-gum-resin in two rat models of burn and excision wound repair. Material and Methods PVA/PKA nanofibers were prepared using the electrospinning method. Scanning electron microscope (SEM) images and mechanical properties of nanofibers were explored. Diffusion and releasing experiments of nanofibers were performed by the UV visible method at different time intervals and up to 72 h. The animal models were induced by excision and burn in Wistar rat's skin and the wound surface area was measured during the experiment for 10 and 21 days, respectively. On the last day, the wound tissue was removed for histological studies, and serum oxidative factors were measured to evaluate the antioxidant properties of the PVA/PKA. Data analysis was performed using ImageJ, Expert Design, and statistical analysis methods. Results and discussion PVA/PKA nanofibers were electrospun at different voltages (15, 18, and 20 kV). The most suitable fibers were obtained when the nozzle was positioned 15 cm away from the collector, with a working voltage of 15 kV, and an injection rate of 0.5 mm per hour, using the 30:70 w/v PKA gum. In the SEM images, it was found that the surface tension of the polymer solution decreased by adding the gum and yield thinner and longer fibers at a voltage of 15 kV with an average diameter of 96 ± 24 nm. The mechanical properties of PVA/PKA nanofibers showed that the presence of gum increased the tensile strength and decreased the tensile strength of the fibers simultaneously. In vivo results showed that PVA/PKA nanofibers led to a significant reduction in wound size and tissue damage (regeneration of the epidermal layer, higher density of dermal collagen fibers, and lower presence of inflammatory cells) compared to the positive (phenytoin and silver sulfadiazine) and negative control (untreated) groups. Wound contraction was higher in rats treated with PVA/PKA nanofibers. Additionally, antioxidative serum levels of catalase and glutathione were higher in the PVA/PKA nanofiber groups even in comparison to positive control groups. Conclusion Pistacia atlantica oleo-gum-resin-loaded electrospun nanofibers potentially improve excision and burn models of skin scars in rats through antioxidative and tissue regeneration mechanisms.
Collapse
Affiliation(s)
- Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mosayyeb Safari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Karimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Sanjaya A, Ratnawati H, Adhika OA, Rahmatilah FR. The heterogeneity of breast cancer metastasis: a bioinformatics analysis utilizing single-cell RNA sequencing data. Breast Cancer Res Treat 2024; 208:379-390. [PMID: 38992286 DOI: 10.1007/s10549-024-07428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE Breast cancer is a common malignancy in women, and its metastasis is a leading cause of cancer-related deaths. Single-cell RNA sequencing (scRNA-seq) can distinguish the molecular characteristics of metastasis and identify predictor genes for patient prognosis. This article explores gene expression in primary breast cancer tumor tissue against metastatic cells in the lymph node and liver using scRNA-seq. METHODS Breast cancer scRNA-seq data from the Gene Expression Omnibus were used. The data were processed using R and the Seurat package. The cells were clustered and identified using Metascape. InferCNV is used to analyze the variation in copy number. Differential expression analysis was conducted for the cancer cells using Seurat and was enriched using Metascape. RESULTS We identified 18 distinct cell clusters, 6 of which were epithelial. CNV analysis identified significant alterations with duplication of chromosomes 1, 8, and 19. Differential gene analysis resulted in 17 upregulated and 171 downregulated genes for the primary tumor in the primary tumor vs. liver metastasis comparison and 43 upregulated and 4 downregulated genes in the primary tumor in the primary tumor vs lymph node metastasis comparison. Several enriched terms include Ribosome biogenesis, NTP synthesis, Epithelial dedifferentiation, Autophagy, and genes associated with epithelial-to-mesenchymal transitions. CONCLUSION No single gene or pathway can clearly explain the mechanisms behind tumor metastasis. Several mechanisms contribute to lymph node and liver metastasis, such as the loss of differentiation, epithelial-to-mesenchymal transition, and autophagy. These findings necessitate further study of metastatic tissue for effective drug development.
Collapse
Affiliation(s)
- Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri No. 65, Bandung, 40164, West Java, Indonesia.
- Biomedical Research Laboratory, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia.
| | - Hana Ratnawati
- Biomedical Research Laboratory, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
- Department of Histology, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| | - Oeij Anindita Adhika
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri No. 65, Bandung, 40164, West Java, Indonesia
| | - Faiz Rizqy Rahmatilah
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, 40164, West Java, Indonesia
| |
Collapse
|
7
|
Kieliszek AM, Mobilio D, Bassey-Archibong BI, Johnson JW, Piotrowski ML, de Araujo ED, Sedighi A, Aghaei N, Escudero L, Ang P, Gwynne WD, Zhang C, Quaile A, McKenna D, Subapanditha M, Tokar T, Vaseem Shaikh M, Zhai K, Chafe SC, Gunning PT, Montenegro-Burke JR, Venugopal C, Magolan J, Singh SK. De novo GTP synthesis is a metabolic vulnerability for the interception of brain metastases. Cell Rep Med 2024; 5:101755. [PMID: 39366383 PMCID: PMC11513854 DOI: 10.1016/j.xcrm.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Patients with brain metastases (BM) face a 90% mortality rate within one year of diagnosis and the current standard of care is palliative. Targeting BM-initiating cells (BMICs) is a feasible strategy to treat BM, but druggable targets are limited. Here, we apply Connectivity Map analysis to lung-, breast-, and melanoma-pre-metastatic BMIC gene expression signatures and identify inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in the de novo GTP synthesis pathway, as a target for BM. We show that pharmacological and genetic perturbation of IMPDH attenuates BMIC proliferation in vitro and the formation of BM in vivo. Metabolomic analyses and CRISPR knockout studies confirm that de novo GTP synthesis is a potent metabolic vulnerability in BM. Overall, our work employs a phenotype-guided therapeutic strategy to uncover IMPDH as a relevant target for attenuating BM outgrowth, which may provide an alternative treatment strategy for patients who are otherwise limited to palliation.
Collapse
Affiliation(s)
- Agata M Kieliszek
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Mobilio
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Blessing I Bassey-Archibong
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mathew L Piotrowski
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Elvin D de Araujo
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Abootaleb Sedighi
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nikoo Aghaei
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Laura Escudero
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Patrick Ang
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Cunjie Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrew Quaile
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | | | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Patrick T Gunning
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - J Rafael Montenegro-Burke
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
8
|
Pu M, Cao H, Zhang H, Wang T, Li Y, Xiao S, Gu Z. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. MATERIALS HORIZONS 2024; 11:3721-3746. [PMID: 38894682 DOI: 10.1039/d4mh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.
Collapse
Affiliation(s)
- Minju Pu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| |
Collapse
|
9
|
Yuan L, Wei H, Pan Z, Deng X, Yang L, Wang Y, Lu D, Li Z, Luo F, Li J, Tan H. A bioinspired injectable antioxidant hydrogel for prevention of postoperative adhesion. J Mater Chem B 2024; 12:6968-6980. [PMID: 38915270 DOI: 10.1039/d4tb00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Postoperative adhesions, a prevalent complication following abdominal surgery, affect 90% of patients undergoing abdominal surgical procedures. Currently, the primary approach to prevent postoperative adhesions involves physical isolation of the surgical site and surrounding tissues using a hydrogel; however, this method represents a rudimentary strategy. Herein, considering the impact of oxidative stress and free radicals on postoperative adhesion during wound healing, an injectable antioxidant hydrogel, named PU-OHA-D, was successfully synthesized, which is formed by the crosslinking of dopamine-modified oxidized hyaluronic acid (OHA-D) and dihydrazide-terminated polyurethane (PU-ADH) through hydrazone bonding. PU-OHA-D hydrogel possesses versatile characteristics such as rapid gel formation, injectability, self-repair capability and biodegradability. Additionally, they exhibit an excellent ability to clear free radicals and superior tissue adhesion. PU-OHA-D can be injected in situ to form a hydrogel to prevent abdominal wall-cecum adhesion. Importantly, it can effectively eliminate free radicals and inhibit oxidative stress at the wound site. Thereby, it leads to collagen physiological degradation and prevents the occurrence of postoperative adhesions. The bioinspired hydrogel demonstrates its great potential in preventing postoperative adhesion and promoting wound healing.
Collapse
Affiliation(s)
- Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hongxiu Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - ZhongJing Pan
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Xiaobo Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Lin Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Lu
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Xiao X, Zhao F, DuBois DB, Liu Q, Zhang YL, Yao Q, Zhang GJ, Chen S. Nanozymes for the Therapeutic Treatment of Diabetic Foot Ulcers. ACS Biomater Sci Eng 2024; 10:4195-4226. [PMID: 38752382 DOI: 10.1021/acsbiomaterials.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430065, China
| | - Davida Briana DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Yu Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
11
|
Geng X, Wang Y, Li H, Song L, Luo C, Gu X, Zhong H, Chen H, Chen X, Wang J, Pan Z. Total iridoid glycoside extract of Lamiophlomis rotata (Benth) Kudo accelerates diabetic wound healing by the NRF2/COX2 axis. Chin Med 2024; 19:53. [PMID: 38519940 PMCID: PMC10960394 DOI: 10.1186/s13020-024-00921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Lamiophlomis rotata (Benth.) Kudo (L. rotata), the oral Traditional Tibetan herbal medicine, is adopted for treating knife and gun wounds for a long time. As previously demonstrated, total iridoid glycoside extract of L. rotata (IGLR) induced polarization of M2 macrophage to speed up wound healing. In diabetic wounds, high levels inflammatory and chemotactic factors are usually related to high reactive oxygen species (ROS) levels. As a ROS target gene, nuclear factor erythroid 2-related factor 2 (NRF2), influences the differentiation of monocytes to M1/M2 macrophages. Fortunately, iridoid glycosides are naturally occurring active compounds that can be used as the oxygen radical scavenger. Nevertheless, the influence of IGLR in diabetic wound healing and its associated mechanism is largely unclear. MATERIALS AND METHODS With macrophages and dermal fibroblasts in vitro, as well as a thickness excision model of db/db mouse in vivo, the role of IGLR in diabetic wound healing and the probable mechanism of the action were investigated. RESULTS Our results showed that IGLR suppressed oxidative distress and inflammation partly through the NRF2/cyclooxygenase2 (COX2) signaling pathway in vitro. The intercellular communication between macrophages and dermal fibroblasts was investigated by the conditioned medium (CM) of IGLR treatment cells. The CM increased the transcription and translation of collagen I (COL1A1) and alpha smooth muscle actin (α-SMA) within fibroblasts. With diabetic wound mice, the data demonstrated IGLR activated the NRF2/KEAP1 signaling and the downstream targets of the pathway, inhibited COX2/PEG2 signaling and decreased the interaction inflammatory targets of the axis, like interleukin-1beta (IL-1β), interleukin 6 (IL-6), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase1 (caspase1) and NOD-like receptor-containing protein 3 (NLRP3).In addition, the deposition of COL1A1, and the level of α-SMA, and Transforming growth factor-β1 (TGF-β1) obviously elevated, whereas that of pro-inflammatory factors reduced in the diabetic wound tissue with IGLR treatment. CONCLUSION IGLR suppressed oxidative distress and inflammation mainly through NRF2/COX2 axis, thus promoting paracrine and accelerating wound healing in diabetes mice.
Collapse
Affiliation(s)
- Xiaoyu Geng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Huan Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Song
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Chen Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaojie Gu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Haixin Zhong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Huilin Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xinzhu Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, China
| | - Zheng Pan
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, China.
| |
Collapse
|
12
|
Jia X, Li J, Zheng Y, Yang X, Che T, Zhang J, Zhang Y, Zhang X, Wu Z. Dynamic Microenvironment-Adaptable Hydrogel with Photothermal Performance and ROS Scavenging for Management of Diabetic Ulcer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49974-49987. [PMID: 37870548 DOI: 10.1021/acsami.3c09182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Persistent bacterial infections and excessive oxidative stress prevent the healing of diabetic ulcers, leading to an increased disability rate. Current treatments fail to kill bacteria while simultaneously relieving oxidative stress. Herein, a dynamic microenvironment-adaptable hydrogel (BP@CAu) with photothermal performance and reactive oxygen species scavenging is presented for diabetic ulcer healing. This hydrogel prepared using a dynamic borate-ester could respond to acidity in the infection microenvironment for a controllable drug release. An excellent photothermal conversion effect was integrated in the hydrogel, which exhibited strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The hydrogel attenuated intracellular oxidative stress and inflammation and promoted cell migration. In a full-thickness skin defect model of diabetic rats, the BP@CAu hydrogel contributed to the fastest wound closure, with ideal reepithelialization, granulation tissue formation, and regeneration of blood vessels. Further mechanistic studies revealed that the hydrogel relieved oxidative stress and downregulated the expression of inflammatory cytokines, resulting in dramatic therapeutic effects on diabetic wounds. Therefore, this study provides a synergistic therapeutic strategy for efficient photothermal performance and reactive oxygen species scavenging in diabetic ulcers.
Collapse
Affiliation(s)
- Xinxin Jia
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Jun Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| |
Collapse
|