1
|
Glavan MR, Socaciu C, Socaciu AI, Milas O, Gadalean F, Cretu OM, Vlad A, Muntean DM, Bob F, Suteanu A, Jianu DC, Stefan M, Marcu L, Ienciu S, Petrica L. Targeted Analysis of Serum and Urinary Metabolites for Early Chronic Kidney Disease. Int J Mol Sci 2025; 26:2862. [PMID: 40243426 PMCID: PMC11989156 DOI: 10.3390/ijms26072862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic kidney disease (CKD) has become one of the most rapidly advancing diseases of the century, contributing significantly to increased mortality and morbidity. Metabolomics presents a promising approach to understanding CKD pathogenesis and identifying novel biomarkers for early diagnosis. This study evaluated serum and urine metabolomic profiles in CKD patients with declining glomerular filtration rates (eGFR). Using targeted metabolomics, we quantified seven potential metabolites in blood and urine samples from 20 healthy individuals and 99 CKD patients staged by eGFR according to the KDIGO guidelines. The analysis was conducted using ultra-high performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry. The metabolites investigated included L-phenylalanine, L-methionine, arginine, indoxyl sulfate, kynurenic acid, and L-acetylcarnitine. Quantitative assessments were performed using pure standards and validated through methods such as the limit of detection (LOD) and limit of quantification (LOQ). The findings identified potential biomarkers for early CKD diagnosis: in serum, L-phenylalanine, L-methionine, arginine, kynurenic acid, and indoxyl sulfate, while L-acetylcarnitine was significant in urine. These biomarkers could provide valuable insights into CKD progression and support in developing more effective diagnostic tools for early intervention.
Collapse
Affiliation(s)
- Mihaela-Roxana Glavan
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Carmen Socaciu
- Research Center for Applied Biotechnology and Molecular Therapy BIODIATECH, SC Proplanta, Str. Trifoiului 12G, 400478 Cluj-Napoca, Romania;
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Haţieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania;
| | - Oana Milas
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Octavian M. Cretu
- Department of Surgery—Surgical Semiotics, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timişoara, Romania;
| | - Adrian Vlad
- Department of Internal Medicine II—Diabetes and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Danina M. Muntean
- Department of Functional Sciences—Pathophysiology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Anca Suteanu
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dragos Catalin Jianu
- Department of Neurosciences—Neurology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Centre for Cognitive Research in Neuropsychiatric Pathology, Clinical County Emergency Hospital, “Victor Babes” University of Medicine and Pharmacy, Liviu Rebreanu Ave. No 156, 300041 Timișoara, Romania
| | - Maria Stefan
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Lavinia Marcu
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Silvia Ienciu
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (M.-R.G.); (F.G.); (F.B.); (A.S.); (M.S.); (L.M.); (S.I.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
2
|
Takami N, Okazaki M, Ozeki T, Imaizumi T, Nishibori N, Kurasawa S, Hishida M, Akiyama S, Saito R, Hirayama A, Kasuga H, Kaneda F, Maruyama S. Plasma Metabolite Profiles Between In-Center Daytime Extended-Hours and Conventional Hemodialysis. KIDNEY360 2025; 6:420-431. [PMID: 39652407 PMCID: PMC11970860 DOI: 10.34067/kid.0000000675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 03/28/2025]
Abstract
Key Points Significant differences in 39 plasma metabolites were observed between patients on extended-hours hemodialysis and those on conventional hemodialysis. Extended-hours hemodialysis had a lower lactate-to-pyruvate ratio and higher branched-chain amino acids than conventional hemodialysis. Extended-hours hemodialysis may have favorable metabolic and nutritional benefits for patients undergoing maintenance hemodialysis. Background Protein–energy wasting, characterized by disordered body protein catabolism resulting from metabolic and nutritional derangements, is associated with adverse clinical outcomes in patients undergoing hemodialysis. Extended-hours hemodialysis (≥6 hours per treatment session) offers both enhanced removal of uremic solutes and better fluid management, generally allowing more liberalized dietary protein and calorie intake. The aim of this study was to evaluate the difference in plasma metabolite profiles among patients receiving in-center daytime extended-hours hemodialysis and those receiving conventional hemodialysis. Methods Predialysis plasma samples were obtained from 188 patients on extended-hours hemodialysis (21.9 h/wk) and 286 patients on conventional hemodialysis (12.1 h/wk) in Japan in 2020 using capillary electrophoresis-mass spectrometry. Group differences were compared for 117 metabolites using Wilcoxon rank-sum tests with multiple comparisons and partial least squares discriminant analysis. In addition, propensity score–adjusted multiple regression analyses were performed to evaluate group differences for known uremic toxins, branched-chain amino acids, and lactate-to-pyruvate ratio (a possible surrogate marker of mitochondrial dysfunction). Results Significant differences were observed in 39 metabolites, largely consistent with the high variable importance for prediction in partial least squares discriminant analysis. Among known uremic toxins, uridine and hypoxanthine levels were significantly higher in the conventional hemodialysis group than in the extended-hours hemodialysis group, whereas trimethylamine N -oxide levels were higher in the extended-hours hemodialysis group than in the conventional hemodialysis group. Patients on extended-hours hemodialysis had higher levels of all branched-chain amino acids and a lower lactate-to-pyruvate ratio than those on conventional hemodialysis (significant difference of −8.6 [95% confidence interval, −9.8 to −7.4]). Conclusions Extended-hours hemodialysis was associated with a more favorable plasma metabolic and amino acid profile; however, concentrations of most uremic toxins did not significantly differ from those of conventional hemodialysis.
Collapse
Affiliation(s)
- Norito Takami
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Okazaki
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaya Ozeki
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Imaizumi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Nobuhiro Nishibori
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shimon Kurasawa
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Manabu Hishida
- Department of Nephrology, Kaikoukai Josai Hospital, Nagoya, Japan
| | - Shin'ichi Akiyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rintaro Saito
- Department of Nephrology, Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Akiyoshi Hirayama
- Department of Nephrology, Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Hirotake Kasuga
- Department of Nephrology, Nagoya Kyoritsu Hospital, Nagoya, Japan
| | | | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Hu L, Chen M, Xue X, Zhao M, He Q. Effect of glyphosate on renal function: A study integrating epidemiological and experimental evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117758. [PMID: 39862699 DOI: 10.1016/j.ecoenv.2025.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Glyphosate, a widely used herbicide globally, has prompted concerns regarding its potential health impacts. This study aimed to explore the link between glyphosate exposure and renal function by combining NHANES, a zebrafish model, and metabolomics. A cross-sectional analysis of 2013-2014 NHANES data investigated the relationship between glyphosate exposure and renal function [albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR)]. A subsequent zebrafish experiment was conducted to verify this association. Embryos (0.75 hpf-96 hpf) were exposed to different glyphosate concentrations dissolved in water (0, 30, 60, 90, 120 μg/mL). The underlying mechanism of the association between glyphosate and renal function was explored by the real-time quantitative polymerase chain reaction (RT-qPCR) and non-targeted metabolomics analysis [embryos (0.75 hpf-96 hpf) were exposed to 90 μg/mL glyphosate]. 1170 participants were enrolled in the NHANES study. The NHANES-based study found a positive association between glyphosate and ACR [0.07 (0.01, 0.13)]. Higher urinary glyphosate levels, particularly in the third quartile group, were negatively linked to eGFR [-3.72 (-5.98, -1.46)]. Further zebrafish experiments indicated that zebrafish exposed to 90 μg/mL glyphosate exhibited increased mortality rates, higher fluorescence intensity, up-regulated the havcr1 expression level, and cystic dilatation of the kidney. Non-targeted metabolomics analysis identified differential metabolites (e.g., 5-Hydroxyindole acetic acid) and pathways (e.g., ABC transporters) influenced by glyphosate. Glyphosate exposure is negatively associated with renal function in community adults. The damage to the kidneys caused by glyphosate may be mediated through the regulation of metabolic pathways, and the specific mechanisms require further experimental investigation.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Mingcong Chen
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiaoran Xue
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Shen L, Zhao H, Xi Y, Wang Z, Deng K, Gou W, Zhang K, Hu W, Tang J, Xu F, Jiang Z, Fu Y, Zhu Y, Zhou D, Chen YM, Zheng JS. Mapping the gut microbial structural variations in healthy aging within the Chinese population. Cell Rep 2024; 43:114968. [PMID: 39520681 DOI: 10.1016/j.celrep.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Mapping gut microbial structural variants (SVs) during human aging may provide fundamental knowledge and mechanistic understanding of the gut microbiome's relationship with healthy aging. We characterize gut microbial SVs from 3,230 Chinese participants, identifying key SVs associated with aging, healthy aging, and age-related chronic diseases. Our findings reveal a pattern of copy number loss in aging-related SVs, with 35 core SVs consistently detected. Additionally, eight SVs distinguish healthy from unhealthy aging, regardless of age. Notably, a 3-kbp deletion SV of Bifidobacterium pseudocatenulatum, encoding plant polysaccharide degradation, is regulated by plant-based diet and contributes to healthy aging through bile acid metabolism. Our analysis also connects SVs to age-related diseases, such as chronic kidney disease, via genes in the methionine-homocysteine pathway. This study deepens our understanding of the gut microbiome's role in aging and could inform future efforts to enhance lifespan and healthspan.
Collapse
Affiliation(s)
- Luqi Shen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hui Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yue Xi
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhaoping Wang
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kui Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Wanglong Gou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ke Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Fengzhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zengliang Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Yuanqing Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
5
|
Pereira I, Sboto JNS, Robinson JL, Gill CG. Paper spray mass spectrometry combined with machine learning as a rapid diagnostic for chronic kidney disease. Analyst 2024; 149:2600-2608. [PMID: 38529879 DOI: 10.1039/d4an00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A new analytical method for chronic kidney disease (CKD) detection utilizing paper spray mass spectrometry (PS-MS) combined with machine learning is presented. The analytical protocol is rapid and simple, based on metabolic profile alterations in urine. Anonymized raw urine samples were deposited (10 μL each) onto pointed PS-MS sample strips. Without waiting for the sample to dry, 75 μL of acetonitrile and high voltage were applied to the strips, using high resolution mass spectrometry measurement (15 s per sample) with polarity switching to detect a wide range of metabolites. Random forest machine learning was used to classify the resulting data. The diagnostic performance for the potential diagnosis of CKD was evaluated for accuracy, sensitivity, and specificity, achieving results >96% for the training data and >91% for validation and test data sets. Metabolites selected by the classification model as up- or down-regulated in healthy or CKD samples were tentatively identified and in agreement with previously reported literature. The potential utilization of this approach to discriminate albuminuria categories (normo, micro, and macroalbuminuria) was also demonstrated. This study indicates that PS-MS combined with machine learning has the potential to be used as a rapid and simple diagnostic tool for CKD.
Collapse
Affiliation(s)
- Igor Pereira
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada.
| | - Jindar N S Sboto
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada.
| | | | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada.
- Chemistry Department, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Chemistry Department, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA, 98195-1618, USA
| |
Collapse
|
6
|
Karin KN, Mustafa MA, Lichtman AH, Poklis JL. High-performance liquid chromatography-tandem mass spectrometry method for the analysis of N-oleoyl glycine and N-oleoyl alanine in brain and plasma. J Sep Sci 2023; 46:e2300395. [PMID: 37688356 PMCID: PMC10872932 DOI: 10.1002/jssc.202300395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Interest has increased in the role of N-acyl amino acids in a variety of disease states and as potential pharmacotherapies. Recently, N-oleoyl glycine and N-oleoyl alanine have shown promise in reducing the rewarding effects of drugs of abuse and alleviating withdrawal signs in rodent models. Previously published methods for the quantitation of these analytes by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in tissue were part of extensive lipidomic panels which may result in limited sensitivity and selectivity and also reported low recovery. Presented is a method for the extraction and HPLC-MS/MS analysis of N-oleoyl glycine and N-oleoyl alanine. The bias and precision of the assay were determined to be within ± 20%. The method was shown to be reliable and robust, with over 90% recovery for the low-level analytes. Increasing concentrations of N-oleoyl glycine and N-oleoyl alanine were quantitated in mouse brain and plasma following exogenous administration. This method was developed to serve to support studies investigating the pharmacokinetics and involvement of N-oleoyl glycine and N-oleoyl alanine in drug dependence and other diseases.
Collapse
Affiliation(s)
- Kimberly N. Karin
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA
| | - Mohammed A. Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond, VA
| | - Justin L. Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Richmond, VA
| |
Collapse
|
7
|
Danilova EY, Maslova AO, Stavrianidi AN, Nosyrev AE, Maltseva LD, Morozova OL. CKD Urine Metabolomics: Modern Concepts and Approaches. PATHOPHYSIOLOGY 2023; 30:443-466. [PMID: 37873853 PMCID: PMC10594523 DOI: 10.3390/pathophysiology30040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
One of the primary challenges regarding chronic kidney disease (CKD) diagnosis is the absence of reliable methods to detect early-stage kidney damage. A metabolomic approach is expected to broaden the current diagnostic modalities by enabling timely detection and making the prognosis more accurate. Analysis performed on urine has several advantages, such as the ease of collection using noninvasive methods and its lower protein and lipid content compared with other bodily fluids. This review highlights current trends in applied analytical methods, major discoveries concerning pathways, and investigated populations in the context of urine metabolomic research for CKD over the past five years. Also, we are presenting approaches, instrument upgrades, and sample preparation modifications that have improved the analytical parameters of methods. The onset of CKD leads to alterations in metabolism that are apparent in the molecular composition of urine. Recent works highlight the prevalence of alterations in the metabolic pathways related to the tricarboxylic acid cycle and amino acids. Including diverse patient cohorts, using numerous analytical techniques with modifications and the appropriate annotation and explanation of the discovered biomarkers will help develop effective diagnostic models for different subtypes of renal injury with clinical applications.
Collapse
Affiliation(s)
- Elena Y. Danilova
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory Str., 119991 Moscow, Russia
| | - Anna O. Maslova
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
| | - Andrey N. Stavrianidi
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory Str., 119991 Moscow, Russia
| | - Alexander E. Nosyrev
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
| | - Larisa D. Maltseva
- Department of Pathophysiology, Institute of Biodesign and Modeling of Complex System, I.M. Sechenov First Moscow State Medical University (Sechenov University), 13-1 Nikitsky Boulevard, 119019 Moscow, Russia; (L.D.M.)
| | - Olga L. Morozova
- Department of Pathophysiology, Institute of Biodesign and Modeling of Complex System, I.M. Sechenov First Moscow State Medical University (Sechenov University), 13-1 Nikitsky Boulevard, 119019 Moscow, Russia; (L.D.M.)
| |
Collapse
|
8
|
Mogos M, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, Ienciu S, Balint L, Jianu DC, Petrica L. Metabolomic Investigation of Blood and Urinary Amino Acids and Derivatives in Patients with Type 2 Diabetes Mellitus and Early Diabetic Kidney Disease. Biomedicines 2023; 11:1527. [PMID: 37371622 DOI: 10.3390/biomedicines11061527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/29/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease; however, few biomarkers of its early identification are available. The aim of the study was to assess new biomarkers in the early stages of DKD in type 2 diabetes mellitus (DM) patients. This cross-sectional pilot study performed an integrated metabolomic profiling of blood and urine in 90 patients with type 2 DM, classified into three subgroups according to albuminuria stage from P1 to P3 (30 normo-, 30 micro-, and 30 macroalbuminuric) and 20 healthy controls using high-performance liquid chromatography and mass spectrometry (UPLC-QTOF-ESI* MS). From a large cohort of separated and identified molecules, 33 and 39 amino acids and derivatives from serum and urine, respectively, were selected for statistical analysis using Metaboanalyst 5.0. online software. The multivariate and univariate algorithms confirmed the relevance of some amino acids and derivatives as biomarkers that are responsible for the discrimination between healthy controls and DKD patients. Serum molecules such as tiglylglycine, methoxytryptophan, serotonin sulfate, 5-hydroxy lysine, taurine, kynurenic acid, and tyrosine were found to be more significant in the discrimination between group C and subgroups P1-P2-P3. In urine, o-phosphothreonine, aspartic acid, 5-hydroxy lysine, uric acid, methoxytryptophan, were among the most relevant metabolites in the discrimination between group C and DKD group, as well between subgroups P1-P2-P3. The identification of these potential biomarkers may indicate their involvement in the early DKD and 2DM progression, reflecting kidney injury at specific sites along the nephron, even in the early stages of DKD.
Collapse
Affiliation(s)
- Maria Mogos
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Carmen Socaciu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Research Center for Applied Biotechnology and Molecular Therapy BIODIATECH, SC Proplanta, Str. Trifoiului 12G, 400478 Cluj-Napoca, Romania
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy "Iuliu Haţieganu", Str. Victor Babes 8, 400347 Cluj-Napoca, Romania
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Internal Medicine II-Division of Diabetes and Metabolic Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Oana Milas
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Octavian Marius Cretu
- Department of Surgery I-Division of Surgical Semiology I, "Victor Babes" University of Medicine and Pharmacy Timisoara, Emergency Clinical Municipal Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Mihaela Glavan
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Silvia Ienciu
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Lavinia Balint
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurosciences-Division of Neurology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|