1
|
Rakhmatullina AR, Zolotykh MA, Filina YV, Valiullina AK, Zmievskaya EA, Gafurbaeva DU, Sagdeeva AR, Bulatov ER, Rizvanov AA, Miftakhova RR. Multicellular Cancer-Stroma Spheres (CSS) for In Vitro Assessment of CAR-T Cell-Associated Toxicity. Cells 2024; 13:1892. [PMID: 39594640 PMCID: PMC11593285 DOI: 10.3390/cells13221892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
CAR-T therapy has revolutionized the field of oncology, offering a promising treatment option for cancer patients. However, the significant morbidity associated with therapy-related toxicity presents a major challenge to its widespread use. Despite extensive research into the underlying mechanisms of CAR-T therapy-related toxicity, there are still many unknowns. Furthermore, the lack of adequate in vitro models for assessing immunotoxicity and neurotoxicity further complicates the development of safer cellular therapies. Previously in our laboratory, we developed cancer-stroma spheres (CSS) composed of prostate adenocarcinoma PC3 cells and mesenchymal stem cells (MSC). Herein we present evidence that multicellular CSS could serve as a valuable in vitro model for toxicity studies related to CAR-T therapy. CSS containing CD19-overexpressing PC3M cells exhibited increased secretion of CAR-T cell toxicity-associated IL-8, MCP-1, and IP-10 in the presence of anti-CD19 CAR-T cells, compared to spheres derived from single cell types.
Collapse
Affiliation(s)
- Aigul R. Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mariya A. Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuliya V. Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aigul Kh. Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina A. Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Dina U. Gafurbaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aisylu R. Sagdeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil R. Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, 420111 Kazan, Russia
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
2
|
Medyouni G, Vörös O, Jusztus V, Panyi G, Vereb G, Szöőr Á, Hajdu P. Inhibition of K + Channels Affects the Target Cell Killing Potential of CAR T Cells. Cancers (Basel) 2024; 16:3750. [PMID: 39594705 PMCID: PMC11591972 DOI: 10.3390/cancers16223750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Ion channels of T cells (Kv1.3, KCa3.1, and CRAC) participate in the regulation of activation and effector functions via modulation of the Ca2+-dependent pathway. T cells expressing chimeric antigen receptors (CAR T cells) showed a remarkable role in anti-tumor therapy, especially in the treatment of chemotherapy-resistant liquid cancers. Nevertheless, many challenges remain to be overcome to improve the treatment for solid tumors. In this study, we assessed the expression and role of ion channels in CAR T cells. We found that HER2-specific CAR T cells had higher KCa3.1 conductance compared to the non-transduced (NT, control) cells, which was more prominent in the CD8+ population (CD4+ cell also showed elevation). Conversely, the Kv1.3 expression level was the same for all cell types (CD4+, CD8+, CAR, and NT). Single-cell Ca2+ imaging revealed that thapsigargin-induced SOCE via CRAC is suppressed in CD8+ CAR T cells, unlike for CD4+ and CD8+ NT cells. To dissect the functional role of Kv1.3 and KCa3.1, we used specific antagonists (Kv1.3: Vm24; KCa3.1: TRAM-34): the target cell elimination capacity of the CD8+ CAR T cells was improved either by blocking KCa3.1 or Kv1.3. These results imply that ion channels could be a target in CAR T cell immunotherapy elaboration.
Collapse
Affiliation(s)
- Ghofrane Medyouni
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (O.V.); (V.J.); (G.P.); (G.V.); (Á.S.)
| | - Orsolya Vörös
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (O.V.); (V.J.); (G.P.); (G.V.); (Á.S.)
| | - Vivien Jusztus
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (O.V.); (V.J.); (G.P.); (G.V.); (Á.S.)
| | - György Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (O.V.); (V.J.); (G.P.); (G.V.); (Á.S.)
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (O.V.); (V.J.); (G.P.); (G.V.); (Á.S.)
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (O.V.); (V.J.); (G.P.); (G.V.); (Á.S.)
| | - Péter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.M.); (O.V.); (V.J.); (G.P.); (G.V.); (Á.S.)
- Division of Dental Biochemistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Khaliulin M, Valiullina A, Petukhov A, Yuan Y, Spada S, Bulatov E. Breaking the shield of solid tumors: a combined approach for enhanced efficacy of CAR-T cells. Cancer Immunol Immunother 2024; 74:3. [PMID: 39487875 PMCID: PMC11531461 DOI: 10.1007/s00262-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
The use of chimeric antigen receptor (CAR)-T cells has enhanced the range of available therapeutic modalities in the context of cancer treatment. CAR-T cells have demonstrated considerable efficacy in the targeted eradication of blood cancer cells, thereby stimulating substantial interest in the advancement of such therapeutic approaches. However, the efficacy of CAR-T cells against solid tumor cells has been limited due to the presence of various obstacles. Solid tumors exhibit antigenic diversity and an immunosuppressive microenvironment, which presents a challenge for immune cells attempting to penetrate the tumor. CAR-T cells also demonstrate decreased proliferative activity and cytotoxicity. Furthermore, concerns exist regarding tumor antigen loss and therapy-associated toxicity. Currently, scientists are working to enhance the structure of the CAR and improve the survival and efficiency of CAR-T cells in recognizing tumor antigens in solid tumors. Chemotherapy drugs are frequently employed in the treatment of malignant neoplasms and can also be used prior to cell therapy to enhance CAR-T cell engraftment. Recent studies have demonstrated that chemotherapy drugs can mitigate the suppressive impact of TME, eliminate the physical barrier by destroying the tumor stroma, and facilitate greater penetration of immune cells and CAR-T cells into the tumor. This, in turn, increases their survival, persistence, and cytotoxicity, as well as affects the metabolism of immune cells inside the tumor. However, the effectiveness of the combined approach against solid tumors depends on several factors, including the type of tumor, dosage, population of CAR-T cells, and individual characteristics of the body. This review examines the principal obstacles to the utilization of CAR-T cells against solid tumors, proposes solutions to these issues, and assesses the potential advantages of a combined approach to radiation exposure, which has the potential to enhance the sensitivity of the tumor to other agents.
Collapse
Affiliation(s)
- Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Alexey Petukhov
- Nazarbaev University, Qabanbay Batyr Ave 53, 010000, Astana, Kazakhstan
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997.
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia, 119048.
| |
Collapse
|
4
|
Prikhodko IV, Guria GT. The method for assessing the specificity of developing CAR therapies. BIOPHYSICAL REPORTS 2024; 4:100172. [PMID: 39025235 PMCID: PMC11344002 DOI: 10.1016/j.bpr.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The effectiveness of antitumor chimeric antigen receptor (CAR) therapy mainly dealt with an elevated sensitivity of CAR cells to target cells. However, CAR therapies are associated with nonspecific side effects: on-target off-tumor toxicity. Sensitivity and specificity of CAR cells are the most important properties of the recognition process of target cells among other cells. Current developments are mainly concentrated on exploring molecular biology methods for designing CAR cells with the highest sensitivity, while the problem of the CAR cell specificity is rarely considered. For the assessment of CAR cell specificity, we suggest that, in addition to an elevated level of CAR-antigen affinity, the ability of CARs for clustering should be taken into account. We assume that the CAR cell cytotoxicity is determined by CAR clustering. The latter is treated within the framework of nucleation theory. The master equation for the probability of CAR cell cytotoxicity is derived. The size of a critical CAR cluster is found to be one of two most essential parameters. The conditions for necessary sensitivity and sufficient specificity are explored. Relevant parametric diagrams are derived. Possible applications of the method for assessing the specificity of developing CAR therapies are discussed.
Collapse
Affiliation(s)
- Ivan V Prikhodko
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia
| | - Georgy Th Guria
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia; Chair of the Living Systems Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
5
|
Khoshandam M, Soltaninejad H, Hamidieh AA, Hosseinkhani S. CRISPR, CAR-T, and NK: Current applications and future perspectives. Genes Dis 2024; 11:101121. [PMID: 38545126 PMCID: PMC10966184 DOI: 10.1016/j.gendis.2023.101121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/16/2023] [Indexed: 11/11/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy represents a breakthrough in personalized cancer treatments. In this regard, synthetic receptors comprised of antigen recognition domains, signaling, and stimulatory domains are used to reprogram T-cells to target tum or cells and destroy them. Despite the success of this approach in refractory B-cell malignancies, the optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been validated. Natural killer cells are powerful cytotoxic lymphocytes specialized in recognizing and dispensing the tumor cells in coordination with other anti-tumor immunity cells. Based on these studies, many investigations are focused on the accurate designing of CAR T-cells with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system or other novel gene editing tools that can induce hereditary changes with or without the presence of a double-stranded break into the genome. These methodologies can be specifically focused on negative controllers of T-cells, induce modifications to a particular gene, and produce reproducible, safe, and powerful allogeneic CAR T-cells for on-demand cancer immunotherapy. The improvement of the CRISPR/Cas9 innovation offers an adaptable and proficient gene-editing capability in activating different pathways to help natural killer cells interact with novel CARs to particularly target tumor cells. Novel achievements and future challenges of combining next-generation CRISPR-Cas9 gene editing tools to optimize CAR T-cell and natural killer cell treatment for future clinical trials toward the foundation of modern cancer treatments have been assessed in this review.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom branch 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Hossein Soltaninejad
- Department of stem cells technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran 15614, Iran
- Pediatric Cell Therapy and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1417935840, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell Therapy and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 1417935840, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 15614, Iran
| |
Collapse
|
6
|
Chasov V, Zmievskaya E, Ganeeva I, Gilyazova E, Davletshin D, Filimonova M, Valiullina A, Kudriaeva A, Bulatov E. Systemic lupus erythematosus therapeutic strategy: From immunotherapy to gut microbiota modulation. J Biomed Res 2024; 38:1-16. [PMID: 38828853 PMCID: PMC11629155 DOI: 10.7555/jbr.38.20240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by a systemic dysfunction of the innate and adaptive immune systems, leading to an attack on healthy tissues of the body. During the development of SLE, pathogenic features, such as the formation of autoantibodies to self-nuclear antigens, caused tissue damage including necrosis and fibrosis, with an increased expression of type Ⅰ interferon (IFN) regulated genes. Treatment of lupus with immunosuppressants and glucocorticoids, which are used as the standard therapy, is not effective enough and causes side effects. As an alternative, more effective immunotherapies have been developed, including monoclonal and bispecific antibodies that target B cells, T cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Encouraging results have been observed in clinical trials with some of these therapies. Furthermore, a chimeric antigen receptor T cells (CAR-T) therapy has emerged as the most effective, safe, and promising treatment option for SLE, as demonstrated by successful pilot studies. Additionally, emerging evidence suggests that gut microbiota dysbiosis may play a significant role in the severity of SLE, and the use of methods to normalize the gut microbiota, particularly fecal microbiota transplantation (FMT), opens up new opportunities for effective treatment of SLE.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Maria Filimonova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
7
|
Enriquez-Rodriguez L, Attia N, Gallego I, Mashal M, Maldonado I, Puras G, Pedraz JL. Expanding the horizon of transient CAR T therapeutics using virus-free technology. Biotechnol Adv 2024; 72:108350. [PMID: 38537878 DOI: 10.1016/j.biotechadv.2024.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The extraordinary success that chimeric antigen receptor (CAR) T cell therapies have shown over the years on fighting hematological malignancies is evidenced by the six FDA-approved products present on the market. CAR T treatments have forever changed the way we understand cellular immunotherapies, as current research in the topic is expanding even outside the field of cancer with very promising results. Until now, virus-based strategies have been used for CAR T cell manufacturing. However, this methodology presents relevant limitations that need to be addressed prior to wide spreading this technology to other pathologies and in order to optimize current cancer treatments. Several approaches are being explored to overcome these challenges such as virus-free alternatives that additionally offer the possibility of developing transient CAR expression or in vivo T cell modification. In this review, we aim to spotlight a pivotal juncture in the history of medicine where a significant change in perspective is occurring. We review the current progress made on viral-based CAR T therapies as well as their limitations and we discuss the future outlook of virus-free CAR T strategies to overcome current challenges and achieve affordable immunotherapies for a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Lucia Enriquez-Rodriguez
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Noha Attia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Mohamed Mashal
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Iván Maldonado
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
8
|
Romanowicz A, Lukaszewicz-Zajac M, Mroczko B. Exploring Potential Biomarkers in Oesophageal Cancer: A Comprehensive Analysis. Int J Mol Sci 2024; 25:4253. [PMID: 38673838 PMCID: PMC11050399 DOI: 10.3390/ijms25084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oesophageal cancer (OC) is the sixth leading cause of cancer-related death worldwide. OC is highly aggressive, primarily due to its late stage of diagnosis and poor prognosis for patients' survival. Therefore, the establishment of new biomarkers that will be measured with non-invasive techniques at low cost is a critical issue in improving the diagnosis of OC. In this review, we summarize several original studies concerning the potential significance of selected chemokines and their receptors, including inflammatory proteins such as interleukin-6 (IL-6) and C-reactive protein (CRP), hematopoietic growth factors (HGFs), claudins (CLDNs), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), adamalysines (ADAMs), as well as DNA- and RNA-based biomarkers, in OC. The presented results indicate the significant correlation between the CXCL12, CXCR4, CXCL8/CXCR2, M-CSF, MMP-2, MMP-9 ADAM17, ADAMTS-6, and CLDN7 levels and tumor stage, as well as the clinicopathological parameters of OC, such as the presence of lymph node and/or distant metastases. CXCL12, CXCL8/CXCR2, IL-6, TIMP-2, ADAM9, and ADAMTS-6 were prognostic factors for the overall survival of OC patients. Furthermore, IL-6, CXCR4, CXCL8, and MMP-9 indicate higher diagnostic utility based on the area under the ROC curve (AUC) than well-established OC tumor markers, whereas CLDN18.2 can be used in novel targeted therapies for OC patients.
Collapse
Affiliation(s)
- Adrianna Romanowicz
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Marta Lukaszewicz-Zajac
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
9
|
Cho E, An MH, Lee YS, Ryu EJ, Lee YR, Park SY, Kim YJ, Lee CH, Oh D, Kim MS, Kim ND, Kim JJ, Hong YM, Cho M, Hwang TH. Development of chimeric antigen receptor (CAR)-T cells targeting A56 viral protein implanted by oncolytic virus. iScience 2024; 27:109256. [PMID: 38455976 PMCID: PMC10918216 DOI: 10.1016/j.isci.2024.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
To address the challenge of solid tumor targeting in CAR-T therapy, we utilized the A56 antigen, which is uniquely expressed on a diverse range of cancer cells following the systemic administration of an oncolytic vaccinia virus (OVV). Immunohistochemical assays precisely confirmed exclusive localization of A56 to tumor tissues. In vitro studies demonstrated a distinct superiority of A56-dependent CAR-T cytotoxicity across multiple cancer cell lines. Building on these in vitro observations, we strategically administered A56 CAR-T cells, OVV, and hydroxyurea (HU) combination in HCT-116 tumor-bearing non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice, leading to a significant reduction in tumor size and an extended time to progression. Consequently, A56-targeting combinatorial immunotherapy provides the benefit of reducing inadvertent CAR-T effects on normal cells while preserving its effectiveness against cancer cells. Furthermore, our approach of implanting A56 via OVV on tumors facilitates a wide therapeutic application of CAR-T cells across various solid tumors.
Collapse
Affiliation(s)
- Euna Cho
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Min Ho An
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Medical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Yi Sle Lee
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Eun Jin Ryu
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - You Ra Lee
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - So Youn Park
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Ye Ji Kim
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Chan Hee Lee
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Dayoung Oh
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Min Seo Kim
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy and Pusan Cancer Research Center, Pusan National University, Busan 46241, Republic of Korea
| | - Jae-Joon Kim
- Oncology and Hematology Clinic, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Young Mi Hong
- Liver Center, Pusan National University Yangsan Hospital, Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Mong Cho
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
| | - Tae Ho Hwang
- Research Center, Bionoxx Inc., Seongnam-si, Gyeonggi-do 13554, Republic of Korea
- Medical Research Center, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
10
|
Ayass MA, Tripathi T, Griko N, Okyay T, Ramankutty Nair R, Zhang J, Zhu K, Melendez K, Pashkov V, Abi-Mosleh L. Dual Checkpoint Aptamer Immunotherapy: Unveiling Tailored Cancer Treatment Targeting CTLA-4 and NKG2A. Cancers (Basel) 2024; 16:1041. [PMID: 38473398 DOI: 10.3390/cancers16051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Recent strides in immunotherapy have illuminated the crucial role of CTLA-4 and PD-1/PD-L1 pathways in contemporary oncology, presenting both promises and challenges in response rates and adverse effects. This study employs a computational biology tool (in silico approach) to craft aptamers capable of binding to dual receptors, namely, inhibitory CTLA4 and NKG2A, thereby unleashing both T and NK cells and enhancing CD8+ T and NK cell functions for tumor cell lysis. Computational analysis highlighted AYA22T-R2-13 with HADDOCK scores of -78.2 ± 10.2 (with CTLA4), -60.0 ± 4.2 (with NKG2A), and -77.5 ± 5.6 (with CD94/NKG2A). Confirmation of aptamer binding to targeted proteins was attained via ELISA and flow cytometry methods. In vitro biological functionality was assessed using lactate dehydrogenase (LDH) cytotoxicity assay. Direct and competitive assays using ELISA and flow cytometry demonstrated the selective binding of AYA22T-R2-13 to CTLA4 and NKG2A proteins, as well as to the cell surface receptors of IL-2-stimulated T cells and NK cells. This binding was inhibited in the presence of competition from CTLA4 or NKG2A proteins. Remarkably, the blockade of CTLA4 or NKG2A by AYA22T-R2-13 augmented human CD8 T cell- and NK cell-mediated tumor cell lysis in vitro. Our findings highlight the precise binding specificity of AYA22T-R2-13 for CTLA4-B7-1/B7-2 (CD80/CD86) or CD94/NKG2A-HLA-E interactions, positioning it as a valuable tool for immune checkpoint blockade aptamer research in murine tumor models. These in vitro studies establish a promising foundation for further enhancing binding capacity and establishing efficacy and safety in animal models. Consequently, our results underscore the potential of AYA22T-R2-13 in cancer immunotherapy, offering high specificity, low toxicity, and the potential for cost-effective production.
Collapse
Affiliation(s)
| | | | - Natalya Griko
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Tutku Okyay
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | | | - Jin Zhang
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Kevin Zhu
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Kristen Melendez
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Victor Pashkov
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Bld 9, Frisco, TX 75034, USA
| |
Collapse
|
11
|
Li J, Liu Z, Wu X, Lee SMY, Seto SW, Zhang J, Zhou GC, Leung GPH. Anti-metastatic effects of AGS-30 on breast cancer through the inhibition of M2-like macrophage polarization. Biomed Pharmacother 2024; 172:116269. [PMID: 38367549 DOI: 10.1016/j.biopha.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
AGS-30, a new andrographolide derivative, showed significant anticancer and anti-angiogenic characteristics. However, its role in controlling macrophage polarization and tumor immune response is unknown. Thus, the main goals of this study are to investigate how AGS-30 regulates macrophage polarization and how it suppresses breast cancer metastasis. AGS-30 inhibited IL-4 and IL-13-induced RAW 264.7 and THP-1 macrophages into M2-like phenotype. However, AGS-30 did not affect the LPS and IFN-γ-induced polarization of M1-like macrophages. AGS-30 reduced the mRNA expressions of CD206, Arg-1, Fizz-1, Ym-1, VEGF, IL-10, MMP2, and MMP9 in M2-like macrophages in a concentration-dependent manner. In contrast, andrographolide treatment at 5 μM did not affect M1-like and M2-like macrophage polarization. The conditioned medium from M2-like macrophages increased 4T1 breast cancer cell migration and invasion, whereas AGS-30 inhibited these effects. In the 4T1 breast tumor xenograft mice, the tumor volume and weight were reduced without affecting body weight after receiving AGS-30. AGS-30 treatment also reduced lung and liver metastasis, with reduced STAT6, CD31, VEGF, and Ki67 protein expressions. Moreover, the tumors had considerably fewer M2-like macrophages and Arg-1 expression, but the proportion of M1-like macrophages and iNOS expression increased after AGS-30 treatment. Same results were found in the tail vein metastasis model. In conclusion, this study shows that AGS-30 inhibits breast cancer growth and metastasis, probably through inhibiting M2-like macrophage polarization. Our findings suggest that AGS-30 may be a potential immunotherapeutic alternative for metastatic breast cancer.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Zhuyun Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China; School of Pharmacy, Taizhou Polytechnic College, Taizhou, Jiangsu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
12
|
Mucherino S, Lorenzoni V, Triulzi I, Del Re M, Orlando V, Capuano A, Danesi R, Turchetti G, Menditto E. Cost-Effectiveness of Treatment Optimisation with Biomarkers for Immunotherapy in Solid Tumours: A Systematic Review. Cancers (Basel) 2024; 16:995. [PMID: 38473355 DOI: 10.3390/cancers16050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigated the health economic evaluations of predictive biomarker testing in solid tumours treated with immune checkpoint inhibitors (ICIs). Searching PubMed, EMBASE, and Web of Science from June 2010 to February 2022, 58 relevant articles were reviewed out of the 730 screened. The focus was predominantly on non-small cell lung cancer (NSCLC) (65%) and other solid tumours (40%). Among the NSCLC studies, 21 out of 35 demonstrated cost-effectiveness, notably for pembrolizumab as first-line treatment when preceded by PD-L1 assessment, cost-effective at a threshold of $100,000/QALY compared to the standard of care. However, for bladder, cervical, and triple-negative breast cancers (TNBCs), no economic evaluations met the affordability threshold of $100,000/QALY. Overall, the review highlights a certain degree of uncertainty about the cost-effectiveness of ICI. In particular, we found PD-L1 expression associated with ICI treatment to be a cost-effective strategy, particularly in NSCLC, urothelial, and renal cell carcinoma. The findings suggest the potential value of predictive biomarker testing, specifically with pembrolizumab in NSCLC, while indicating challenges in achieving cost-effectiveness for certain other solid tumours.
Collapse
Affiliation(s)
- Sara Mucherino
- CIRFF-Centre of Pharmacoeconomics and Drug Utilization Research, Department of Pharmacy, University of Naples Federico II, via D Montesano 49, 80131 Naples, Italy
| | | | - Isotta Triulzi
- Institute of Management, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Valentina Orlando
- CIRFF-Centre of Pharmacoeconomics and Drug Utilization Research, Department of Pharmacy, University of Naples Federico II, via D Montesano 49, 80131 Naples, Italy
| | - Annalisa Capuano
- Section of Pharmacology 'L. Donatelli', Department of Experimental Medicine, University of Campania 'L. Vanvitelli', Via Costantinopoli 16, 80138 Naples, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Enrica Menditto
- CIRFF-Centre of Pharmacoeconomics and Drug Utilization Research, Department of Pharmacy, University of Naples Federico II, via D Montesano 49, 80131 Naples, Italy
| |
Collapse
|
13
|
Kuang T, Qiu Z, Wang K, Zhang L, Dong K, Wang W. Pan-immune inflammation value as a prognostic biomarker for cancer patients treated with immune checkpoint inhibitors. Front Immunol 2024; 15:1326083. [PMID: 38410508 PMCID: PMC10895004 DOI: 10.3389/fimmu.2024.1326083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) represent a paradigm shift in the development of cancer therapy. However, the improved efficacy of ICIs remains to be further investigated. We conducted a systematic review and meta-analysis to evaluate the pan-immunoinflammatory value (PIV) and PILE score used to predict response to ICI therapy. Methods We searched selected databases for studies on pan-immune inflammation values and their association with outcomes of treatment with immune checkpoint inhibitors. We used hazard ratios (HRS) and 95% confidence intervals (CI) to summarize survival outcomes. All data analyses were performed using STATA 15.0. Results 7 studies comprising 982 patients were included in the meta-analysis. The pooled results showed that higher PIV was significantly associated with shorter overall survival OS (HR = 1.895, 95%CI: 1.548-2.318) and progression-free survival (PFS) (HR = 1.582, 95%CI: 1.324-1.890). Subgroup analyses also confirmed the reliability of the results. Conclusions High PIV and PILE metrics are associated with lower survival in cancer patients receiving ICIs.
Collapse
Affiliation(s)
- Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Kunpeng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Keshuai Dong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| |
Collapse
|
14
|
Chasov V, Zmievskaya E, Ganeeva I, Gilyazova E, Davletshin D, Khaliulin M, Kabwe E, Davidyuk YN, Valiullina A, Rizvanov A, Bulatov E. Immunotherapy Strategy for Systemic Autoimmune Diseases: Betting on CAR-T Cells and Antibodies. Antibodies (Basel) 2024; 13:10. [PMID: 38390871 PMCID: PMC10885098 DOI: 10.3390/antib13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic autoimmune diseases (SAIDs), such as systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and rheumatoid arthritis (RA), are fully related to the unregulated innate and adaptive immune systems involved in their pathogenesis. They have similar pathogenic characteristics, including the interferon signature, loss of tolerance to self-nuclear antigens, and enhanced tissue damage like necrosis and fibrosis. Glucocorticoids and immunosuppressants, which have limited specificity and are prone to tolerance, are used as the first-line therapy. A plethora of novel immunotherapies have been developed, including monoclonal and bispecific antibodies, and other biological agents to target cellular and soluble factors involved in disease pathogenesis, such as B cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Many of these have shown encouraging results in clinical trials. CAR-T cell therapy is considered the most promising technique for curing autoimmune diseases, with recent successes in the treatment of SLE and SSc. Here, we overview novel therapeutic approaches based on CAR-T cells and antibodies for targeting systemic autoimmune diseases.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuriy N Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
15
|
Jia C, Liu M, Yao L, Zhao F, Liu S, Li Z, Han Y. Multi-omics analysis reveals cuproptosis and mitochondria-based signature for assessing prognosis and immune landscape in osteosarcoma. Front Immunol 2024; 14:1280945. [PMID: 38250070 PMCID: PMC10796547 DOI: 10.3389/fimmu.2023.1280945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Background Osteosarcoma (OSA), the most common primary mesenchymal bone tumor, is a health threat to children and adolescents with a dismal prognosis. While cuproptosis and mitochondria dysfunction have been demonstrated to exert a crucial role in tumor progression and development, the mechanisms by which they are regulated in OSA still await clarification. Methods Two independent OSA cohorts containing transcriptome data and clinical information were collected from public databases. The heterogeneity of OSA were evaluated by single cell RNA (scRNA) analysis. To identify a newly molecular subtype, unsupervised consensus clustering was conducted. Cox relevant regression methods were utilized to establish a prognostic gene signature. Wet lab experiments were performed to confirm the effect of model gene in OSA cells. Results We determined 30 distinct cell clusters and assessed OSA heterogeneity and stemness scRNA analysis. Then, univariate Cox analysis identified 24 candidate genes which were greatly associated with the prognosis of OSA. Based on these prognostic genes, we obtained two molecular subgroups. After conducting step Cox regression, three model genes were selected to construct a signature showing a favorable performance to forecast clinical outcome. Our proposed signature could also evaluate the response to chemotherapy and immunotherapy of OSA cases. Conclusion We generated a novel risk model based on cuproptosis and mitochondria-related genes in OSA with powerful predictive ability in prognosis and immune landscape.
Collapse
Affiliation(s)
- Chenguang Jia
- Department of Osteonecrosis and Hip Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedics, Hebei Chest Hospital, Shijiazhuang, China
| | - Mei Liu
- Molecular Biology Laboratory, Hebei Chest Hospital, Shijiazhuang, China
| | - Liming Yao
- Department of Orthopedics, Hebei Chest Hospital, Shijiazhuang, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuren Liu
- Department of Orthopedics, Hebei Chest Hospital, Shijiazhuang, China
| | - Zhuo Li
- Department of Orthopedics, Hebei Chest Hospital, Shijiazhuang, China
| | - Yongtai Han
- Department of Osteonecrosis and Hip Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Moradi V, Omidkhoda A, Ahmadbeigi N. The paths and challenges of "off-the-shelf" CAR-T cell therapy: An overview of clinical trials. Biomed Pharmacother 2023; 169:115888. [PMID: 37979380 DOI: 10.1016/j.biopha.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
The advent of chimeric antigen receptor T cells (CAR-T cells) has made a tremendous revolution in the era of cancer immunotherapy, so that since 2017 eight CAR-T cell products have been granted marketing authorization. All of these approved products are generated from autologous sources, but this strategy faces several challenges such as time-consuming and expensive manufacturing process and reduced anti-tumor potency of patients' T cells due to the disease or previous therapies. The use of an allogeneic source can overcome these issues and provide an industrial, scalable, and standardized manufacturing process that reduces costs and provides faster treatment for patients. Nevertheless, for using allogeneic CAR-T cells, we are faced with the challenge of overcoming two formidable impediments: severe life-threatening graft-versus-host-disease (GvHD) caused by allogeneic CAR-T cells, and allorejection of allogeneic CAR-T cells by host immune cells which is called "host versus graft" (HvG). In this study, we reviewed recent registered clinical trials of allogeneic CAR-T cell therapy to analyze different approaches to achieve a safe and efficacious "off-the-shelf" source for chimeric antigen receptor (CAR) based immunotherapy.
Collapse
Affiliation(s)
- Vahid Moradi
- Hematology and blood transfusion science department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Omidkhoda
- Hematology and blood transfusion science department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Meng L, Collier KA, Wang P, Li Z, Monk P, Mortazavi A, Hu Z, Spakowicz D, Zheng L, Yang Y. Emerging Immunotherapy Approaches for Advanced Clear Cell Renal Cell Carcinoma. Cells 2023; 13:34. [PMID: 38201238 PMCID: PMC10777977 DOI: 10.3390/cells13010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The most common subtype of renal cell carcinoma is clear cell renal cell carcinoma (ccRCC). While localized ccRCC can be cured with surgery, metastatic disease has a poor prognosis. Recently, immunotherapy has emerged as a promising approach for advanced ccRCC. This review provides a comprehensive overview of the evolving immunotherapeutic landscape for metastatic ccRCC. Immune checkpoint inhibitors (ICIs) like PD-1/PD-L1 and CTLA-4 inhibitors have demonstrated clinical efficacy as monotherapies and in combination regimens. Combination immunotherapies pairing ICIs with antiangiogenic agents, other immunomodulators, or novel therapeutic platforms such as bispecific antibodies and chimeric antigen receptor (CAR) T-cell therapy are areas of active research. Beyond the checkpoint blockade, additional modalities including therapeutic vaccines, cytokines, and oncolytic viruses are also being explored for ccRCC. This review discusses the mechanisms, major clinical trials, challenges, and future directions for these emerging immunotherapies. While current strategies have shown promise in improving patient outcomes, continued research is critical for expanding and optimizing immunotherapy approaches for advanced ccRCC. Realizing the full potential of immunotherapy will require elucidating mechanisms of response and resistance, developing predictive biomarkers, and rationally designing combination therapeutic regimens tailored to individual patients. Advances in immunotherapy carry immense promise for transforming the management of metastatic ccRCC.
Collapse
Affiliation(s)
- Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Katharine A. Collier
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Peng Wang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Zihai Li
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Paul Monk
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| | - Zhiwei Hu
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Daniel Spakowicz
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Linghua Zheng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.A.C.); (P.W.); (Z.L.); (P.M.); (A.M.); (D.S.); (L.Z.)
| |
Collapse
|
18
|
Yang Y, Louie R, Puc J, Vedvyas Y, Alcaina Y, Min IM, Britz M, Luciani F, Jin MM. Chimeric Antigen Receptor T Cell Therapy Targeting Epithelial Cell Adhesion Molecule in Gastric Cancer: Mechanisms of Tumor Resistance. Cancers (Basel) 2023; 15:5552. [PMID: 38067255 PMCID: PMC10705754 DOI: 10.3390/cancers15235552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a tumor-associated antigen that is frequently overexpressed in various carcinomas. We have developed chimeric antigen receptor (CAR) T cells specifically targeting EpCAM for the treatment of gastric cancer. This study sought to unravel the precise mechanisms by which tumors evade immune surveillance and develop resistance to CAR T cell therapy. Through a combination of whole-body CAR T cell imaging and single-cell multiomic analyses, we uncovered intricate interactions between tumors and tumor-infiltrating lymphocytes (TILs). In a gastric cancer model, tumor-infiltrating CD8 T cells exhibited both cytotoxic and exhausted phenotypes, while CD4 T cells were mainly regulatory T cells. A T cell receptor (TCR) clonal analysis provided evidence of CAR T cell proliferation and clonal expansion within resistant tumors, which was substantiated by whole-body CAR T cell imaging. Furthermore, single-cell transcriptomics showed that tumor cells in mice with refractory or relapsing outcomes were enriched for genes involved in major histocompatibility complex (MHC) and antigen presentation pathways, interferon-γ and interferon-α responses, mitochondrial activities, and a set of genes (e.g., CD74, IDO1, IFI27) linked to tumor progression and unfavorable disease prognoses. This research highlights an approach that combines imaging and multiomic methodologies to concurrently characterize the evolution of tumors and the differentiation of CAR T cells.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Raymond Louie
- School of Computer Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Janusz Puc
- AffyImmune Therapeutics, Inc., Natick, MA 01760, USA
| | - Yogindra Vedvyas
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Yago Alcaina
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Irene M. Min
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matt Britz
- AffyImmune Therapeutics, Inc., Natick, MA 01760, USA
| | - Fabio Luciani
- School of Medical Sciences and Kirby Institute for Infection and Immunity, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Moonsoo M. Jin
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA (I.M.M.)
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
19
|
Mishra AK, Gupta A, Dagar G, Das D, Chakraborty A, Haque S, Prasad CP, Singh A, Bhat AA, Macha MA, Benali M, Saini KS, Previs RA, Saini D, Saha D, Dutta P, Bhatnagar AR, Darswal M, Shankar A, Singh M. CAR-T-Cell Therapy in Multiple Myeloma: B-Cell Maturation Antigen (BCMA) and Beyond. Vaccines (Basel) 2023; 11:1721. [PMID: 38006053 PMCID: PMC10674477 DOI: 10.3390/vaccines11111721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Significant progress has been achieved in the realm of therapeutic interventions for multiple myeloma (MM), leading to transformative shifts in its clinical management. While conventional modalities such as surgery, radiotherapy, and chemotherapy have improved the clinical outcomes, the overarching challenge of effecting a comprehensive cure for patients afflicted with relapsed and refractory MM (RRMM) endures. Notably, adoptive cellular therapy, especially chimeric antigen receptor T-cell (CAR-T) therapy, has exhibited efficacy in patients with refractory or resistant B-cell malignancies and is now also being tested in patients with MM. Within this context, the B-cell maturation antigen (BCMA) has emerged as a promising candidate for CAR-T-cell antigen targeting in MM. Alternative targets include SLAMF7, CD38, CD19, the signaling lymphocyte activation molecule CS1, NKG2D, and CD138. Numerous clinical studies have demonstrated the clinical efficacy of these CAR-T-cell therapies, although longitudinal follow-up reveals some degree of antigenic escape. The widespread implementation of CAR-T-cell therapy is encumbered by several barriers, including antigenic evasion, uneven intratumoral infiltration in solid cancers, cytokine release syndrome, neurotoxicity, logistical implementation, and financial burden. This article provides an overview of CAR-T-cell therapy in MM and the utilization of BCMA as the target antigen, as well as an overview of other potential target moieties.
Collapse
Affiliation(s)
- Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA;
| | - Ashna Gupta
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.G.); (G.D.); (C.P.P.)
| | - Gunjan Dagar
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.G.); (G.D.); (C.P.P.)
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York, NY 10016, USA;
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Shabirul Haque
- Feinstein Institute of Medical Research, Northwell Health, Manhasset, NY 11030, USA;
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.G.); (G.D.); (C.P.P.)
| | - Archana Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Ajaz A. Bhat
- Precision Medicine in Diabetes, Obesity and Cancer Program, Department of Human Genetics, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora 192122, India;
| | - Moez Benali
- Fortrea Inc., Durham, NC 27709, USA; (M.B.); (K.S.S.)
| | - Kamal S. Saini
- Fortrea Inc., Durham, NC 27709, USA; (M.B.); (K.S.S.)
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Rebecca Ann Previs
- Labcorp Oncology, Durham, NC 27560, USA;
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Deepak Saini
- Department of Materia Medica, State Lal Bahadur Shastri Homoeopathic Medical College, Prayagraj 211013, India;
| | - Dwaipayan Saha
- Pratap Chandra Memorial Homoeopathic Hospital & College, Kolkata 700011, India; (D.S.); (P.D.)
| | - Preyangsee Dutta
- Pratap Chandra Memorial Homoeopathic Hospital & College, Kolkata 700011, India; (D.S.); (P.D.)
| | - Aseem Rai Bhatnagar
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, MI 48202, USA;
| | - Mrinalini Darswal
- Harvard T.H. Chan School of Public Health, Huntington Ave, Boston, MA 02115, USA;
| | - Abhishek Shankar
- Department of Radiation Oncology, Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.G.); (G.D.); (C.P.P.)
| |
Collapse
|
20
|
Lazar AM, Mutuleanu MD, Spiridon PM, Bordea CI, Suta TL, Blidaru A, Gherghe M. Feasibility of Sentinel Lymph Node Biopsy in Breast Cancer Patients with Axillary Conversion after Neoadjuvant Chemotherapy-A Single-Tertiary Centre Experience and Review of the Literature. Diagnostics (Basel) 2023; 13:3000. [PMID: 37761367 PMCID: PMC10528843 DOI: 10.3390/diagnostics13183000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Introduction: Sentinel lymph node biopsy (SLNB) is widely used in breast cancer patients who undergo neoadjuvant chemotherapy (NAC), replacing axillary lymph node dissection. While commonly accepted for cN0 patients, its role in cN1/2 patients remains controversial. Our study aims to investigate the role of SLNB in BC patients who underwent prior NAC and compare our results to those of other studies presented in the literature. (2) Materials and methods: Our retrospective study included 102 breast cancer patients who received NAC before 99mTc-albumin Nanocolloid SLN mapping and SLNB was performed, completed or not with axillary dissection. A review based on the PRISMA statement was also carried out, encompassing 20 studies. (3) Results: The lymphoscintigraphy performed after the administration of NAC presented an identification rate (IR) of 93.13%. IR for SLNB was 94.11%, with a false-negative rate (FNR) of 7.4%. After a median follow-up of 31.3 months, we obtained a distant disease-free survival rate of 98%. The results obtained by other groups were similar to those of our study, presenting IR in the range 80.8-96.8%, with FNR varying from 0 to 22%. (4) Conclusions: on conclusion, SLNB can accurately determine the lymph node status, with an acceptable FNR and maintain its expected prognostic role with low recurrence rates, and our results are comparable to those obtained by other studies.
Collapse
Affiliation(s)
- Alexandra Maria Lazar
- Carcinogenesis and Molecular Biology Department, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Mario-Demian Mutuleanu
- Nuclear Medicine Department, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Nuclear Medicine Department, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Paula Monica Spiridon
- Nuclear Medicine Department, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Cristian Ioan Bordea
- Surgical Oncology Department, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Surgical Oncology Department, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Tatiana Lucia Suta
- Nuclear Medicine Department, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Alexandru Blidaru
- Surgical Oncology Department, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Surgical Oncology Department, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| | - Mirela Gherghe
- Nuclear Medicine Department, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Nuclear Medicine Department, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
21
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
22
|
Ibrahim R, Saleh K, Chahine C, Khoury R, Khalife N, Cesne AL. LAG-3 Inhibitors: Novel Immune Checkpoint Inhibitors Changing the Landscape of Immunotherapy. Biomedicines 2023; 11:1878. [PMID: 37509517 PMCID: PMC10377063 DOI: 10.3390/biomedicines11071878] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
One of the most important steps forward in the management of cancer was the discovery of immunotherapy. It has become an essential pillar in the treatment paradigm of cancer patients. Unfortunately, despite the various options presented with immune checkpoint inhibitors (ICIs), the benefit is still limited to select patients and the vast majority of these patients gain either minimal benefit or eventually progress, leaving an unmet need for the development of novel therapeutic agents and strategies. Lymphocyte activation gene-3 (LAG-3), an immune checkpoint receptor protein, is a molecule found on the surface of activated T-cells. It plays a major role in negatively regulating T-cell function thereby providing tumors with an immune escape in the tumor microenvironment (TME). Given its importance in regulating the immune system, LAG-3 has been considered as a promising target in oncology and precision medicine. To date, two LAG-3-directed agents (eftilagimod alpha and relatlimab) have been approved in combination with programmed death-1 (PD-1) inhibitors in the setting of advanced solid tumors. In this review, we discuss the structure of LAG-3, its mechanism of action, and its interaction with its ligands. We also shed light on the emerging treatments targeting LAG-3 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Nadine Khalife
- Department of head and neck Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Axel Le Cesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
23
|
Mishra AK, Malonia SK. Advancing cellular immunotherapy with macrophages. Life Sci 2023:121857. [PMID: 37307965 DOI: 10.1016/j.lfs.2023.121857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Cell-based immunotherapies have become an exciting avenue for cancer treatment, particularly CAR T cells, which have shown great success in treating hematological malignancies. However, the limited success of T cell-based approaches in treating solid tumors has sparked interest in alternative cell types that could be used for solid tumor immunotherapy. Recent research has pointed to macrophages as a potential solution, given their ability to infiltrate solid tumors, exhibit a strong anti-tumor response, and persist long-term in the tumor microenvironment. Although early attempts with ex-vivo activated macrophage-based therapies failed to translate into clinical success, the field has revolutionized with the recent development of chimeric antigen receptor-expressing macrophages (CAR-M). While CAR-M therapy has reached the clinical trial stage, several challenges still need to be overcome before the therapy can become a reality. Here we review the evolution of macrophage-based cell therapy and evaluate recent studies and developments, emphasizing the potential of macrophages as cellular therapeutics. Furthermore, we also discuss the challenges and opportunities associated with using macrophages as a basis for therapeutic interventions.
Collapse
Affiliation(s)
- Alok K Mishra
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA.
| | - Sunil K Malonia
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
24
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Naples, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| |
Collapse
|
25
|
Lauriola A, Davalli P, Marverti G, Santi S, Caporali A, D'Arca D. Targeting the Interplay of Independent Cellular Pathways and Immunity: A Challenge in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15113009. [PMID: 37296972 DOI: 10.3390/cancers15113009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Immunotherapy is a cancer treatment that exploits the capacity of the body's immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet. Within the field of cancer immunotherapy, an expansion of the combination strategy that targets independent cellular pathways that can work synergistically is predicted. Here, we review some consequences of tumor cell death and increased immune system engagement in the modulation of oxidative stress and ubiquitin ligase pathways. We also indicate combinations of cancer immunotherapies and immunomodulatory targets. Additionally, we discuss imaging techniques, which are crucial for monitoring tumor responses during treatment and the immunotherapy side effects. Finally, the major outstanding questions are also presented, and directions for future research are described.
Collapse
Affiliation(s)
- Angela Lauriola
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Pierpaola Davalli
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gaetano Marverti
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Spartaco Santi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, Scotland EH4 2XU, UK
| | - Domenico D'Arca
- Department of Biomedical, Metabolic and Neural Sciences, Via G. Campi 287, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
26
|
Choi JY, Kim TJ. The Current Status and Future Perspectives of Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Endometrial Cancer. Curr Issues Mol Biol 2023; 45:3359-3374. [PMID: 37185744 PMCID: PMC10136476 DOI: 10.3390/cimb45040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Endometrial cancer (EC) is a gynecological neoplasm that is increasing in occurrence and mortality rates. Although endometrial cancer in the early stages shows a relatively favorable prognosis, there is an increase in cancer-related mortality rates in the advanced or recurrent endometrial carcinoma population and patients in the metastatic setting. This discrepancy has presented an opportunity for research and development of target therapies in this population. After obtaining promising results with hematologic cancers, chimeric antigen receptor (CAR)-T cell immunotherapy is gaining acceptance as a treatment for solid neoplasms. This treatment platform allows T cells to express tumor-specific CARs on the cell surface, which are administered to the patient to treat neoplastic cells. Given that CAR-T cell therapy has shown potential and clinical benefit compared to other T cell treatment platforms, additional research is required to overcome physiological limitations such as CAR-T cell depletion, immunosuppressive tumor microenvironment, and the lack of specific target molecules. Different approaches and development are ongoing to overcome these complications. This review examines CAR-T cell therapy's current use for endometrial carcinomas. We also discuss the significant adverse effects and limitations of this immunotherapeutic approach. Finally, we consolidate signal-seeking early-phase clinical trials and advancements that have shown promising results, leading to the approval of new immunotherapeutic agents for the disease.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Gynecology and Infertility Medicine, CHA University Ilsan Medical Center, Goyang 1205, Republic of Korea
| | - Tae-Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 1205, Republic of Korea
| |
Collapse
|
27
|
Valiullina AK, Zmievskaya EA, Ganeeva IA, Zhuravleva MN, Garanina EE, Rizvanov AA, Petukhov AV, Bulatov ER. Сytotoxic effect of CAR-T cells against modified MCF-7 breast cancer cell line. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2023; 12:139-148. [PMID: 37886737 PMCID: PMC10599594 DOI: 10.22099/mbrc.2023.47125.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The most often diagnosed and fatal malignancy in women is breast cancer. The International Agency for Research on Cancer (IARC) estimates that there are 2.26 million new cases of cancer in 2020. Adoptive cell therapy using T cells with chimeric antigen receptor shows potential for the treatment of solid tumors, such as breast cancer. In this work the effectiveness of CAR-T cells against monolayer and three-dimensional bioprinted tumor-like structures made of modified MCF-7 breast cancer cells was assessed. The cytokine profile of supernatants after co-cultivation of MCF-7 tumor cell models with CAR-T cells was also measured to reveal the inflammatory background associated with this interaction.
Collapse
Affiliation(s)
- Aigul Kh. Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina A. Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Irina A. Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Margarita N. Zhuravleva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey V. Petukhov
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Emil R. Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|