1
|
Nalwoga A, Jackson C, Fiorillo S, Manyeruke F, Makoni T, Nyagura T, White IE, Rapaport E, Rochford R, Borok M, Campbell TB. Evaluation of plasma alpha-1-antichymotrypsin as a marker for pulmonary Kaposi sarcoma. Int J Cancer 2025; 156:2429-2439. [PMID: 39887999 PMCID: PMC12009206 DOI: 10.1002/ijc.35351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025]
Abstract
Individuals with AIDS and Kaposi sarcoma (AIDS-KS) with pulmonary involvement have high-risk of poor outcomes but diagnosis of pulmonary KS in low-resource settings is difficult. We aimed to discover plasma proteins that distinguish individuals with pulmonary KS from those without pulmonary involvement. SomaScan proteomics screen measured 7288 plasma proteins in 22 cases and 17 controls selected from 181 participants with HIV-1 and cutaneous KS who underwent bronchoscopy. Cases had KS in the lower respiratory tract by bronchoscopy. Controls had no KS lesions detected by bronchoscopy. Results of the proteomics screen were confirmed by ELISA measurement of plasma alpha-1-antichymotrypsin (SERPINA3) in 18 cases and 13 controls and in an additional 162 individuals with AIDS-KS who were not included in the case-control analysis. Proteomics identified 12 plasma proteins with differential levels in controls and cases. Plasma alpha-1-antichymotrypsin (SERPINA3) complex was consistently higher in cases compared to controls in the proteomics assay. Measurement of plasma alpha-1-antichymotrypsin by ELISA confirmed higher levels in cases (median 399.4, IQR 95.77-766.4 μg/ml) versus controls (median 39.98, IQR 31.2-170.2 μg/ml; p = .001). Plasma alpha-1-antichymotrypsin correlated with the estimated burden of pulmonary KS in the respiratory tract (r = 0.439; p = .0002) and 234 μg/ml had 51% sensitivity and 94% specificity for detection of pulmonary KS by bronchoscopy. Measurement of plasma alpha-1-antichymotrypsin has potential for identifying persons with pulmonary AIDS-KS and estimating the burden of KS in the lower respiratory tract.
Collapse
Affiliation(s)
- Angela Nalwoga
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Conner Jackson
- Department of Biostatistics and Informatics, Colorado School of Public Health University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Felix Manyeruke
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Tobias Makoni
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Tatenda Nyagura
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Irene E White
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric Rapaport
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret Borok
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Thomas B Campbell
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Guzmán Rivera J, Zheng H, Richlin B, Suarez C, Gaur S, Ricciardi E, Hasan UN, Cuddy W, Singh AR, Bukulmez H, Kaelber DC, Kimura Y, Brady PW, Wahezi D, Rothschild E, Lakhani SA, Herbst KW, Hogan AH, Salazar JC, Moroso-Fela S, Roy J, Kleinman LC, Horton DB, Moore DF, Gennaro ML. Combining Mass Spectrometry with Machine Learning to Identify Novel Protein Signatures: The Example of Multisystem Inflammatory Syndrome in Children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.17.25325767. [PMID: 40313298 PMCID: PMC12045438 DOI: 10.1101/2025.04.17.25325767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Objectives We demonstrate an approach that integrates biomarker analysis with machine learning to identify protein signatures, using the example of SARS-CoV-2-induced Multisystem Inflammatory Syndrome in Children (MIS-C). Methods We used plasma samples collected from subjects diagnosed with MIS-C and compared them first to controls with asymptomatic/mild SARS-CoV-2 infection and then to controls with pneumonia or Kawasaki disease. We used mass spectrometry to identify proteins. Support vector machine (SVM) algorithm-based classification schemes were used to analyze protein pathways. We assessed diagnostic accuracy using internal and external cross-validation. Results Proteomic analysis of a training dataset containing MIS-C (N=17), and asymptomatic/mild SARS-CoV-2 infected control samples (N=20) identified 643 proteins, of which 101 were differentially expressed. Plasma proteins associated with inflammation and coagulation increased and those associated with lipid metabolism decreased in MIS-C relative to controls. The SVM machine learning algorithm identified a three-protein model (ORM1, AZGP1, SERPINA3) that achieved 90.0% specificity, 88.2% sensitivity, and 93.5% area under the curve (AUC) distinguishing MIS-C from controls in the training set. Performance was retained in the validation dataset utilizing MIS-C (N=17) and asymptomatic/mild SARS-CoV-2 infected control samples (N=10) (90.0% specificity, 84.2% sensitivity, 87.4% AUC). We next replicated our approach to compare MIS-C with similarly presenting syndromes, such as pneumonia (N=17) and Kawasaki Disease (N=13) and found a distinct three-protein signature (VWF, SERPINA3, and FCGBP) that accurately distinguished MIS-C from the other conditions (97.5% specificity, 89.5% sensitivity, 95.6% AUC). We also developed a software tool that may be used to evaluate other protein pathway signatures using our data. Conclusions We used MIS-C, a novel hyperinflammatory illness, to demonstrate that the use of mass spectrometry to identify candidate plasma proteins followed by machine learning, specifically SVM, is an efficient strategy for identifying and evaluating biomarker signatures for disease classification.
Collapse
|
3
|
Han X, Zhang Y, Petrosky JN, Bald S, Sherva RM, Labadorf A, Cherry JD, Chung J, Farrell K, Abdolmohammadi B, Durape S, Martin BM, Palmisano JN, Farrell JJ, Alvarez VE, Huber BR, Dwyer B, Daneshvar DH, Dams-O'Connor K, Jun GR, Lunetta KL, Goldstein LE, Katz DI, Cantu RC, Shenton ME, Cummings JL, Reiman EM, Stern RA, Alosco ML, Tripodis Y, Farrer LA, Stein TD, Crary JF, McKee AC, Mez J. A structural haplotype in the 17q21.31 MAPT region is associated with increased risk for chronic traumatic encephalopathy endophenotypes. Cell Rep Med 2025:102084. [PMID: 40239644 DOI: 10.1016/j.xcrm.2025.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/02/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impact (RHI) exposure. Genetic variation in the 17q21.31 region, containing microtubule-associated protein tau (MAPT), has been implicated in tauopathies but has not been investigated in CTE. The region includes a megabase-long inversion (H1/H2) and copy-number variations, including α, β, and γ segments, which can be characterized as nine segregating structural haplotypes. We leveraged array SNP data and a reference panel across the 17q21.31 region to impute structural haplotypes and test their association with CTE endophenotypes in 447 European ancestry brain donors with RHI exposure. The H1β1γ1 haplotype was significantly associated with dementia and semi-quantitative tau burden in multiple cortical and medial temporal regions commonly affected in CTE. H1β1γ1 differential expression analyses in dorsolateral frontal cortex implicated cis-acting genes and inflammatory pathways. Taken together, the H1β1γ1 haplotype may help explain CTE heterogeneity among those with similar RHI exposure.
Collapse
Affiliation(s)
- Xudong Han
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA; Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yichi Zhang
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | | | - Sarah Bald
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Richard M Sherva
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Adam Labadorf
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bobak Abdolmohammadi
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Shruti Durape
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA
| | - Brett M Martin
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - John J Farrell
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Bertrand R Huber
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gyungah R Jun
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA; Departments of Radiology and Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Martha E Shenton
- Boston VA Healthcare System, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Robert A Stern
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston VA Healthcare System, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Bedford VA Healthcare System, Bedford, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Chronic Traumatic Encephalopathy Center, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Azevedo PL, Rezende M, Felix M, Corrêa S, Abdelhay E, Binato R. SAA1 Protein: A Potential Biomarker for Acute Myeloid Leukemia. Biomedicines 2025; 13:880. [PMID: 40299483 PMCID: PMC12024993 DOI: 10.3390/biomedicines13040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Despite its heterogeneity and diagnostic challenges, acute myeloid leukemia (AML) originates from stem cell transformation and alterations in the hematopoietic niche (HN) could be related to leukemic transformation. Therefore, the aim of this study was to evaluate the protein profile of HN from AML patients and compare it with the profile of healthy donors (HDs). Methods: A proteomic analysis was conducted to identify differentially expressed (DE) proteins in BM plasma from AML patients and HD. In silico analysis was performed to identify biological processes and signaling pathways involved. Additionally, ELISA confirmed the expression of the DE protein of interest in BM plasma samples. Results: Proteomic analysis revealed alterations in the plasma profiles of AML patients and 36 DE proteins were found. Among then, we highlight C8G, CFB, SAA1, SERPINA3 and SERPINC1, which are related to inflammatory response process. Thus, considering the role of the secreted protein SAA1 in the inflammatory context and that it is described as a potential biomarker in several tumors, we selected SAA1 for ELISA confirmation. The results corroborated our findings, indicating that increased expression of SAA1 could be related to AML. Our results also revealed that SAA1 can stimulate immune signaling through NF-kappa-B activation. Conclusions: These findings position SAA1 as a promising biomarker for AML diagnosis, offering a potential tool for more accurate identification of the disease. Nevertheless, further studies are needed to understand the relationship of SAA1 with the leukemic transformation process in AML and its potential clinical use.
Collapse
|
5
|
Lv L, Zhu X, Jin C, Ni S. A Breast Cancer Prognostic Model Based on Folic Acid Metabolism-Related Genes to Reveal the Immune Landscape. Horm Metab Res 2025; 57:262-272. [PMID: 40209747 DOI: 10.1055/a-2554-4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Breast cancer (BC) threatens women's health, and the prognosis is dismal. Folic acid metabolism affects cancer prognosis, but research on folic acid metabolism-related genes (FMRs) in BC is scarce. We used TCGA-BRCA as the training set and GSE21653 as the validation set. Five FMRs (PLAT, SERPINA3, IFNG, SLC19A1, NFKB2) were screened via univariate and LASSO Cox regression analyses, and a prognostic model was built based on multivariate Cox regression analysis. The model showed excellent predictive performance. Differentially expressed genes in high- and low-risk groups were enriched in steroid hormone biosynthesis and neuroactive ligand-receptor interaction pathways. The low-risk group exhibited higher immune cell infiltration and better immunotherapy response. AM-5992 and 5-fluorodeoxyuridine 10mer may be potential BC drugs. This FMR-based model can accurately predict BC prognosis, offering a clinical reference.
Collapse
Affiliation(s)
- Lin Lv
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaotao Zhu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Cong Jin
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shunlan Ni
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
6
|
Van Hecke M, Favere K, Eens S, Bosman M, Delputte PL, Guns PJ, Roskams T, Heidbuchel H. The impact of moderate and high intensity endurance exercise on acute murine coxsackievirus B3 myocarditis. Cardiovasc Pathol 2025; 77:107734. [PMID: 40081609 DOI: 10.1016/j.carpath.2025.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND AND AIMS Myocarditis is a group of inflammatory diseases of the myocardium, with viral infections being the leading cause. Previous murine studies have demonstrated a detrimental effect of extensive exercise on the acute course of viral myocarditis. Recently, we were the first to report that continuation of moderate exercise during murine viral myocarditis modulates myocardial inflammation and fibrosis at the late stage of disease, yet we did not evaluate early time points. In this study, we aimed to evaluate the impact of moderate intensity training on the acute course of disease, and compare it to the effects of a high intensity protocol. METHODS AND RESULTS Two separate experiments were performed. For the moderate intensity (Mod) endurance exercise experiment, 50 male C57BL/6J mice (11 weeks old) were randomised to 3 weeks of treadmill running (ModEEX, 18 cm/sec, daily) or not (ModSED). Two weeks into the experiment, animals received a single intraperitoneal injection with either coxsackievirus B3 (CVB) to induce viral myocarditis, or phosphate-buffered saline (PBS) vehicle. For the high intensity (Hi) endurance exercise experiment, another 20 male C57BL/6J mice (17 weeks old) were randomised to 3 weeks of treadmill running (HiEEX) or not (HiSED). After two weeks of training, all animals of the Hi experiment were injected with CVB, and the training protocol was intensified with increasing running speeds until exhaustion in the final week of training. All animals were sacrificed 6-7 days after virus or vehicle administration. All groups demonstrated complete survival except for 1 animal of the HiSED group, and showed comparable clinical signs and body weight evolution. Nor moderate, neither high intensity exercise had any significant impact on plasma troponin levels, semiquantitative scores of cardiomyocyte loss, and digital areas of necrosis. Morphologically however, HiEEX mice showed markedly less inflammatory cells in the necrotic areas of the myocardial lesions compared to HiSED mice, as was confirmed by digital quantification (x103 inflammatory cells per mm2 HiEEX: 6.24±0.32SEM vs HiSED: 8.02 ±0.36SEM, P=0.002). The same digital quantification did not show significant differences between ModEEX and ModSED lesions. Using an extensive panel of immunohistochemical inflammatory cell markers, a different composition of inflammatory cell subtypes was observed in the myocardial lesions of HiEEX compared to ModEEX mice, with a shift towards a pro-inflammatory milieu in HiEEX mice (ratio iNOS/Arg1 HiEEX: 0.49 vs ModEEX: 0.22, P=0.041 and ratio Tbet/GATA3 HiEEX: 4.75 vs ModEEX: 0.82, P=0.005). The cardiac viral load varied considerably, but no impact of exercise was observed, nor did cardiac expression of remodelling genes (Serpina3n, CTGF, and TGF-β) show an exercise effect. CONCLUSION In the acute phase of murine viral myocarditis, lesions show significantly fewer inflammatory cells in the myocardial lesions when performing high intensity exercise during infection. Moreover, compared to moderate intensity exercise, the composition of the inflammatory infiltrate shifts towards a more pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Manon Van Hecke
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven, 3000 Leuven, Belgium.
| | - Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium; Department of Cardiology, Ghent University, 9000 Ghent, Belgium
| | - Sander Eens
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| | - Peter L Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium
| | - Tania Roskams
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven, 3000 Leuven, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
| |
Collapse
|
7
|
Zheng Z, Wang W, Huang M, Chen B, Wang T, Xu Z, Jiang X, Dai X. LYVE1 and IL1RL1 are mitochondrial permeability transition-driven necrosis-related genes in heart failure. Int J Biochem Cell Biol 2025; 180:106738. [PMID: 39870162 DOI: 10.1016/j.biocel.2025.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Heart failure is linked to increased hospitalization and mortality. Mitochondrial permeability transition-driven necrosis is associated with cardiovascular diseases, but its role in heart failure is unclear. This study aimed to identify and validate genes related to mitochondrial permeability transition-driven necrosis in heart failure, potentially leading to new drug targets and signaling pathways. METHODS We identified differentially expressed genes related to heart failure from the gene expression omnibus database and identified module genes related to mitochondrial permeability transition-driven necrosis from the gene set enrichment analysis database. Key genes were determined by intersecting these two gene groups using least absolute shrinkage and selection operator and support vector machine algorithms. Pathways, diagnostic efficacy, gene interactions, immune infiltration, and regulatory networks were analyzed. Small interfering RNAs were used for validation. Real-time-quantitative polymerase chain reaction, flow cytometry, and JC1 assays were performed in vitro. RESULTS Forty-six differentially expressed genes, and 3439 module genes were identified. LYVE1, IL1RL1, and SERPINA3 were identified as significantly downregulated key genes, with IL1RL1 and SERPINA3 associated with heart failure risk. Benzo(a) pyrene, bisphenol A, estradiol, and particulate matter were found to simultaneously increase the expression of three key genes. In clinical samples, only LYVE1 and IL1RL1 were downregulated, as expected. Knockdown of these genes in cells led to increased necrosis and decreased mitochondrial membrane potential. Only estradiol reduced brain natriuretic peptide protein levels in hypertrophic cells. CONCLUSIONS LYVE1 and IL1RL1 were validated as key genes linked to mitochondrial permeability transition-driven necrosis in heart failure. Estradiol may have a therapeutic effect on heart failure.
Collapse
Affiliation(s)
- Zihe Zheng
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Ming Huang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Bo Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Tao Wang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zheng Xu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xin Jiang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaofu Dai
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
8
|
Zhu M, Wang Y, Park J, Titus A, Guo F. Dispensable regulation of brain development and myelination by the immune-related protein Serpina3n. J Neurochem 2025; 169:e16250. [PMID: 39450611 PMCID: PMC11810613 DOI: 10.1111/jnc.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Serine protease inhibitor clade A member 3n (Serpina3n) or its human orthologue SERPINA3 is a secretory immune-related molecule produced primarily in the liver and brain under homeostatic conditions and up-regulated in response to system inflammation. Yet, it remains elusive regarding its cellular identity and physiological significance in the development of the postnatal brain. Here, we reported that oligodendroglial lineage cells are the major cell population expressing Serpina3n protein in the postnatal murine CNS. Using loss-of-function genetic tools, we found that Serpina3n conditional knockout (cKO) from Olig2-expressing cells does not significantly affect cognitive and motor functions in mice. Serpina3n depletion does not appear to interfere with oligodendrocyte differentiation and developmental myelination nor affects the population of other glial cells and neurons in vivo. Interestingly, Serpina3n is significantly up-regulated in response to oxidative stress and its deficiency alleviates oxidative injury and diminishes cell senescence of oligodendrocytes in vitro. Together, our data suggest that the immune-related molecule Serpina3n plays a minor role in neural cell development under homeostasis, yet it primes oligodendrocytes for CNS insults and regulates oligodendrocyte health under injured conditions. Our findings raise the interest in pursuing its functional significance in the CNS under disease/injury conditions.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Yan Wang
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Joohyun Park
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Annlin Titus
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, School of Medicine, UC Davis, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
9
|
Nilsen DWT, Aarsetoey R, Poenitz V, Ueland T, Aukrust P, Michelsen AE, Brugger-Andersen T, Staines H, Grundt H. Sex-related differences in the prognostic utility of inflammatory and thrombotic cardiovascular risk markers in patients with chest pain of suspected coronary origin. IJC HEART & VASCULATURE 2025; 56:101600. [PMID: 39897419 PMCID: PMC11782882 DOI: 10.1016/j.ijcha.2025.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
Background α1-antichymotrypsin (SERPINA3), high sensitivity C-reactive protein (hsCRP) and pentraxin 3 (PTX3) are acute phase proteins triggered by inflammation, whereas D-dimer, fibrin monomer and α2-antiplasmin are thrombo-fibrinolytic markers. Sex differences in relation to cardiovascular disease were investigated. Methods A total of 871 consecutive patients (61.0 % males; females: 77.3 years, males 69.1 years) were included. Of these, 380 were diagnosed with an acute myocardial infarction (MI). Stepwise Cox regression models, applying normalized continuous loge/SD values, were fitted for the biomarkers with all-cause mortality, MI and stroke, respectively, and a composite endpoint within 7 years as the dependent variables. Results Except for α2-antiplasmin, all biomarkers were significantly associated with all-cause mortality and the combined endpoint in the univariate analysis. None of the inflammatory biomarkers predicted all-cause mortality in females after multivariable adjustment but were significant predictors in males (SERPINA3: HR 1.34 (95 %CI 1.16-1.56), p < 0.0001. hsCRP: HR 1.19 (95 %CI 1.02-1.38), p = 0.027. PTX3: HR 1.22 [95 %CI 1.04-1.44], p = 0.018. The p-value for interaction suggests a sex difference in the prognostic weighting of SERPINA3 (p = 0.015). None of the thrombo-fibrinolytic biomarkers predicted all-cause mortality in males after adjustment, but D-dimer and fibrin monomer were significant predictors of all-cause mortality in females (HR 1.51 [1.29-1.78], p < 0.0001, and HR 1.28 [1.08-1.53] p = 0.005, respectively). A trend towards interaction for D-dimer (p = 0.07) may suggest a sex difference in its prognostic weighting. Conclusion SERPINA3, hsCRP and PTX3 predicted long-term all-cause mortality in males but not in females. The opposite relationship was observed for D-dimer and fibrin monomer.
Collapse
Affiliation(s)
- Dennis Winston T. Nilsen
- Stavanger University Hospital, Department of Cardiology, Stavanger, Norway
- University of Bergen, Department of Clinical Science, Bergen, Norway
| | - Reidun Aarsetoey
- Stavanger University Hospital, Department of Cardiology, Stavanger, Norway
| | - Volker Poenitz
- Stavanger University Hospital, Department of Cardiology, Stavanger, Norway
| | - Thor Ueland
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of Northern Norway, Tromsø, Norway
- University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Pål Aukrust
- University of Oslo, Faculty of Medicine, Oslo, Norway
- Oslo University Hospital, Rikshospitalet, Research Institute of Internal Medicine, Oslo, Norway
- Oslo University Hospital, Rikshospitalet, Section of Clinical Immunology and Infectious Diseases, Oslo, Norway
| | - Annika Elisabet Michelsen
- University of Oslo, Faculty of Medicine, Oslo, Norway
- Oslo University Hospital, Rikshospitalet, Research Institute of Internal Medicine, Oslo, Norway
| | | | - Harry Staines
- Sigma Statistical Services, Balmullo, United Kingdom of Great Britain and Northern Ireland
| | - Heidi Grundt
- Stavanger University Hospital, Department of Cardiology, Stavanger, Norway
- Stavanger University Hospital, Department of Respiratory Medicine, Stavanger, Norway
| |
Collapse
|
10
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Vecchio M, Sortino M, Musumeci G, Vinciguerra M, Di Rosa M. Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations. Metab Brain Dis 2025; 40:83. [PMID: 39754632 DOI: 10.1007/s11011-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC). Nineteen microarray datasets were analyzed, with brain samples stratified by sex and age from areas including the prefrontal cortex, occipital lobe, and cerebellum. Results showed that SERPINA3 was significantly highly expressed in AD patients compared to NDHCs only in males. Sex-specific differences were observed only in NDHCs, where females had higher SERPINA3 levels than males. ROC analysis suggested that SERPINA3 could be a strong marker for distinguishing AD in males but not females. In NDHCs, SERPINA3 expression correlated more strongly with age than in AD patients. In brain regions, SERPINA3 expression in NDHC females was higher across multiple areas, while in AD patients, this difference was limited to the prefrontal cortex. The most significant differences between NDHC and AD patients were found in the occipital and prefrontal regions. Furthermore, we identified a potential nuclear localization for SERPINA3, supported by immunohistochemistry analysis from The Human Protein Atlas. Correlation with neuropathological traits, including Clinical Dementia Rating (CDR) and Braak Neurofibrillary Tangle Score, showed positive significant associations between SERPINA3 and CDR in AD patients. Performing a docking analysis, we revealed an interaction region between SERPINA3 and CHI3L1 proteins, suggesting a potential role in AD. Tissue transcriptomic deconvolution analysis indicated a significant overlap between SERPINA3 expression and microglial/astrocytic signatures, suggesting that SERPINA3 plays a key role in modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, Catania, 95100, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University Varna, Varna, Bulgaria
- Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
11
|
Yu Y, Yuan H, Han Q, Shi J, Liu X, Xue Y, Li Y. SMOC2, OGN, FCN3, and SERPINA3 could be biomarkers for the evaluation of acute decompensated heart failure caused by venous congestion. Front Cardiovasc Med 2024; 11:1406662. [PMID: 39717447 PMCID: PMC11663912 DOI: 10.3389/fcvm.2024.1406662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Background Venous congestion (VC) sets in weeks before visible clinical decompensation, progressively increasing cardiac strain and leading to acute heart failure (HF) decompensation. Currently, the field lacks a universally acknowledged gold standard and early detection methods for VC. Methods Using data from the GEO database, we identified VC's impact on HF through key genes using Limma and STRING databases. The potential mechanisms of HF exacerbation were explored via GO and KEGG enrichment analyses. Diagnostic genes for acute decompensated HF were discovered using LASSO, RF, and SVM-REF machine learning algorithms, complemented by single-gene GSEA analysis. A nomogram tool was developed for the diagnostic model's evaluation and application, with validation conducted on external datasets. Results Our findings reveal that VC influences 37 genes impacting HF via 8 genes, primarily affecting oxygen transport, binding, and extracellular matrix stability. Four diagnostic genes for HF's pre-decompensation phase were identified: SMOC2, OGN, FCN3, and SERPINA3. These genes showed high diagnostic potential, with AUCs for each gene exceeding 0.9 and a genomic AUC of 0.942. Conclusions Our study identifies four critical diagnostic genes for HF's pre-decompensated phase using bioinformatics and machine learning, shedding light on the molecular mechanisms through which VC worsens HF. It offers a novel approach for clinical evaluation of acute decompensated HF patient congestion status, presenting fresh insights into its pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Seuthe K, Picard FSR, Winkels H, Pfister R. Cancer Development and Progression in Patients with Heart Failure. Curr Heart Fail Rep 2024; 21:515-529. [PMID: 39340596 PMCID: PMC11511767 DOI: 10.1007/s11897-024-00680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW The co-occurrence of heart failure (HF) and cancer represents a complex and multifaceted medical challenge. Patients with prevalent cardiovascular disease (CVD), particularly HF, exhibit an increased risk of cancer development, raising questions about the intricate interplay between these two prevalent conditions. This review aims to explore the evolving landscape of cancer development in patients with HF, shedding light on potential mechanisms, risk factors, and clinical implications. RECENT FINDINGS Epidemiological data suggests higher cancer incidences and higher cancer mortality in HF patients, which are potentially more common in patients with HF with preserved ejection fraction due to related comorbidities. Moreover, recent preclinical data identified novel pathways and mediators including the protein SerpinA3 as potential drivers of cancer progression in HF patients, suggesting HF as an individual risk factor for cancer development. The review emphasizes preliminary evidence supporting cancer development in patients with HF, which offers several important clinical interventions such as cancer screening in HF patients, prevention addressing both HF and cancer, and molecular targets to treat cancer. However, there is need for more detailed understanding of molecular and cellular cross-talk between cancer and HF which can be derived from prospective assessments of cancer-related outcomes in CV trials and preclinical research of molecular mechanisms.
Collapse
Affiliation(s)
- Katharina Seuthe
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Felix Simon Ruben Picard
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Roman Pfister
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| |
Collapse
|
13
|
Soman A, Pradhan T, Krishna R, Hermon ES, Somanathan T, George JE, George G, Pothuraju R, Nair SA. Decoding early-onset of colorectal cancer: Insights into SERPINA3 expression patterns. Heliyon 2024; 10:e40119. [PMID: 39584126 PMCID: PMC11585722 DOI: 10.1016/j.heliyon.2024.e40119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024] Open
Abstract
Early-onset colorectal cancer (EOCRC), recognized as a distinct subgroup with an increased incidence over the past two decades, characterized by its aggressive nature and potentially unique molecular factors that differentiate it from traditional colorectal cancer (CRC). In this study, we investigated differentially expressed genes in a young-CRC patient using paired-end mRNA-sequencing. Validation of target genes through qRT-PCR highlighted a significant increase in SERPINA3 levels in EOCRC, representing a novel finding. Epithelial expression of SERPINA3 demonstrated a strong association with disease progression, whereas stromal expression showed a negative correlation. Our findings reveal the distinct expression patterns and potential involvement of SERPINA3 in both the initiation and progression of CRC, suggesting that SERPINA3 could serve as a marker for distinguishing early-onset from late-onset cases.
Collapse
Affiliation(s)
- Anjana Soman
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Tapas Pradhan
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - R. Krishna
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Evangeline Surya Hermon
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Thara Somanathan
- Pathology, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | | | - Gejoe George
- Department of General Surgery, Govt. Medical College Hospital, Trivandrum (formely Kollam Medical College), Kerala, India
| | - Ramesh Pothuraju
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - S. Asha Nair
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| |
Collapse
|
14
|
Li J, Zhu X, Zhu W, Li L, Wei H, Zhang S. Research Progress on the Impact of Human Chorionic Gonadotropin on Reproductive Performance in Sows. Animals (Basel) 2024; 14:3266. [PMID: 39595318 PMCID: PMC11591456 DOI: 10.3390/ani14223266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Human chorionic gonadotropin is a glycoprotein hormone produced by human or humanoid syncytiotrophoblasts that differentiate during pregnancy. Due to its superior stability and long-lasting effects compared to luteinizing hormone, it is often used to replace luteinizing hormone to regulate reproductive performance in sows. Human chorionic gonadotropin promotes oocyte maturation, follicle development, and luteinization, thereby increasing conception rates and supporting early embryonic development. In sow reproductive management, the application of human chorionic gonadotropin not only enhances ovulation synchrony but also improves the success rate of embryo implantation by regulating endometrial receptivity and immune mechanisms, significantly enhancing overall reproductive performance. This article primarily reviews the application of human chorionic gonadotropin in sow follicle development, luteal maintenance, and embryo implantation, providing theoretical support for its use in improving reproductive performance in sows.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agroanimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510640, China; (J.L.); (X.Z.); (W.Z.); (L.L.); (H.W.)
| |
Collapse
|
15
|
Barter MJ, Turner DA, Rice SJ, Hines M, Lin H, Falconer AMD, McDonnell E, Soul J, Arques MDC, Europe-Finner GN, Rowan AD, Young DA, Wilkinson DJ. SERPINA3 is a marker of cartilage differentiation and is essential for the expression of extracellular matrix genes during early chondrogenesis. Matrix Biol 2024; 133:33-42. [PMID: 39097037 DOI: 10.1016/j.matbio.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Serine proteinase inhibitors (serpins) are a family of structurally similar proteins which regulate many diverse biological processes from blood coagulation to extracellular matrix (ECM) remodelling. Chondrogenesis involves the condensation and differentiation of mesenchymal stem cells (MSCs) into chondrocytes which occurs during early development. Here, and for the first time, we demonstrate that one serpin, SERPINA3 (gene name SERPINA3, protein also known as alpha-1 antichymotrypsin), plays a critical role in chondrogenic differentiation. We observed that SERPINA3 expression was markedly induced at early time points during in vitro chondrogenesis. We examined the expression of SERPINA3 in human cartilage development, identifying significant enrichment of SERPINA3 in developing cartilage compared to total limb, which correlated with well-described markers of cartilage differentiation. When SERPINA3 was silenced using siRNA, cartilage pellets were smaller and contained lower proteoglycan as determined by dimethyl methylene blue assay (DMMB) and safranin-O staining. Consistent with this, RNA sequencing revealed significant downregulation of genes associated with cartilage ECM formation perturbing chondrogenesis. Conversely, SERPINA3 silencing had a negligible effect on the gene expression profile during osteogenesis suggesting the role of SERPINA3 is specific to chondrocyte differentiation. The global effect on cartilage formation led us to investigate the effect of SERPINA3 silencing on the master transcriptional regulator of chondrogenesis, SOX9. Indeed, we observed that SOX9 protein levels were markedly reduced at early time points suggesting a role for SERPINA3 in regulating SOX9 expression and activity. In summary, our data support a non-redundant role for SERPINA3 in enabling chondrogenesis via regulation of SOX9 levels.
Collapse
Affiliation(s)
- Matthew J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David A Turner
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK
| | - Sarah J Rice
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Mary Hines
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK
| | - Hua Lin
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian M D Falconer
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Euan McDonnell
- Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, Liverpool L69 7ZB, UK
| | - Jamie Soul
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, Liverpool L69 7ZB, UK
| | - Maria Del Carmen Arques
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - G Nicholas Europe-Finner
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Andrew D Rowan
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David J Wilkinson
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK.
| |
Collapse
|
16
|
Nobs E, Laschanzky K, Munke K, Movert E, Valfridsson C, Carlsson F. Cytosolic serpins act in a cytoprotective feedback loop that limits ESX-1-dependent death of Mycobacterium marinum-infected macrophages. mBio 2024; 15:e0038424. [PMID: 39087767 PMCID: PMC11389378 DOI: 10.1128/mbio.00384-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024] Open
Abstract
Serine protease inhibitors (serpins) constitute the largest family of protease inhibitors expressed in humans, but their role in infection remains largely unexplored. In infected macrophages, the mycobacterial ESX-1 type VII secretion system permeabilizes internal host membranes and causes leakage into the cytosol of host DNA, which induces type I interferon (IFN) production via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) surveillance pathway, and promotes infection in vivo. Using the Mycobacterium marinum infection model, we show that ESX-1-mediated type I IFN signaling in macrophages selectively induces the expression of serpina3f and serpina3g, two cytosolic serpins of the clade A3. The membranolytic activity of ESX-1 also caused leakage of cathepsin B into the cytosol where it promoted cell death, suggesting that the induction of type I IFN comes at the cost of lysosomal rupture and toxicity. However, the production of cytosolic serpins suppressed the protease activity of cathepsin B in this compartment and thus limited cell death, a function that was associated with increased bacterial growth in infected mice. These results suggest that cytosolic serpins act in a type I IFN-dependent cytoprotective feedback loop to counteract the inevitable toxic effect of ESX-1-mediated host membrane rupture. IMPORTANCE The ESX-1 type VII secretion system is a key virulence determinant of pathogenic mycobacteria. The ability to permeabilize host cell membranes is critical for several ESX-1-dependent virulence traits, including phagosomal escape and induction of the type I interferon (IFN) response. We find that it comes at the cost of lysosomal leakage and subsequent host cell death. However, our results suggest that ESX-1-mediated type I IFN signaling selectively upregulates serpina3f and serpina3g and that these cytosolic serpins limit cell death caused by cathepsin B that has leaked into the cytosol, a function that is associated with increased bacterial growth in vivo. The ability to rupture host membranes is widespread among bacterial pathogens, and it will be of interest to evaluate the role of cytosolic serpins and this type I IFN-dependent cytoprotective feedback loop in the context of human infection.
Collapse
Affiliation(s)
- Esther Nobs
- Department of Biology, Lund University, Lund, Sweden
| | | | - Kristina Munke
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elin Movert
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
17
|
Zhu M, Wang Y, Park J, Titus A, Guo F. Dispensable regulation of brain development and myelination by the immune-related protein Serpina3n. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579239. [PMID: 38370831 PMCID: PMC10871299 DOI: 10.1101/2024.02.06.579239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Serine protease inhibitor clade A member 3n (Serpina3n) or its human orthologue SERPINA3 is a secretory immune-related molecule produced primarily in the liver and brain under homeostatic conditions and upregulated in response to system inflammation. Yet it remains elusive regarding its cellular identity and physiological significance in the development of the postnatal brain. Here, we reported that oligodendroglial lineage cells are the major cell population expressing Serpina3n protein in the postnatal murine CNS. Using loss-of-function genetic tools, we found that Serpina3n conditional knockout (cKO) from Olig2-expressing cells does not significantly affect cognitive and motor functions in mice. Serpina3n depletion does not appear to interfere with oligodendrocyte differentiation and developmental myelination nor affects the population of other glial cells and neurons in vivo. Together, these data suggest that the immune-related molecule Serpina3n plays a minor role, if any, in regulating neural cell development in the postnatal brain under homeostatic conditions. We found that Serpina3n is significantly upregulated in response to oxidative stress, and it potentiates oxidative injury and cell senescence of oligodendrocytes. Our data raise the interest in pursuing its functional significance in the CNS under disease/injury conditions.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Yan Wang
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Joohyun Park
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Annlin Titus
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| | - Fuzheng Guo
- Department of Neurology, School of Medicine, UC Davis; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA
| |
Collapse
|
18
|
Jiang D, Nan H, Chen Z, Zou WQ, Wu L. Genetic insights into drug targets for sporadic Creutzfeldt-Jakob disease: Integrative multi-omics analysis. Neurobiol Dis 2024; 199:106599. [PMID: 38996988 DOI: 10.1016/j.nbd.2024.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
OBJECTIVE Sporadic Creutzfeldt-Jakob disease (sCJD) is a fatal rapidly progressive neurodegenerative disorder with no effective therapeutic interventions. We aimed to identify potential genetically-supported drug targets for sCJD by integrating multi-omics data. METHODS Multi-omics-wide association studies, Mendelian randomization, and colocalization analyses were employed to explore potential therapeutic targets using expression, single-cell expression, DNA methylation, and protein quantitative trait locus data from blood and brain tissues. Outcome data was from a case-control genome-wide association study, which included 4110 sCJD patients and 13,569 controls. Further investigations encompassed druggability, potential side effects, and associated biological pathways of the identified targets. RESULTS Integrative multi-omics analysis identified 23 potential therapeutic targets for sCJD, with five targets (STX6, XYLT2, PDIA4, FUCA2, KIAA1614) having higher levels of evidence. One target (XYLT2) shows promise for repurposing, two targets (XYLT2, PDIA4) are druggable, and three (STX6, KIAA1614, and FUCA2) targets represent potential future breakthrough points. The expression level of STX6 and XYLT2 in neurons and oligodendrocytes was closely associated with an increased risk of sCJD. Brain regions with high expression of STX6 or causal links to sCJD were often those areas commonly affected by sCJD. CONCLUSIONS Our study identified five potential therapeutic targets for sCJD. Further investigations are warranted to elucidate the mechanisms underlying the new targets for developing disease therapies or initiate clinical trials.
Collapse
Affiliation(s)
- Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haitian Nan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen-Quan Zou
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Cao D, Zhang S, Zhang Y, Shao M, Yang Q, Wang P. Association between gynecologic cancer and Alzheimer's disease: a bidirectional mendelian randomization study. BMC Cancer 2024; 24:1032. [PMID: 39169299 PMCID: PMC11337634 DOI: 10.1186/s12885-024-12787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) manifests with a higher rate of occurrence in women. Previous epidemiological studies have suggested a potential association between AD and gynecological cancers, but the causal relationship between them remains unclear. This study aims to explore the causal link between 12 types of gynecological cancers and AD using a bidirectional Mendelian randomization (MR) approach. METHODS We obtained genetic correlation tools for AD using data from the most extensive genome-wide association study. Genetic correlation data for 12 types of gynecological cancers were also sourced from the Finnish Biobank. These cancers include breast cancer (BC), cervical adenocarcinoma (CA), cervical squamous cell carcinoma (CSCC), cervical cancer (CC), endometrial cancer (EC), ovarian endometrioid carcinoma (OEC), ovarian cancer (OC), ovarian serous carcinoma (OSC), breast carcinoma in situ (BCIS), cervical carcinoma in situ (CCIS), endometrial carcinoma in situ (ECIS), and vulvar carcinoma in situ (VCIS). We used the inverse-variance weighted (IVW) model for causal analysis and conducted horizontal pleiotropy tests, heterogeneity tests, MR-PRESSO tests, and leave-one-out analyses to ensure the robustness of our results. We also applied replication analysis and meta-analysis to further validate our experimental results. RESULTS The study found that EC (P_IVW =0.037, OR [95% CI] = 1.032 [1.002, 1.064]) and CCIS (P_IVW = 0.046, OR [95% CI] = 1.032 [1.011, 1.064]) increase the risk of AD, whereas OC was negatively correlated with AD (P_IVW = 0.016, OR [95% CI] = 0.974[0.954, 0.995]). In reverse MR analysis, AD increased the risk of CC (P_IVW = 0.039, OR [95% CI] = 1.395 [1.017, 1.914]) and VCIS (P_IVW = 0.041, OR [95% CI] = 1.761 [1.027, 2.021]), but was negatively correlated with OEC (P_IVW = 0.034, OR [95% CI] = 0.634 [0.417, 0.966]). Sensitivity analysis results demonstrated robustness. These findings were further substantiated through replication and meta-analyses. CONCLUSIONS Our MR study supports a causal relationship between AD and gynecological cancers. This encourages further research into the incidence of gynecological cancers in female Alzheimer's patients and the active prevention of AD.
Collapse
Affiliation(s)
- Di Cao
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Wuhan, Hubei, 430065, China
| | - Shaobo Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, 130000, China
| | - Yini Zhang
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Wuhan, Hubei, 430065, China
| | - Ming Shao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Qiguang Yang
- The Second Affiliated Hospital of Changchun University of Chinese Medicine, Changchun Hospital of Chinese Medicine, Changchun, Jilin, 130000, China
| | - Ping Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Wuhan, Hubei, 430065, China.
| |
Collapse
|
20
|
Ullah Z, Tao Y, Huang J. Integrated Bioinformatics-Based Identification and Validation of Neuroinflammation-Related Hub Genes in Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:8193. [PMID: 39125762 PMCID: PMC11311784 DOI: 10.3390/ijms25158193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Glaucoma is a leading cause of permanent blindness, affecting 80 million people worldwide. Recent studies have emphasized the importance of neuroinflammation in the early stages of glaucoma, involving immune and glial cells. To investigate this further, we used the GSE27276 dataset from the GEO (Gene Expression Omnibus) database and neuroinflammation genes from the GeneCards database to identify differentially expressed neuroinflammation-related genes associated with primary open-angle glaucoma (POAG). Subsequently, these genes were submitted to Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes for pathway enrichment analyses. Hub genes were picked out through protein-protein interaction networks and further validated using the external datasets (GSE13534 and GSE9944) and real-time PCR analysis. The gene-miRNA regulatory network, receiver operating characteristic (ROC) curve, genome-wide association study (GWAS), and regional expression analysis were performed to further validate the involvement of hub genes in glaucoma. A total of 179 differentially expressed genes were identified, comprising 60 upregulated and 119 downregulated genes. Among them, 18 differentially expressed neuroinflammation-related genes were found to overlap between the differentially expressed genes and neuroinflammation-related genes, with six genes (SERPINA3, LCN2, MMP3, S100A9, IL1RN, and HP) identified as potential hub genes. These genes were related to the IL-17 signaling pathway and tyrosine metabolism. The gene-miRNA regulatory network showed that these hub genes were regulated by 118 miRNAs. Notably, GWAS data analysis successfully identified significant single nucleotide polymorphisms (SNPs) corresponding to these six hub genes. ROC curve analysis indicated that our genes showed significant accuracy in POAG. The expression of these genes was further confirmed in microglia, Müller cells, astrocytes, and retinal ganglion cells in the Spectacle database. Moreover, three hub genes, SERPINA3, IL1R1, and LCN2, were validated as potential diagnostic biomarkers for high-risk glaucoma patients, showing increased expression in the OGD/R-induced glaucoma model. This study suggests that the identified hub genes may influence the development of POAG by regulation of neuroinflammation, and it may offer novel insights into the management of POAG.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Z.U.); (Y.T.)
| |
Collapse
|
21
|
Smagin DA, Bezryadnov DV, Zavialova MG, Abramova AY, Pertsov SS, Kudryavtseva NN. Blood Plasma Markers in Depressed Mice under Chronic Social Defeat Stress. Biomedicines 2024; 12:1485. [PMID: 39062058 PMCID: PMC11275122 DOI: 10.3390/biomedicines12071485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
It has previously been shown that, in mice, chronic social defeat stress in daily agonistic interactions leads to a depression-like state similar to that in depressive patients. With this model, it has become obvious that it is possible to study peripheral markers of the depression-like state in an experiment. This paper was aimed at searching for protein markers in the blood plasma of depressed mice in the chronic social conflict model, which allows for us to obtain male mice with repeated experiences of defeat. Proteomic analysis of blood plasma samples was conducted to identify proteins differentially expressed in this state. There were changes in the expression levels of the amyloid proteins SAA1, SAA4, and SAMP and apolipoproteins APOC3, APOD, and ADIPO in the blood plasma of depressed mice compared with controls (unstressed mice). Changes in the expression of serine protease inhibitors and/or proteins associated with lipid metabolism, inflammation, or immune function [ITIH4, SPA3, A1AT5, HTP (HP), CO9, and A2MG] were also found. Here, we showed that chronic social stress is accompanied by increased levels of amyloid proteins and apolipoproteins in blood plasma. A similarity was noted between the marker protein expression changes in the depressed mice and those in patients with Alzheimer's disease. These data indicate a psychopathogenic role of chronic social stress, which can form a predisposition to neurodegenerative and/or psychoemotional disorders.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry V. Bezryadnov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P.K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia; (D.V.B.); (S.S.P.)
| | | | - Anastasia Yu. Abramova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P.K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia; (D.V.B.); (S.S.P.)
| | - Sergey S. Pertsov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P.K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia; (D.V.B.); (S.S.P.)
| | - Natalia N. Kudryavtseva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
22
|
Abu Aziz N, Christianus A, Wan Solahudin WMS, Ismail IS, Low CF. Comparative proteome analysis revealed potential biomarkers and the underlying immune mechanisms in Vibrio-resistant hybrid grouper, Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂. JOURNAL OF FISH DISEASES 2024; 47:e13940. [PMID: 38523352 DOI: 10.1111/jfd.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Vibrio alginolyticus is the causative agent of vibriosis, a common bacterial infection in grouper aquaculture that is associated with the development of haemorrhagic and non-haemorrhagic ulcerations on the fish. In the present study, comparative proteome analysis was performed on serum samples from Vibrio-resistant and Vibrio-susceptible grouper. Samples were analysed using high-throughput LC-MS/MS and identified 2770 unique peptides that corresponded to 344 proteins. Subsequent analysis identified 21 proteins that were significantly up-regulated in the resistant group compared to the control and the susceptible groups. Those proteins are associated with immunostimulatory effects, signalling and binding cascade, metabolism, and maintaining tissue integrity and physiological condition. Besides, potential protein biomarkers related to the immune system were identified, which could be associated with the disease-resistant phenotype. These data provide insights into the underlying immune mechanism of hybrid groupers upon Vibrio sp. infection.
Collapse
Affiliation(s)
- Nurhikmah Abu Aziz
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Annie Christianus
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | | | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Selangor, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
23
|
Krüger DN, Bosman M, Van Assche CXL, Wesley CD, Cillero-Pastor B, Delrue L, Heggermont W, Bartunek J, De Meyer GRY, Van Craenenbroeck EM, Guns PJ, Franssen C. Characterization of systolic and diastolic function, alongside proteomic profiling, in doxorubicin-induced cardiovascular toxicity in mice. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:40. [PMID: 38909263 PMCID: PMC11193203 DOI: 10.1186/s40959-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The anthracycline doxorubicin (DOX) is a highly effective anticancer agent, especially in breast cancer and lymphoma. However, DOX can cause cancer therapy-related cardiovascular toxicity (CTR-CVT) in patients during treatment and in survivors. Current diagnostic criteria for CTR-CVT focus mainly on left ventricular systolic dysfunction, but a certain level of damage is required before it can be detected. As diastolic dysfunction often precedes systolic dysfunction, the current study aimed to identify functional and molecular markers of DOX-induced CTR-CVT with a focus on diastolic dysfunction. METHODS Male C57BL/6J mice were treated with saline or DOX (4 mg/kg, weekly i.p. injection) for 2 and 6 weeks (respectively cumulative dose of 8 and 24 mg/kg) (n = 8 per group at each time point). Cardiovascular function was longitudinally investigated using echocardiography and invasive left ventricular pressure measurements. Subsequently, at both timepoints, myocardial tissue was obtained for proteomics (liquid-chromatography with mass-spectrometry). A cohort of patients with CTR-CVT was used to complement the pre-clinical findings. RESULTS DOX-induced a reduction in left ventricular ejection fraction from 72 ± 2% to 55 ± 1% after 2 weeks (cumulative 8 mg/kg DOX). Diastolic dysfunction was demonstrated as prolonged relaxation (increased tau) and heart failure was evident from pulmonary edema after 6 weeks (cumulative 24 mg/kg DOX). Myocardial proteomic analysis revealed an increased expression of 12 proteins at week 6, with notable upregulation of SERPINA3N in the DOX-treated animals. The human ortholog SERPINA3 has previously been suggested as a marker in CTR-CVT. Upregulation of SERPINA3N was confirmed by western blot, immunohistochemistry, and qPCR in murine hearts. Thereby, SERPINA3N was most abundant in the endothelial cells. In patients, circulating SERPINA3 was increased in plasma of CTR-CVT patients but not in cardiac biopsies. CONCLUSION We showed that mice develop heart failure with impaired systolic and diastolic function as result of DOX treatment. Additionally, we could identify increased SERPINA3 levels in the mice as well as patients with DOX-induced CVT and demonstrated expression of SERPINA3 in the heart itself, suggesting that SERPINA3 could serve as a novel biomarker.
Collapse
Affiliation(s)
- Dustin N Krüger
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium.
| | - Matthias Bosman
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Charles X L Van Assche
- Division M4I - Imaging Mass Spectrometry (IMS), Faculty of Health, Medicine and Life Sciences, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Callan D Wesley
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Berta Cillero-Pastor
- Division M4I - Imaging Mass Spectrometry (IMS), Faculty of Health, Medicine and Life Sciences, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Leen Delrue
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Ward Heggermont
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Jozef Bartunek
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Guido R Y De Meyer
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, University of Antwerp, Wilrijkstraat 10, Edegem, B-2650, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, B-2650, Belgium
| | - Pieter-Jan Guns
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, University of Antwerp, Wilrijkstraat 10, Edegem, B-2650, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, B-2650, Belgium
| |
Collapse
|
24
|
Seo D, Lee CM, Apio C, Heo G, Timsina J, Kohlfeld P, Boada M, Orellana A, Fernandez MV, Ruiz A, Morris JC, Schindler SE, Park T, Cruchaga C, Sung YJ. Sex and aging signatures of proteomics in human cerebrospinal fluid identify distinct clusters linked to neurodegeneration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309102. [PMID: 38947020 PMCID: PMC11213043 DOI: 10.1101/2024.06.18.24309102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sex and age are major risk factors for chronic diseases. Recent studies examining age-related molecular changes in plasma provided insights into age-related disease biology. Cerebrospinal fluid (CSF) proteomics can provide additional insights into brain aging and neurodegeneration. By comprehensively examining 7,006 aptamers targeting 6,139 proteins in CSF obtained from 660 healthy individuals aged from 43 to 91 years old, we subsequently identified significant sex and aging effects on 5,097 aptamers in CSF. Many of these effects on CSF proteins had different magnitude or even opposite direction as those on plasma proteins, indicating distinctive CSF-specific signatures. Network analysis of these CSF proteins revealed not only modules associated with healthy aging but also modules showing sex differences. Through subsequent analyses, several modules were highlighted for their proteins implicated in specific diseases. Module 2 and 6 were enriched for many aging diseases including those in the circulatory systems, immune mechanisms, and neurodegeneration. Together, our findings fill a gap of current aging research and provide mechanistic understanding of proteomic changes in CSF during a healthy lifespan and insights for brain aging and diseases.
Collapse
|
25
|
Tan H, Wang J, Li F, Peng Y, Lan J, Zhang Y, Zhao D, Bao Y. Prediction Value of Initial Serum Levels of SERPINA3 in Intracranial Pressure and Long-Term Neurological Outcomes in Traumatic Brain Injury. Diagnostics (Basel) 2024; 14:1245. [PMID: 38928660 PMCID: PMC11202773 DOI: 10.3390/diagnostics14121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a severe neurological condition characterized by inflammation in the central nervous system. SERPINA3 has garnered attention as a potential biomarker for assessing this inflammation. Our study aimed to explore the predictive value of postoperative serum SERPINA3 levels in identifying the risk of cerebral edema and its prognostic implications in TBI. This study is a prospective observational study, including 37 patients with TBI who finally met our criteria. The Glasgow Outcome Scale (GOS), Levels of Cognitive Functioning (LCF), Disability Rating Scale (DRS), and Early Rehabilitation Barthel Index (ERBI) scores at six months after trauma were defined as the main study endpoint. We further calculated the ventricle-to-intracranial-volume ratio (VBR) at 6 months from CT scans. The study included patients with Glasgow Coma Scale (GCS) scores ranging from 3 to 8, who were subsequently categorized into two groups: the critical TBI group (GCS 3-5 points) and the severe TBI group (GCS 6-8 points). Within the critical TBI group, SERPINA3 levels were notably lower. However, among patients with elevated SERPINA3 levels, both the peak intracranial pressure (ICP) and average mannitol consumption were significantly reduced compared with those of patients with lower SERPINA3 levels. In terms of the 6-month outcomes measured via the GOS, LCF, DRS, and ERBI, lower levels of SERPINA3 were indicative of poorer prognosis. Furthermore, we found a negative correlation between serum SERPINA3 levels and the VBR. The receiver operating characteristic (ROC) curve and decision curve analysis (DCA) demonstrated the predictive performance of SERPINA3. In conclusion, incorporating the novel biomarker SERPINA3 alongside traditional assessment tools offers neurosurgeons an effective and easily accessible means, which is readily accessible early on, to predict the risk of intracranial pressure elevation and long-term prognosis in TBI patients.
Collapse
Affiliation(s)
- Haoyuan Tan
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Jiamian Wang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Fengshi Li
- Neurologic Surgery Department, Huashan Hospital, Fudan University, Shanghai 200437, China;
| | - Yidong Peng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai 200127, China;
| | - Jin Lan
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Yuanda Zhang
- Minhang Hospital, Fudan University, Shanghai 200437, China;
| | - Dongxu Zhao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| | - Yinghui Bao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; (H.T.); (J.W.); (J.L.)
| |
Collapse
|
26
|
Santiago-Balmaseda A, Aguirre-Orozco A, Valenzuela-Arzeta IE, Villegas-Rojas MM, Pérez-Segura I, Jiménez-Barrios N, Hurtado-Robles E, Rodríguez-Hernández LD, Rivera-German ER, Guerra-Crespo M, Martinez-Fong D, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Neurodegenerative Diseases: Unraveling the Heterogeneity of Astrocytes. Cells 2024; 13:921. [PMID: 38891053 PMCID: PMC11172252 DOI: 10.3390/cells13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Annai Aguirre-Orozco
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Irais E. Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Natalie Jiménez-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Ernesto Hurtado-Robles
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Erick R. Rivera-German
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico;
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| |
Collapse
|
27
|
Prodromou SI, Chatzopoulou F, Saiti A, Giannopoulos-Dimitriou A, Koudoura LA, Pantazaki AA, Chatzidimitriou D, Vasiliou V, Vizirianakis IS. Hepatotoxicity assessment of innovative nutritional supplements based on olive-oil formulations enriched with natural antioxidants. Front Nutr 2024; 11:1388492. [PMID: 38812942 PMCID: PMC11133736 DOI: 10.3389/fnut.2024.1388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.
Collapse
Affiliation(s)
- Sofia I. Prodromou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Labnet Laboratories, Department of Molecular Biology and Genetics, Thessaloniki, Greece
| | - Aikaterini Saiti
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loukia A. Koudoura
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Health and Life Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
28
|
Domaniku-Waraich A, Agca S, Toledo B, Sucuoglu M, Özen SD, Bilgic SN, Arabaci DH, Kashgari AE, Kir S. Oncostatin M signaling drives cancer-associated skeletal muscle wasting. Cell Rep Med 2024; 5:101498. [PMID: 38569555 PMCID: PMC11031427 DOI: 10.1016/j.xcrm.2024.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Progressive weakness and muscle loss are associated with multiple chronic conditions, including muscular dystrophy and cancer. Cancer-associated cachexia, characterized by dramatic weight loss and fatigue, leads to reduced quality of life and poor survival. Inflammatory cytokines have been implicated in muscle atrophy; however, available anticytokine therapies failed to prevent muscle wasting in cancer patients. Here, we show that oncostatin M (OSM) is a potent inducer of muscle atrophy. OSM triggers cellular atrophy in primary myotubes using the JAK/STAT3 pathway. Identification of OSM targets by RNA sequencing reveals the induction of various muscle atrophy-related genes, including Atrogin1. OSM overexpression in mice causes muscle wasting, whereas muscle-specific deletion of the OSM receptor (OSMR) and the neutralization of circulating OSM preserves muscle mass and function in tumor-bearing mice. Our results indicate that activated OSM/OSMR signaling drives muscle atrophy, and the therapeutic targeting of this pathway may be useful in preventing muscle wasting.
Collapse
Affiliation(s)
| | - Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Batu Toledo
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Melis Sucuoglu
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Dilsad Hilal Arabaci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Aynur Erkin Kashgari
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye.
| |
Collapse
|
29
|
Zhu M, Lan Z, Park J, Gong S, Wang Y, Guo F. Regulation of CNS pathology by Serpina3n/SERPINA3: The knowns and the puzzles. Neuropathol Appl Neurobiol 2024; 50:e12980. [PMID: 38647003 PMCID: PMC11131959 DOI: 10.1111/nan.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Neuroinflammation, blood-brain barrier (BBB) dysfunction, neuron and glia injury/death and myelin damage are common central nervous system (CNS) pathologies observed in various neurological diseases and injuries. Serine protease inhibitor (Serpin) clade A member 3n (Serpina3n), and its human orthologue SERPINA3, is an acute-phase inflammatory glycoprotein secreted primarily by the liver into the bloodstream in response to systemic inflammation. Clinically, SERPINA3 is dysregulated in brain cells, cerebrospinal fluid and plasma in various neurological conditions. Although it has been widely accepted that Serpina3n/SERPINA3 is a reliable biomarker of reactive astrocytes in diseased CNS, recent data have challenged this well-cited concept, suggesting instead that oligodendrocytes and neurons are the primary sources of Serpina3n/SERPINA3. The debate continues regarding whether Serpina3n/SERPINA3 induction represents a pathogenic or a protective mechanism. Here, we propose possible interpretations for previously controversial data and present perspectives regarding the potential role of Serpina3n/SERPINA3 in CNS pathologies, including demyelinating disorders where oligodendrocytes are the primary targets. We hypothesise that the 'good' or 'bad' aspects of Serpina3n/SERPINA3 depend on its cellular sources, its subcellular distribution (or mis-localisation) and/or disease/injury types. Furthermore, circulating Serpina3n/SERPINA3 may cross the BBB to impact CNS pathologies. Cell-specific genetic tools are critically important to tease out the potential roles of cell type-dependent Serpina3n in CNS diseases/injuries.
Collapse
Affiliation(s)
- Meina Zhu
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Zhaohui Lan
- Center for Brain Health and Brain Technology, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | | | - Yan Wang
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, California, USA
| |
Collapse
|
30
|
Hardesty J, Hawthorne M, Day L, Warner J, Warner D, Gritsenko M, Asghar A, Stolz A, Morgan T, McClain C, Jacobs J, Kirpich IA. Steroid responsiveness in alcohol-associated hepatitis is linked to glucocorticoid metabolism, mitochondrial repair, and heat shock proteins. Hepatol Commun 2024; 8:e0393. [PMID: 38437061 PMCID: PMC10914234 DOI: 10.1097/hc9.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/15/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Alcohol-associated hepatitis (AH) is one of the clinical presentations of alcohol-associated liver disease. AH has poor prognosis, and corticosteroids remain the mainstay of drug therapy. However, ~40% of patients do not respond to this treatment, and the mechanisms underlying the altered response to corticosteroids are not understood. The current study aimed to identify changes in hepatic protein expression associated with responsiveness to corticosteroids and prognosis in patients with AH. METHODS Patients with AH were enrolled based on the National Institute on Alcohol Abuse and Alcoholism inclusion criteria for acute AH and further confirmed by a diagnostic liver biopsy. Proteomic analysis was conducted on liver samples acquired from patients with AH grouped as nonresponders (AH-NR, n = 7) and responders (AH-R, n = 14) to corticosteroids, and nonalcohol-associated liver disease controls (n = 10). The definition of responders was based on the clinical prognostic model, the Lille Score, where a score < 0.45 classified patients as AH-R and a score > 0.45 as AH-NR. Primary outcomes used to assess steroid response were Lille Score (eg, improved liver function) and survival at 24 weeks. RESULTS Reduced levels of the glucocorticoid receptor and its transcriptional co-activator, glucocorticoid modulatory element-binding protein 2, were observed in the hepatic proteome of AH-NR versus AH-R. The corticosteroid metabolizing enzyme, 11-beta-hydroxysteroid dehydrogenase 1, was increased in AH-NR versus AH-R along with elevated mitochondrial DNA repair enzymes, while several proteins of the heat shock pathway were reduced. Analysis of differentially expressed proteins in AH-NR who survived 24 weeks relative to AH-NR nonsurvivors revealed several protein expression changes, including increased levels of acute phase proteins, elevated coagulation factors, and reduced mast cell markers. CONCLUSIONS This study identified hepatic proteomic changes that may predict responsiveness to corticosteroids and mortality in patients with AH.
Collapse
Affiliation(s)
- Josiah Hardesty
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Meghan Hawthorne
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Le Day
- Department of Biological Sciences, Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jeffrey Warner
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Dennis Warner
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
| | - Marina Gritsenko
- Department of Biological Sciences, Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aliya Asghar
- Department of Medicine and Research Services, Medicine and Research Services, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Andrew Stolz
- Department of Medicine, Division of Gastrointestinal and Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Timothy Morgan
- Department of Medicine and Research Services, Medicine and Research Services, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Craig McClain
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Robley Rex Veterans Medical Center, Louisville, Kentucky, USA
- Department of Medicine, University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky USA
| | - Jon Jacobs
- Department of Biological Sciences, Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Irina A. Kirpich
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
31
|
Nilsen DWT, Aarsetoey R, Poenitz V, Ueland T, Aukrust P, Michelsen AE, Brugger-Andersen T, Staines H, Grundt H. α1-Antichymotrypsin Complex (SERPINA3) Is an Independent Predictor of All-Cause but Not Cardiovascular Mortality in Patients Hospitalized for Chest Pain of Suspected Coronary Origin. Cardiology 2024; 149:338-346. [PMID: 38402860 PMCID: PMC11309044 DOI: 10.1159/000537919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION SERPINA3 is an acute-phase protein triggered by inflammation. It is upregulated after an acute myocardial infarction (AMI). Data on its long-term prognostic value in MI patients are scarce. We aimed to assess the utility of SERPINA3 as a prognostic marker in patients hospitalized for chest pain of suspected coronary origin. METHODS A total of 871 consecutive patients, 386 diagnosed with AMI, were included. Stepwise Cox regression models, applying continuous loge-transformed values, were fitted for the biomarker with all-cause mortality and cardiac death within 2 years or all-cause mortality within the median 7 years as dependent variables. An analysis of MI and stroke, and combined endpoints, respectively, was added. The hazard ratio (HR) (95% CI) was assessed in a univariate and multivariable model. RESULTS Plasma samples from 847 patients were available. By 2-year follow-up, 138 (15.8%) patients had died, of which 86 were cardiac deaths. The univariate analysis showed a significant association between SERPINA3 and all-cause mortality (HR 1.41 [95% 1.19-1.68], p < 0.001) but not for cardiac death. Associations after adjustment were non-significant. By 7-year follow-up, 332 (38.1%) patients had died. SERPINA3 was independently associated with all-cause mortality from the third year onward. The HR was 1.14 (95% CI, 1.02-1.28), p = 0.022. Similar results applied to combined endpoints, but not for MI and stroke, respectively. The prognostic value of SERPINA3 was limited to non-AMI patients. No independent associations were noted among AMI patients. CONCLUSIONS SERPINA3 predicts long-term all-cause mortality but fails to predict outcome in AMI patients.
Collapse
Affiliation(s)
- Dennis Winston T. Nilsen
- Stavanger University Hospital, Department of Cardiology, Stavanger, Norway
- University of Bergen, Department of Clinical Science, Bergen, Norway
| | - Reidun Aarsetoey
- Stavanger University Hospital, Department of Cardiology, Stavanger, Norway
| | - Volker Poenitz
- Stavanger University Hospital, Department of Cardiology, Stavanger, Norway
| | - Thor Ueland
- Department of Clinical Medicine, Thrombosis Research Center, UiT - The Arctic University of Norway, Tromsø, Norway
- University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Pål Aukrust
- University of Oslo, Faculty of Medicine, Oslo, Norway
- Oslo University Hospital, Rikshospitalet, Research Institute of Internal Medicine, Oslo, Norway
- Oslo University Hospital, Rikshospitalet, Section of Clinical Immunology and Infectious Diseases, Oslo, Norway
| | - Annika Elisabet Michelsen
- University of Oslo, Faculty of Medicine, Oslo, Norway
- Oslo University Hospital, Rikshospitalet, Research Institute of Internal Medicine, Oslo, Norway
| | | | | | - Heidi Grundt
- Stavanger University Hospital, Department of Cardiology, Stavanger, Norway
- Stavanger University Hospital, Department of Respiratory Medicine, Stavanger, Norway
| |
Collapse
|
32
|
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A, Sharma S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38324301 PMCID: PMC10854419 DOI: 10.1167/iovs.65.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.
Collapse
Affiliation(s)
- Richard Kontoh-Twumasi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Stepan Budkin
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
33
|
de Mezer M, Markowska A, Markowska J, Krzyżaniak M, Grabarek BO, Pokusa F, Żurawski J. Immunohistochemical Expression of the SERPINA3 Protein in Uterine Fibroids. Curr Pharm Biotechnol 2024; 25:1758-1765. [PMID: 38204235 DOI: 10.2174/0113892010264673231111082438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND SERPINA3 (α-1-antichymotrypsin, AACT, ACT) is produced by the liver and released into plasma in an anti-inflammatory response and plays a role as a modulator of extracellular matrix (ECM) by inhibiting serine proteases. Numerous studies proved an increased level of SERPINA3 in many types of cancer, which could be linked to SERPINA3's anti-apoptotic function. AIM In the context of progressive ECM fibrosis during the development of uterine fibroids, which are one of the most common hypertrophic changes within the uterus, it is interesting to describe the level of SERPINA3 protein in this type of lesion and the surrounding tissues. METHODS We used immunohistochemical staining of the SERPINA3 protein and compared the intensity of the signal between the myoma tissue and the surrounding normal tissue. RESULTS We showed a surprising reduction in the amount of the SERPINA3 protein within uterine fibroids compared to surrounding tissues. CONCLUSION This observation sheds new light on the role of this protein in the formation of proliferative changes and suggests that understanding the mechanism of its action may become the basis for the development of new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mateusz de Mezer
- Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Markowska
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Monika Krzyżaniak
- Department of Oncological Pathology, Lord's Transfiguration Clinical Hospital, Partner of Poznan University of Medical Sciences, Poznan, Poland
| | - Beniamin Oskar Grabarek
- Collegium Medicum, WSB University, 41-300 Dabrowa Gornicza, Poland
- Department of Histology, Cytophysiology and Embryology, Katowice School of Technology, Katowice, Poland
| | - Filip Pokusa
- Faculty of Economics and Pedagogy, Higher School of Management and Administration in Opole, 46-020 Opole, Poland
| | - Jakub Żurawski
- Department of Immunobiology, Chair of Medical Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
34
|
Chiorescu RM, Lazar RD, Ruda A, Buda AP, Chiorescu S, Mocan M, Blendea D. Current Insights and Future Directions in the Treatment of Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2023; 25:440. [PMID: 38203612 PMCID: PMC10778923 DOI: 10.3390/ijms25010440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Heart failure is a clinical syndrome associated with poor quality of life, substantial healthcare resource utilization, and premature mortality, in large part related to high rates of hospitalizations. The clinical manifestations of heart failure are similar regardless of the ejection fraction. Unlike heart failure with reduced ejection fraction, there are few therapeutic options for treating heart failure with preserved ejection fraction. Molecular therapies that have shown reduced mortality and morbidity in heart failure with reduced ejection have not been proven to be effective for patients with heart failure and preserved ejection fraction. The study of pathophysiological processes involved in the production of heart failure with preserved ejection fraction is the basis for identifying new therapeutic means. In this narrative review, we intend to synthesize the existing therapeutic means, but also those under research (metabolic and microRNA therapy) for the treatment of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Roxana-Daiana Lazar
- Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania; (A.R.); (A.P.B.); (D.B.)
| | - Alexandru Ruda
- Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania; (A.R.); (A.P.B.); (D.B.)
| | - Andreea Paula Buda
- Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania; (A.R.); (A.P.B.); (D.B.)
| | - Stefan Chiorescu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania;
| | - Mihaela Mocan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Dan Blendea
- Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania; (A.R.); (A.P.B.); (D.B.)
- Department of Cardiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| |
Collapse
|
35
|
Liu H, Wu X, Wang D, Li Q, Zhang X, Xu L. Unveiling the role of miR-137-3p/miR-296-5p/SERPINA3 signaling in colorectal cancer progression: integrative analysis of gene expression profiles and in vitro studies. BMC Med Genomics 2023; 16:327. [PMID: 38087342 PMCID: PMC10714458 DOI: 10.1186/s12920-023-01763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy worldwide, with increasing incidence and mortality rates. Although treatment options have improved, CRC remains a leading cause of death due to metastasis. Early intervention can significantly improve patient outcomes, making it crucial to understand the molecular mechanisms underlying CRC metastasis. In this study, we performed bioinformatics analysis to identify potential genes associated with CRC metastasis. METHODS We downloaded and integrated gene expression datasets (GSE89393, GSE100243, and GSE144259) from GEO database. Differential expression analysis was conducted, followed by Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub gene SERPINA3 was selected for further in vitro functional studies. Additionally, the role of miR-137-3p/miR-296-5p/ Serpin family A member 3 (SERPINA3) in CRC cell function was investigated using in vitro assays. RESULTS Analysis of the gene expression datasets revealed differentially expressed genes (DEGs) associated with CRC metastasis. GO analysis showed enrichment in biological processes such as blood coagulation regulation and wound healing. Cellular component analysis highlighted extracellular matrix components and secretory granules. Molecular function analysis identified activities such as serine-type endopeptidase inhibition and lipoprotein receptor binding. KEGG analysis revealed involvement in pathways related to complement and coagulation cascades, cholesterol metabolism, and immune responses. The common DEGs among the datasets were further investigated. We identified SERPINA3 as a hub gene associated with CRC metastasis. SERPINA3 exerted enhanced effects on migration, proliferation and epithelial-mesenchymal transition (EMT) and inhibitory effects on caspase-3/-9 activities in HT29 and SW620 cells. MiR-137-3p overexpression increased activities of caspase-3/-9, decreased migration and proliferation, and also repressed EMT in HT29 cells, which were obviously attenuated by SERPINA3 enforced overexpression. Consistently, SERPINA3 enforced overexpression also largely reversed miR-296-5p mimics-induced increased in activities of caspase-3/-9, decrease in migration, proliferation and EMT in HT29 cells. CONCLUSION Through bioinformatics analysis, we identified potential genes associated with CRC metastasis. The functional studies focusing on SERPINA3/miR-137-3p/miR-296-5p further consolidated its role in regulating CRC progression. Our findings provide insights into novel mechanisms underlying CRC metastasis and might contribute to the development of effective treatment strategies. However, the role of SERPINA3/miR-137-3p/miR-296-5p signaling in CRC still requires further investigation.
Collapse
Affiliation(s)
- Huimin Liu
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Xingxing Wu
- Department of Pediatric Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Dandan Wang
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Quanxi Li
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Xin Zhang
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Liang Xu
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China.
| |
Collapse
|
36
|
Bosman M, Krüger D, Van Assche C, Boen H, Neutel C, Favere K, Franssen C, Martinet W, Roth L, De Meyer GRY, Cillero-Pastor B, Delrue L, Heggermont W, Van Craenenbroeck EM, Guns PJ. Doxorubicin-induced cardiovascular toxicity: a longitudinal evaluation of functional and molecular markers. Cardiovasc Res 2023; 119:2579-2590. [PMID: 37625456 PMCID: PMC10676457 DOI: 10.1093/cvr/cvad136] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
AIMS Apart from cardiotoxicity, the chemotherapeutic doxorubicin (DOX) induces vascular toxicity, represented by arterial stiffness and endothelial dysfunction. Both parameters are of interest for cardiovascular risk stratification as they are independent predictors of future cardiovascular events in the general population. However, the time course of DOX-induced cardiovascular toxicity remains unclear. Moreover, current biomarkers for cardiovascular toxicity prove insufficient. Here, we longitudinally evaluated functional and molecular markers of DOX-induced cardiovascular toxicity in a murine model. Molecular markers were further validated in patient plasma. METHODS AND RESULTS DOX (4 mg/kg) or saline (vehicle) was administered intra-peritoneally to young, male mice weekly for 6 weeks. In vivo cardiovascular function and ex vivo arterial stiffness and vascular reactivity were evaluated at baseline, during DOX therapy (Weeks 2 and 4) and after therapy cessation (Weeks 6, 9, and 15). Left ventricular ejection fraction (LVEF) declined from Week 4 in the DOX group. DOX increased arterial stiffness in vivo and ex vivo at Week 2, which reverted thereafter. Importantly, DOX-induced arterial stiffness preceded reduced LVEF. Further, DOX impaired endothelium-dependent vasodilation at Weeks 2 and 6, which recovered at Weeks 9 and 15. Conversely, contraction with phenylephrine was consistently higher in the DOX-treated group. Furthermore, proteomic analysis on aortic tissue identified increased thrombospondin-1 (THBS1) and alpha-1-antichymotrypsin (SERPINA3) at Weeks 2 and 6. Up-regulated THBS1 and SERPINA3 persisted during follow-up. Finally, THBS1 and SERPINA3 were quantified in plasma of patients. Cancer survivors with anthracycline-induced cardiotoxicity (AICT; LVEF < 50%) showed elevated THBS1 and SERPINA3 levels compared with age-matched control patients (LVEF ≥ 60%). CONCLUSIONS DOX increased arterial stiffness and impaired endothelial function, which both preceded reduced LVEF. Vascular dysfunction restored after DOX therapy cessation, whereas cardiac dysfunction persisted. Further, we identified SERPINA3 and THBS1 as promising biomarkers of DOX-induced cardiovascular toxicity, which were confirmed in AICT patients.
Collapse
Affiliation(s)
- Matthias Bosman
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
| | - Dustin Krüger
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
| | - Charles Van Assche
- Research Group M4I—Imaging Mass Spectrometry (IMS); Faculty of Health, Medicine and Life Sciences, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Hanne Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp B-2610, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem B-2650, Belgium
| | - Cédric Neutel
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
| | - Kasper Favere
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp B-2610, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem B-2650, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp B-2610, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem B-2650, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
| | - Lynn Roth
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
| | - Berta Cillero-Pastor
- Research Group M4I—Imaging Mass Spectrometry (IMS); Faculty of Health, Medicine and Life Sciences, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER Maastricht/Room C3.577, PO Box 616, Maastricht 6200 MD, The Netherlands
| | - Leen Delrue
- Department of Cardiology, Cardiovascular Center OLV Hospital Aalst, Moorselbaan 164, Aalst B-9300, Belgium
| | - Ward Heggermont
- Department of Cardiology, Cardiovascular Center OLV Hospital Aalst, Moorselbaan 164, Aalst B-9300, Belgium
- Department of Cardiology, Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp B-2610, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem B-2650, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
| |
Collapse
|
37
|
Park J, Lee EH, Sim H, Na AY, Choi SY, Chung JW, Ha YS, Kwon TG, Lee S, Lee JN. Using Comparative Proteomics to Identify Protein Signatures in Clear Cell Renal Cell Carcinoma. Cancer Genomics Proteomics 2023; 20:592-601. [PMID: 37889066 PMCID: PMC10614069 DOI: 10.21873/cgp.20408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND/AIM Renal cell carcinoma (RCC) is one of the most commonly diagnosed cancers in the world. Approximately 25-30% of patients identified with initial kidney cancer will have metastasized tumors, thus 5-year survival rates for these patients are poor. Therefore, biomarker research is required to identify and predict molecular signatures in RCC. MATERIALS AND METHODS To address this, we used a mass spectrometry (MS)-based proteomics approach to identify proteins related to clear cell RCC (ccRCC) tissues from patients with T1G2, T1G3, T3G2, T3G3, and metastatic RCC (mRCC) stages. RESULTS We identified and quantified 2,608 and 2,463 proteins, respectively, in ccRCC tissue and identified 1,449 differentially expressed proteins (DEPs). Bioinformatics analysis revealed that serpin family A member 3 (SERPINA3) qualified as biomarker for ccRCC progression. Using indirect enzyme-linked immunosorbent assay (ELISA), immunoblotting, and immunohistochemistry assays it was found that SERPINA3 expression levels in ccRCC tissues were much higher in stages before metastasis. CONCLUSION Comparative proteomics analysis of ccRCC tissues provided new evidence of SERPINA3 association with ccRCC progression.
Collapse
Affiliation(s)
- Juhee Park
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyunchae Sim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ann-Yae Na
- Global Drug Development Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - So Young Choi
- Mass Spectrometry Convergence Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Wook Chung
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea;
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
38
|
Jin Y, Zhang Y, Huang A, Chen Y, Wang J, Liu N, Wang X, Gong Y, Wang W, Pan J. Overexpression of SERPINA3 suppresses tumor progression by modulating SPOP/NF‑κB in lung cancer. Int J Oncol 2023; 63:96. [PMID: 37417362 PMCID: PMC10552721 DOI: 10.3892/ijo.2023.5544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
The pathogenesis mechanism of lung cancer is very complex, with high incidence and mortality. Serpin family A member 3 (SERPINA3) expression levels were reduced in the sera of patients with lung cancer and may be a candidate diagnostic and prognostic survival biomarker in lung cancer, as previously reported. However, the detailed biological functions of SERPINA3 in the pathogenesis of lung cancer remain unknown. In the present study, it was aimed to explore the effects of SERPINA3 on the occurrence of lung cancer. SERPINA3 expression was assessed using bioinformatics database analysis and experimental detection. Then, the biological effects of SERPINA3 were investigated in a cell culture system and a xenograft model of human lung cancer. The potential regulatory mechanism of SERPINA3 in lung cancer was explored by data‑independent acquisition mass spectrometry (DIA‑MS) detection and further validated by western blotting (WB). The results indicated that SERPINA3 expression levels were significantly downregulated in lung cancer tissues and cell lines. At the cellular level, it was revealed that overexpressed SERPINA3 inhibited cell growth, proliferation, migration and invasion and promoted the apoptosis of lung cancer cells. Moreover, overexpressed SERPINA3 enhanced the sensitivity of lung cancer cells to osimertinib. In vivo, a xenograft model of human lung cancer was established with BALB/c nude mice. After the injection of A549 cells, the tumor growth of the tumor‑bearing mice in the SERPINA3‑overexpressing group increased more slowly, and the tumor volume was smaller than that in the empty‑vector group. Mechanistically, a total of 65 differentially expressed proteins were identified. It was found that the speckle‑type POZ protein (SPOP) was significantly upregulated in SERPINA3‑overexpressing H157 cells using DIA‑MS detection and analysis. WB validation showed that SPOP expression increased, and NF‑kappaB (NF‑κB) p65 was inhibited in cell lines and tumor tissues of mice when SERPINA3 was overexpressed. The present findings suggest that SERPINA3 is involved in the development of lung cancer and has an antineoplastic role in lung cancer.
Collapse
Affiliation(s)
- Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Ankang Huang
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Jinsong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Na Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Yongsheng Gong
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| |
Collapse
|
39
|
Li Y, Guo L. The versatile role of Serpina3c in physiological and pathological processes: a review of recent studies. Front Endocrinol (Lausanne) 2023; 14:1189007. [PMID: 37288300 PMCID: PMC10242157 DOI: 10.3389/fendo.2023.1189007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Murine Serpina3c belongs to the family of serine protease inhibitors (Serpins), clade "A" and its human homologue is SerpinA3. Serpina3c is involved in some physiological processes, including insulin secretion and adipogenesis. In the pathophysiological process, the deletion of Serpina3c leads to more severe metabolic disorders, such as aggravated non-alcoholic fatty liver disease (NAFLD), insulin resistance and obesity. In addition, Serpina3c can improve atherosclerosis and regulate cardiac remodeling after myocardial infarction. Many of these processes are directly or indirectly mediated by its inhibition of serine protease activity. Although its function has not been fully revealed, recent studies have shown its potential research value. Here, we aimed to summarize recent studies to provide a clearer view of the biological roles and the underlying mechanisms of Serpina3c.
Collapse
Affiliation(s)
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|