1
|
Zhang T, Li Q, Wang H, Sun S, Xu H. A Missense Variant in the IKZF2 Gene Identified in a Genetically Undiagnosed Family With Hearing Loss. Am J Med Genet A 2025; 197:e63986. [PMID: 39754384 DOI: 10.1002/ajmg.a.63986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Hearing loss is one of the conditions characterized by a high degree of genetic heterogeneity, and whole exome sequencing (WES) serves as a key method for identifying pathogenic variants. To date, 155 genes have been reported to be associated with nonsyndromic hearing loss. Recently, a study by Velde et al. found that the IKZF2 (OMIM#606234) gene is associated with nonsyndromic hearing loss. In our cohort of nearly 300 patients with undiagnosed hearing loss who underwent WES, we discovered a case harboring a variant in the IKZF2 gene, specifically c.485A > C (NM_001387220.1). By investigating the patient's family history and hearing conditions, we subsequently employed Sanger sequencing to validate our findings within the family, confirming that this patient's pathogenic variant is indeed in the IKZF2 gene. Our case provides further robust evidence supporting the association of IKZF2 with nonsyndromic hearing loss.
Collapse
Affiliation(s)
- Teng Zhang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiang Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanjun Wang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuping Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongen Xu
- Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Naghinejad M, Parvizpour S, Khaniani MS, Mehri M, Derakhshan SM, Amirfiroozy A. The known structural variations in hearing loss and their diagnostic approaches: a comprehensive review. Mol Biol Rep 2025; 52:131. [PMID: 39821465 DOI: 10.1007/s11033-025-10231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Hearing loss (HL) is the most common sensory disorder, characterized by a wide range of causes, including both environmental and genetic factors. While single-nucleotide variants (SNVs) and small insertions/deletions have been extensively studied, the role of structural variations (SVs) in hearing impairment has gained increasing recognition. This review article aims to provide a comprehensive overview of the importance of SVs in HL, by exploring the SVs associated with HL and their underlying pathogenic mechanisms. Additionally, diagnostic methods of SVs have been briefly evaluated and compared in general. Three major mechanisms by which SVs can lead to HL are gene disruption, gene dosage imbalance, and position effect. Furthermore, to facilitate the detection of SVs in HL, this review presents a table highlighting the key genes and genomic regions implicated in SVs and their diagnostic approaches associated with HL patients. In the next step, indications for the use of SV diagnostic techniques are compiled in another table in this article, which will help experts in choosing the most appropriate technique. At last, the comprehensive review presented here underscores the significant role of SVs in HL. Further research is required to fully elucidate the spectrum of SVs in HL and optimize the clinical use of SV detection methods in routine diagnostic procedures.
Collapse
Affiliation(s)
- Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsood Mehri
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Mutai H, Miya F, Nara K, Yamamoto N, Inoue S, Murakami H, Namba K, Shitara H, Minami S, Nakano A, Arimoto Y, Morimoto N, Kawasaki T, Wasano K, Fujioka M, Uchida Y, Kaga K, Yamazawa K, Kikkawa Y, Kosaki K, Tsunoda T, Matsunaga T. Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search. Hum Genet 2025; 144:93-112. [PMID: 39755840 DOI: 10.1007/s00439-024-02719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features. Causative genes were identified in 22 families, including both established genes associated with syndromic hearing loss (PTPN11, CHD7, KARS1, OPA1, DLX5, MITF, SOX10, MYO7A, and USH2A) and those associated with nonsyndromic hearing loss (STRC, EYA4, and KCNQ4). Association of a DLX5 variant with incomplete partition type I (IP-I) anomaly of the inner ear was identified in a patient with cleft lip and palate and acetabular dysplasia. The study identified COL1A1, CFAP52, and NSD1 as causative genes through phenotype similarity search or by analogy. ZBTB10 was proposed as a novel candidate gene for syndromic hearing loss with IP-I. A mouse model with homozygous Zbtb10 frameshift variant resulted in embryonic lethality, suggesting the importance of this gene for early embryonic development. Our data highlight a wide spectrum of rare causative genes in patients with syndromic hearing loss, and demonstrate that WES analysis combined with phenotype similarity search is a valuable approach for clinical genetic testing of undiagnosed disease.
Collapse
Affiliation(s)
- Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kiyomitsu Nara
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
| | - Nobuko Yamamoto
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
| | - Satomi Inoue
- Medical Genetics Center, NHO Tokyo Medical Center, Tokyo, Japan
| | - Haruka Murakami
- Medical Genetics Center, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kazunori Namba
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shujiro Minami
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
- Department of Otolaryngology, NHO Tokyo Medical Center, Tokyo, Japan
| | - Atsuko Nakano
- Otorhinolaryngology, Chiba Children's Hospital, Chiba, Japan
| | - Yukiko Arimoto
- Otorhinolaryngology, Chiba Children's Hospital, Chiba, Japan
| | - Noriko Morimoto
- Department of Otorhinolaryngology, National Center for Child Health and Development, Tokyo, Japan
| | - Taiji Kawasaki
- Otolaryngology-Head and Neck Surgery, Japanese Red Cross Shizuoka Hospital, Shizuoka, Japan
| | - Koichiro Wasano
- Department of Otolaryngology, NHO Tokyo Medical Center, Tokyo, Japan
- Otolaryngology-Head and Neck Surgery, Japanese Red Cross Shizuoka Hospital, Shizuoka, Japan
- Otorhinolaryngology-Head and Neck Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
- Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yasue Uchida
- Department of Otorhinolaryngology, Aichi Medical University Hospital, Aichi, Japan
| | - Kimitaka Kaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
- Department of Otolaryngology, NHO Tokyo Medical Center, Tokyo, Japan
| | - Kazuki Yamazawa
- Medical Genetics Center, NHO Tokyo Medical Center, Tokyo, Japan
| | - Yoshiaki Kikkawa
- Deafness Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.
- Medical Genetics Center, NHO Tokyo Medical Center, Tokyo, Japan.
- Department of Otolaryngology, NHO Tokyo Medical Center, Tokyo, Japan.
| |
Collapse
|
4
|
Yang TH, Hsu YC, Yeh P, Hung CJ, Tsai YF, Fang MC, Yen ACC, Chen LF, Pan JY, Wu CC, Liu TC, Chung FL, Yu WM, Lin SW. Critical role of hepsin/TMPRSS1 in hearing and tectorial membrane morphogenesis: Insights from transgenic mouse models. Hear Res 2024; 453:109134. [PMID: 39437584 PMCID: PMC11531994 DOI: 10.1016/j.heares.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Mutations in various type II transmembrane serine protease (TMPRSS) family members are associated with non-syndromic hearing loss, with some mechanisms still unclear. For instance, the mechanism underlying profound hearing loss and tectorial membrane (TM) malformations in hepsin/TMPRSS1 knockout (KO) mice remains elusive. In this study, we confirmed significantly elevated hearing thresholds and abnormal TM morphology in hepsin KO mice, characterized by enlarged TM with gaps and detachment from the spiral limbus. Transgenic mouse lines were created to express either wild-type or a serine protease-dead mutant of human hepsin in the KO background. The Tg68;KO line, expressing moderate levels of wild-type human hepsin in the cochlea, showed partial restoration of hearing function. Conversely, the Tg5;KO or TgRS;KO lines, with undetectable hepsin or protease-dead hepsin, did not show such improvement. Histological analyses revealed that Tg68;KO mice, but not Tg5;KO or TgRS;KO mice, had a more compact TM structure, partially attached to the spiral limbus. These results indicate that hepsin expression levels correlate with improvements in hearing and TM morphology, and its protease activity is critical for these effects. Hepsin's role was further examined by studying its relationship with α-tectorin (TECTA) and β-tectorin (TECTB), non-collagenous proteins crucial for TM formation. Hepsin was co-expressed with TECTA and TECTB in the developing cochlear epithelium. Immunostaining showed decreased levels of TECTA and TECTB in hepsin KO TM, partially restored in Tg68;KO mice. These findings suggest that hepsin is essential for proper TM morphogenesis and auditory function, potentially by proteolytic processing/maturation of TECTA and TECTB and their incorporation into the TM.
Collapse
Affiliation(s)
- Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Liver Disease Prevention and Treatment Research Foundation, Taiwan
| | - Peng Yeh
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Jui Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Fei Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mo-Chu Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Li-Fu Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhih-Yu Pan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Fong-Ling Chung
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Ming Yu
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
王 月, 梁 悦, 黄 碧, 岑 晓, 黄 露, 陈 垲. [Late-onset hereditary hearing loss caused by TMPRSS3 compound heterozygous mutations]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:679-686. [PMID: 39118504 PMCID: PMC11612751 DOI: 10.13201/j.issn.2096-7993.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 08/10/2024]
Abstract
Objective:This study aims to identify the genetic etiology underlying late-onset hearing loss in two unrelated Chinese families. Methods:Detailed clinical data of recruited participants of two families were collected and analyzed using next-generation sequencing, combined with Sanger sequencing and bioinformatics tools. Results:Patients in both families manifested as down-sloping audiograms, mainly with severe mid-to-high frequency hearing loss as well as decreased speech recognition rate, both of which occurred during the second decade. Next-generation sequencing panels succeeded in identifying mutations in gene TMPRSS3, and three heterozygous mutations were screened out, among which c. 383T>C was the first reported mutation. In silico functional analysis and molecular modeling defined the five mutations as "pathogenic" or "likely pathogenic" according to official guideline. Conclusion:The novel mutation combinations in TMPRSS3 gene segregated with an exclusive auditory phenotype in the two pedigrees. Our results provided new data regarding the characteristic deafness caused by TMPRSS3 mutations during adolescent period when hearing should be closely monitored.
Collapse
Affiliation(s)
- 月莹 王
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 悦 梁
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 碧雪 黄
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 晓晴 岑
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 露莎 黄
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| | - 垲钿 陈
- 中山大学附属第一医院耳鼻咽喉科医院 中山大学耳鼻咽喉科学研究所(广州,510080)Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Otolaryngology, Sun Yat-sen University
| |
Collapse
|
6
|
Alasmari BG, Alpakra M, Hassanien SS, Elmugadam AA, Elzubair L, Suliman EA, Alghubishi SA. A Novel Variant in the DIAPH1 Gene Causing Macrothrombocytopenia and Non-syndromic Hearing Loss in a Pediatric Saudi Girl. Cureus 2024; 16:e61044. [PMID: 38915998 PMCID: PMC11195521 DOI: 10.7759/cureus.61044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/26/2024] Open
Abstract
Macrothrompocytopenia (MTP) is a rare group of hereditary disorders that lead to impaired hemostasis. Macrothrompocytopenia mostly results from genetic mutations in genes implicated in megakaryocyte differentiation and function. Diaphanous-related formin 1 (DIAPH1) is a protein-coding gene. Dominant gain-of-function DIAPH1 variants cause macrothrombocytopenia and sensorineural deafness (autosomal dominant non-syndromic hearing loss 1 (DFNA1)), while homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). This rare genetic disease is characterized by progressive and severe hearing loss with onset in the first decade of life, is associated with mild thrombocytopenia, and has no significant bleeding tendency. This case report presents the clinical findings of a 14-year-old Saudi pediatric girl. We investigated the potential association of DIAPH1 as a novel candidate gene linked to dominant MTP and autosomal dominant non-syndromic hearing loss (ADNSHL), which was evaluated through audiometry. Notably, a novel variant, c.3633_3636del, was identified in the DIAPH1 gene. To date, only a small number of mutations in this gene have been reported as the cause of MTP and ADNSHL.
Collapse
Affiliation(s)
- Badriah G Alasmari
- Pediatric Hematology and Oncology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | - Mohammed Alpakra
- Pediatric Hematology and Oncology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | - Sara S Hassanien
- Pediatric Hematology and Oncology, Armed Forces Hospitals Southern Region, Khamis Mushait, SAU
| | - Abdelhakam A Elmugadam
- Pediatric Hematology and Oncology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | - Lina Elzubair
- Hematopathology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | - Enaam A Suliman
- Hematopathology, Armed Forces Hospitals Southern Region, Khamis Mushayt, SAU
| | | |
Collapse
|
7
|
Schobers G, Derks R, den Ouden A, Swinkels H, van Reeuwijk J, Bosgoed E, Lugtenberg D, Sun SM, Corominas Galbany J, Weiss M, Blok MJ, Olde Keizer RACM, Hofste T, Hellebrekers D, de Leeuw N, Stegmann A, Kamsteeg EJ, Paulussen ADC, Ligtenberg MJL, Bradley XZ, Peden J, Gutierrez A, Pullen A, Payne T, Gilissen C, van den Wijngaard A, Brunner HG, Nelen M, Yntema HG, Vissers LELM. Genome sequencing as a generic diagnostic strategy for rare disease. Genome Med 2024; 16:32. [PMID: 38355605 PMCID: PMC10868087 DOI: 10.1186/s13073-024-01301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.
Collapse
Affiliation(s)
- Gaby Schobers
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Amber den Ouden
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Hilde Swinkels
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Ermanno Bosgoed
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | | | - Su Ming Sun
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jordi Corominas Galbany
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Marjan Weiss
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Richelle A C M Olde Keizer
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Tom Hofste
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Debby Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Alexander Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Aimee D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | | | | | | | | | | | - Christian Gilissen
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | | | - Han G Brunner
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marcel Nelen
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, Nijmegen, Netherlands.
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, Netherlands.
| |
Collapse
|
8
|
Santin A, Spedicati B, Morgan A, Lenarduzzi S, Tesolin P, Nardone GG, Mazzà D, Di Lorenzo G, Romano F, Buonomo F, Mangogna A, Concas MP, Zito G, Ricci G, Girotto G. Puzzling Out the Genetic Architecture of Endometriosis: Whole-Exome Sequencing and Novel Candidate Gene Identification in a Deeply Clinically Characterised Cohort. Biomedicines 2023; 11:2122. [PMID: 37626618 PMCID: PMC10452899 DOI: 10.3390/biomedicines11082122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Endometriosis (EM) is a common multifactorial gynaecological disorder. Although Genome-Wide Association Studies have largely been employed, the current knowledge of the genetic mechanisms underlying EM is far from complete, and other approaches are needed. To this purpose, whole-exome sequencing (WES) was performed on a deeply characterised cohort of 80 EM patients aimed at the identification of rare and damaging variants within 46 EM-associated genes and novel candidates. WES analysis detected 63 rare, predicted, and damaging heterozygous variants within 24 genes in 63% of the EM patients. In particular, (1) a total of 43% of patients carried variants within 13 recurrent genes (FCRL3, LAMA5, SYNE1, SYNE2, GREB1, MAP3K4, C3, MMP3, MMP9, TYK2, VEGFA, VEZT, RHOJ); (2) a total of 8.8% carried private variants within eight genes (KAZN, IL18, WT1, CYP19A1, IL1A, IL2RB, LILRB2, ZNF366); (3) a total of 24% carried variants within three novel candidates (ABCA13, NEB, CSMD1). Finally, to deepen the polygenic architecture of EM, a comprehensive evaluation of the analysed genes was performed, revealing a higher burden (p < 0.05) of genes harbouring rare and damaging variants in the EM patients than in the controls. These results highlight new insights into EM genetics, allowing for the definition of novel genotype-phenotype correlations, thereby contributing, in a long-term perspective, to the development of personalised care for EM patients.
Collapse
Affiliation(s)
- Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Anna Morgan
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Stefania Lenarduzzi
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Giuseppe Giovanni Nardone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
| | - Daniela Mazzà
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Federico Romano
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Francesca Buonomo
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Maria Pina Concas
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Gabriella Zito
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giuseppe Ricci
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (A.S.); (P.T.); (G.G.N.); (G.R.); (G.G.)
- Institute for Maternal and Child Health, I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (S.L.); (D.M.); (G.D.L.); (F.R.); (F.B.); (A.M.); (M.P.C.); (G.Z.)
| |
Collapse
|
9
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|