1
|
Jahdkaran M, Sistanizad M. From lipids to glucose: Investigating the role of dyslipidemia in the risk of insulin resistance. J Steroid Biochem Mol Biol 2025; 250:106744. [PMID: 40158704 DOI: 10.1016/j.jsbmb.2025.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Dyslipidemia is recognized as one of the most prevalent metabolic disorders and is frequently associated with other prevalent conditions, particularly diabetes mellitus. There appears to be a bidirectional connection between these two metabolic disorders. While considerable research has focused on how insulin resistance can lead to lipid abnormalities, the reverse relationship specifically, how dyslipidemia could assist in developing insulin resistance and diabetes mellitus has received relatively less attention. This review aims to comprehensively evaluate the mechanisms through which dyslipidemia can induce insulin resistance. Dyslipidemia is primarily classified into three main categories: hypercholesterolemia, hypertriglyceridemia, and low levels of HDL. These conditions may promote insulin resistance across multiple pathways, including the accumulation of lipid metabolites, dysfunction of pancreatic β-cells, increased reactive oxygen species, endoplasmic reticulum stress and inflammation, endothelial dysfunction, alterations in adiponectin levels, changes in bile acid composition and concentration, and dysbiosis of gut microbiota. However, further investigation is required to fully elucidate the cellular and molecular mechanisms underlying the relationship between lipid disorders and insulin resistance. Emphasizing such research could facilitate the development of therapeutic strategies targeting both conditions simultaneously.
Collapse
Affiliation(s)
- Mahtab Jahdkaran
- Prevention of Cardiovascular Disease Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Prevention of Cardiovascular Disease Research Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Qi GY, Wang F, Shi YB, Feng J, Xu J. Analysis of postprandial time trends and influencing factors of blood glucose and insulin in type 2 diabetes mellitus (T2DM) with metabolic dysfunction-associated steatotic liver disease (MASLD): a retrospective study based on propensity score matching (PSM). Acta Diabetol 2025:10.1007/s00592-025-02503-5. [PMID: 40167632 DOI: 10.1007/s00592-025-02503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus (T2DM) are increasingly prevalent metabolic disorders worldwide, with a complex bidirectional relationship between them. Currently, there is a lack of research on the trajectories of blood glucose and insulin concentration over time after eating in patients with MASLD and T2DM. METHODS This clinical cohort included diagnosed T2DM patients in a large hospital over the past five years, was divided into an observation group (with MASLD) and a control group (without MASLD). The postprandial time trends of blood glucose and insulin concentration were analysed within two hours after eating. A strategy of backward iterative feature elimination combined with propensity score matching (PSM) was employed to screen for potential associated factors that might influence these trends. RESULTS In total, there were 521 in the observation group and 373 in the control group. In terms of blood glucose, the postprandial time-concentration trajectories for both groups shown a significant time main effect (F = 1145.567, P < 0.001), a significant group main effect (F = 15.340, P < 0.001), and a significant time*group interaction effect (F = 2.873, P = 0.035); After matching all the factors, the time*group interaction effect of blood glucose was not significant, but the differences from group main effect still existed. In terms of insulin, the postprandial time-concentration trajectories for both groups shown a significant time main effect (F = 309.429, P < 0.001), a significant group main effect (F = 6.319, P < 0.012), and a significant time*group interaction effect (F = 20.057, P < 0.001), but the trajectories crossed; After matching 4 factors such as Smoking, Essential Hypertension (EH), Body Mass Index (BMI), Triglyceride (TG) and Ca2+, neither the group main effect nor the time*group interaction effect on insulin was significant any more. CONCLUSION The postprandial trends of blood glucose and insulin concentration over time shown significant differences between T2DM patients with and without MASLD. IL-6 might be associated with the insulin resistance, while EH and Ca2+ might be related to the islet β-cell function. Smoking and TG might participate in both of the above processes. The strategy of backward iterative with PSM had demonstrated a relatively satisfactory effect in feature screening.
Collapse
Affiliation(s)
- Ge-Yao Qi
- Department of Internal Medicine, No. 32186 Unit Hospital of People's Liberation Army of China (PLA), Baoding, 071000, Hebei, China
| | - Fei Wang
- Department of Cardiology, No. 940 Hospital of Logistics Support Force of People's Liberation Army of China (PLA), Lanzhou, 730050, Gansu, China
| | - Yuan-Bo Shi
- Department of Information, No. 940 Hospital of Logistics Support Force of People's Liberation Army of China (PLA), Lanzhou, 730050, Gansu, China
| | - Juan Feng
- Department of Cardiology, No. 940 Hospital of Logistics Support Force of People's Liberation Army of China (PLA), Lanzhou, 730050, Gansu, China
| | - Jin Xu
- Department of Endocrinology, No. 940 Hospital of Logistics Support Force of People's Liberation Army of China (PLA), No. 333, Middle Section of South Binhe Road, Qilihe District, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
3
|
Yokoi N, Adachi N, Hirokoji T, Nakano K, Yoshihara M, Shigenaka S, Urakawa R, Taniguchi Y, Yoshida Y, Yokose S, Suyama M, Okamura T. Comparative transcriptome and mutation analyses of the pancreatic islets of a rat model of obese type 2 diabetes identifies a frequently distributed nonsense mutation in the lipocalin 2 gene. DNA Res 2025; 32:dsaf004. [PMID: 40036227 PMCID: PMC11976058 DOI: 10.1093/dnares/dsaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Type 2 diabetes (T2D) is a multifactorial disease caused by insulin resistance and impaired insulin secretion from pancreatic β-cells, but the precise mechanisms remain to be elucidated. To identify primary genetic factors of T2D in a rat model, we performed comparative transcriptome and mutation analyses of the pancreatic islets between the obese Zucker fatty rat and the Zucker fatty rat-derived T2D model Zucker fatty diabetes mellitus (ZFDM) rat. Among differentially expressed genes irrespective of obesity and glucose intolerance states, we identified a nonsense mutation, c.409C > T (p.Gln137X), in the lipocalin 2 (Lcn2) gene which encodes a secreted protein called neutrophil gelatinase-associated lipocalin, a well-known biomarker for inflammation. We examined the relevance of the Lcn2 mutation with T2D in the ZFDM rat by using genome editing and genetic linkage analysis and confirmed that the Lcn2 mutation exhibits no significant association with the onset of T2D. Interestingly, we found that the Lcn2 mutation is distributed widely in rat species, such as commonly used DA and F344 strains. Our data indicate that several rat strains would serve as Lcn2 deficient models, contributing to elucidate the pathophysiological roles of Lcn2 in a wide variety of phenotypes.
Collapse
Affiliation(s)
- Norihide Yokoi
- Laboratory of Animal Breeding and Genetics, Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Sakyo-ku, Kyoto 606-8502, Japan
| | - Naoki Adachi
- Laboratory of Animal Breeding and Genetics, Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoki Hirokoji
- Laboratory of Animal Breeding and Genetics, Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Minako Yoshihara
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Saki Shigenaka
- Laboratory of Animal Breeding and Genetics, Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryuya Urakawa
- Laboratory of Animal Breeding and Genetics, Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukio Taniguchi
- Laboratory of Animal Breeding and Genetics, Division of Applied Biosciences, Kyoto University Graduate School of Agriculture, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yusaku Yoshida
- Biotechnical Center, Japan SLC, Inc., Hamamatsu, Shizuoka 433-8114, Japan
| | - Shigeo Yokose
- Biotechnical Center, Japan SLC, Inc., Hamamatsu, Shizuoka 433-8114, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
4
|
Laurindo LF, Laurindo LF, Rodrigues VD, Chagas EFB, da Silva Camarinha Oliveira J, Catharin VMCS, Barbalho SM. Mechanisms and effects of AdipoRon, an adiponectin receptor agonist, on ovarian granulosa cells-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1305-1314. [PMID: 39292249 DOI: 10.1007/s00210-024-03441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Granulosa cells, crucial components of ovarian follicles, play a fundamental role in follicle development, hormone production, and overall reproductive health. These cells are integral to steroidogenesis, including the synthesis and secretion of key hormones such as estrogen and progesterone. Dysregulation of granulosa cells can lead to reproductive disorders, including polycystic ovary syndrome and infertility. This systematic review provides a comprehensive evaluation of AdipoRon, a synthetic agonist of adiponectin receptors AdipoR1 and AdipoR2, and its effects on ovarian function, with a particular focus on granulosa cells. Due to the absence of clinical trials, the review centers on preclinical studies to explore AdipoRon's potential therapeutic benefits and to suggest future research directions. A detailed literature search across databases such as PubMed, Scopus, Web of Science, Embase, and Google Scholar was conducted using terms related to AdipoRon and ovarian function. The review encompasses four preclinical studies involving various models: primary granulosa cells from rats, laying hens' granulosa cells, human luteinized granulosa cells, and chicken ovary follicles. Findings indicate that AdipoRon enhances glucose absorption in rat granulosa cells by stimulating glucose transporter 1 expression, modulates steroid hormone secretion in laying hens' granulosa cells, and affects cell proliferation and steroidogenesis in human luteinized granulosa cells. Additionally, AdipoRon, in conjunction with recombinant chicken adiponectin, influences ovarian follicular cell proliferation and steroidogenesis in chicken ovary follicles. This review highlights the need for further investigation into AdipoRon's long-term effects and its potential applications in reproductive health and therapy.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José Do Rio Preto (FAMERP), São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- School of Medicine, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- School of Medicine, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- School of Medicine, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| |
Collapse
|
5
|
Ramasundaram V, Ponnaiyan D, Anitha CM, Prakash PSG, Victor DJ, Singh A. Evaluation of Soluble Tumor Necrosis Factor-Like Weak Inducer of Apoptosis, Omentin, and Tumor Necrosis Factor-α in Subjects with Periodontitis and Type 2 Diabetes Mellitus. Genet Test Mol Biomarkers 2025; 29:1-6. [PMID: 39729310 DOI: 10.1089/gtmb.2024.0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Purpose: Periodontal disease worsens glycemic control due to the bidirectional link between periodontitis and type 2 diabetes mellitus (T2DM), involving inflammatory markers such as soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK), tumor necrosis factor-α (TNF-α), and omentin-1. However, their combined role in T2DM with periodontitis has not been studied. This study aimed to evaluate the levels of these biomarkers in periodontitis patients with T2DM before and after nonsurgical periodontal therapy (NSPT). Materials and Methods: Sixty subjects were divided into four groups (15 each): Group I (systemically and periodontally healthy), Group II (systemically healthy with periodontitis), and Groups III and IV (periodontitis with T2DM, exhibiting good glycemic control [hemoglobin A1c (HbA1c) <7%] and poor control [HbA1c >8%]), respectively. Periodontal parameters such as plaque index, bleeding index, probing pocket depth, and clinical attachment level were assessed. Serum samples were collected at baseline and 3 months to measure sTWEAK, omentin-1, and TNF-α levels using ELISA. HbA1c levels were evaluated at baseline and 3 months. Results: TNF-α was significantly elevated in all groups compared with sTWEAK and omentin-1. However, omentin-1 levels were higher in the healthy group compared with all other groups. Periodontal parameters and biomarker levels showed significant improvement across all groups after 3 months post-NSPT. Conclusion: TNF-α and sTWEAK may serve as diagnostic markers, while omentin-1 can be a reliable prognostic marker for evaluating NSPT effects in T2DM patients with periodontitis and varying glycemic control.
Collapse
Affiliation(s)
| | | | - C M Anitha
- SRM Dental College, Bharathi Salai, Chennai, India
| | | | - D J Victor
- SRM Dental College, Bharathi Salai, Chennai, India
| | | |
Collapse
|
6
|
Saadati S, de Courten M, Deceneux C, Plebanski M, Scott D, Mesinovic J, Jansons P, Aldini G, Cameron J, Feehan J, Mousa A, de Courten B. Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial. Nutrients 2024; 16:3900. [PMID: 39599686 PMCID: PMC11597812 DOI: 10.3390/nu16223900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES In vitro studies suggest that carnosine reduces inflammation by upregulating anti-inflammatory mediators and downregulating pro-inflammatory cytokines. However, human clinical trials examining the effects of carnosine on inflammatory biomarkers are scant. We conducted a secondary analysis of a double-blind randomised controlled trial (RCT) to examine the effects of carnosine supplementation on inflammatory markers and adipokines in participants with prediabetes or well-controlled type 2 diabetes (T2D). METHODS Out of 88 participants who were recruited, 49 adults with prediabetes or well-controlled T2D (HbA1c: 6.6 ± 0.7% [mean ± SD]) who were treated with diet and/or metformin were eligible for inclusion. Participants were randomised to receive 2 g/day of carnosine or a matching placebo for 14 weeks. We measured serum concentrations of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, IL-10, C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), adiponectin, leptin, adipsin, serpin, and resistin levels at baseline and after 14 weeks. The trial was registered at clinicaltrials.gov (NCT02917928). RESULTS Forty-one participants (M = 29/F = 12) aged 53 (42.6, 59.3) years [median (IQR)] completed the trial. After 14 weeks of supplementation, changes in pro- and anti-inflammatory cytokine and adipokine levels did not differ between the carnosine and placebo groups (p > 0.05 for all). The results remained unchanged after adjustment for confounders including age, sex, and anthropometric measures (e.g., body fat percentage and visceral adipose tissue). CONCLUSIONS In individuals with prediabetes and well-controlled T2D, carnosine supplementation did not result in any significant changes in inflammatory markers. Larger RCTs with longer follow-up durations are needed to evaluate whether carnosine may be beneficial in individuals with poorly controlled T2D.
Collapse
Affiliation(s)
- Saeede Saadati
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (A.M.)
| | - Maximilian de Courten
- Australian Health Policy Collaboration, Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 8001, Australia;
| | - Cyril Deceneux
- Cancer Aging and Vaccine Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (C.D.); (M.P.)
| | - Magdalena Plebanski
- Cancer Aging and Vaccine Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (C.D.); (M.P.)
| | - David Scott
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (J.M.); (P.J.)
| | - Jakub Mesinovic
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (J.M.); (P.J.)
| | - Paul Jansons
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia; (D.S.); (J.M.); (P.J.)
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - James Cameron
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia;
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (A.M.)
| | - Barbora de Courten
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
7
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
8
|
Mitsis A, Khattab E, Myrianthefs M, Tzikas S, Kadoglou NPE, Fragakis N, Ziakas A, Kassimis G. Chemerin in the Spotlight: Revealing Its Multifaceted Role in Acute Myocardial Infarction. Biomedicines 2024; 12:2133. [PMID: 39335646 PMCID: PMC11428948 DOI: 10.3390/biomedicines12092133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chemerin, an adipokine known for its role in adipogenesis and inflammation, has emerged as a significant biomarker in cardiovascular diseases, including acute myocardial infarction (AMI). Recent studies have highlighted chemerin's involvement in the pathophysiological processes of coronary artery disease (CAD), where it modulates inflammatory responses, endothelial function, and vascular remodelling. Elevated levels of chemerin have been associated with adverse cardiovascular outcomes, including increased myocardial injury, left ventricular dysfunction, and heightened inflammatory states post-AMI. This manuscript aims to provide a comprehensive review of the current understanding of chemerin's role in AMI, detailing its molecular mechanisms, clinical implications, and potential as a biomarker for diagnosis and prognosis. Additionally, we explore the therapeutic prospects of targeting chemerin pathways to mitigate myocardial damage and improve clinical outcomes in AMI patients. By synthesizing the latest research findings, this review seeks to elucidate the multifaceted role of chemerin in AMI and its promise as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| |
Collapse
|
9
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Huang H, Chen H, Yao Y, Lou X. Branched-chain amino acids supplementation induces insulin resistance and pro-inflammatory macrophage polarization via INFGR1/JAK1/STAT1 signal pathway. Mol Med 2024; 30:149. [PMID: 39267003 PMCID: PMC11391606 DOI: 10.1186/s10020-024-00894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Obesity is a global epidemic, and the low-grade chronic inflammation of adipose tissue in obese individuals can lead to insulin resistance and type 2 diabetes. Adipose tissue macrophages (ATMs) are the main source of pro-inflammatory cytokines in adipose tissue, making them an important target for therapy. While branched-chain amino acids (BCAA) have been strongly linked to obesity and type 2 diabetes in humans, the relationship between BCAA catabolism and adipose tissue inflammation is unclear. This study aims to investigate whether disrupted BCAA catabolism influences the function of adipose tissue macrophages and the secretion of pro-inflammatory cytokines in adipose tissue, and to determine the underlying mechanism. This research will help us better understand the role of BCAA catabolism in adipose tissue inflammation, obesity, and type 2 diabetes. METHODS In vivo, we examined whether the BCAA catabolism in ATMs was altered in high-fat diet-induced obesity mice, and if BCAA supplementation would influence obesity, glucose tolerance, insulin sensitivity, adipose tissue inflammation and ATMs polarization in mice. In vitro, we isolated ATMs from standard chow and high BCAA-fed group mice, using RNA-sequencing to investigate the potential molecular pathway regulated by BCAA accumulation. Finally, we performed targeted gene silence experiment and used immunoblotting assays to verify our findings. RESULTS We found that BCAA catabolic enzymes in ATMs were influenced by high-fat diet induced obesity mice, which caused the accumulation of both BCAA and its downstream BCKA. BCAA supplementation will cause obesity and insulin resistance compared to standard chow (STC) group. And high BCAA diet will induce pro-inflammatory cytokines including Interlukin-1beta (IL-1β), Tumor Necrosis Factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) secretion in adipose tissue as well as promoting ATMs M1 polarization (pro-inflammatory phenotype). Transcriptomic analysis revealed that a high BCAA diet would activate IFNGR1/JAK1/STAT1 pathway, and IFNGR1 specific silence can abolish the effect of BCAA supplementation-induced inflammation and ATMs M1 polarization. CONCLUSIONS The obesity mice model reveals the catabolism of BCAA was disrupted which will cause the accumulation of BCAA, and high-level BCAA will promote ATMs M1 polarization and increase the pro-inflammatory cytokines in adipose tissue which will cause the insulin resistance in further. Therefore, reducing the circulating level of BCAA can be a therapeutic strategy in obesity and insulin resistance patients.
Collapse
Affiliation(s)
- Huaying Huang
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China
| | - Heye Chen
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China
| | - Yu Yao
- Department of Neurology, JinHua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Xueyong Lou
- Department of Endocrinology and Metabolism, JinHua Municipal Central Hospital, No. 365, Renmin East Road, Wucheng District, Jinhua, Zhejiang, China.
| |
Collapse
|
11
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
12
|
Gómez-Hernández A, de las Heras N, Gálvez BG, Fernández-Marcelo T, Fernández-Millán E, Escribano Ó. New Mediators in the Crosstalk between Different Adipose Tissues. Int J Mol Sci 2024; 25:4659. [PMID: 38731880 PMCID: PMC11083914 DOI: 10.3390/ijms25094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain;
| | - Beatriz G. Gálvez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Óscar Escribano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
13
|
Ke TM, Lophatananon A, Muir KR. Strengthening the Evidence for a Causal Link between Type 2 Diabetes Mellitus and Pancreatic Cancer: Insights from Two-Sample and Multivariable Mendelian Randomization. Int J Mol Sci 2024; 25:4615. [PMID: 38731833 PMCID: PMC11082974 DOI: 10.3390/ijms25094615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
This two-sample Mendelian randomization (MR) study was conducted to investigate the causal associations between type 2 diabetes mellitus (T2DM) and the risk of pancreatic cancer (PaCa), as this causal relationship remains inconclusive in existing MR studies. The selection of instrumental variables for T2DM was based on two genome-wide association study (GWAS) meta-analyses from European cohorts. Summary-level data for PaCa were extracted from the FinnGen and UK Biobank databases. Inverse variance weighted (IVW) and four other robust methods were employed in our MR analysis. Various sensitivity analyses and multivariable MR approaches were also performed to enhance the robustness of our findings. In the IVW and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) analyses, the odds ratios (ORs) for each 1-unit increase in genetically predicted log odds of T2DM were approximately 1.13 for PaCa. The sensitivity tests and multivariable MR supported the causal link between T2DM and PaCa without pleiotropic effects. Therefore, our analyses suggest a causal relationship between T2DM and PaCa, shedding light on the potential pathophysiological mechanisms of T2DM's impact on PaCa. This finding underscores the importance of T2DM prevention as a strategy to reduce the risk of PaCa.
Collapse
Affiliation(s)
| | | | - Kenneth R. Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (T.-M.K.); (A.L.)
| |
Collapse
|
14
|
Wang H, Jayasankar N, Thamaraikani T, Viktor P, Mohany M, Al-Rejaie SS, Alammar HK, Anad E, Alhili F, Hussein SF, Amin AH, Lakshmaiya N, Ahsan M, Bahrami A, Akhavan-Sigari R. Quercetin modulates expression of serum exosomal long noncoding RNA NEAT1 to regulate the miR-129-5p/BDNF axis and attenuate cognitive impairment in diabetic mice. Life Sci 2024; 340:122449. [PMID: 38253310 DOI: 10.1016/j.lfs.2024.122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Cognitive impairment poses a considerable health challenge in the context of type 2 diabetes mellitus (T2DM), emphasizing the need for effective interventions. This study delves into the therapeutic efficacy of quercetin, a natural flavonoid, in mitigating cognitive impairment induced by T2DM in murine models. MATERIALS AND METHODS Serum exosome samples were obtained from both T2DM-related and healthy mice for transcriptome sequencing, enabling the identification of differentially expressed mRNAs and long noncoding RNAs (lncRNAs). Subsequent experiments were conducted to ascertain the binding affinity between mmu-miR-129-5p, NEAT1 and BDNF. The structural characteristics and dimensions of isolated exosomes were scrutinized, and the expression levels of exosome-associated proteins were quantified. Primary mouse hippocampal neurons were cultured for in vitro validation, assessing the expression of pertinent genes as well as neuronal vitality, proliferation, and apoptosis capabilities. For in vivo validation, a T2DM mouse model was established, and quercetin treatment was administered. Changes in various parameters, cognitive ability, and the expression of insulin-related proteins, along with pivotal signaling pathways, were monitored. KEY FINDINGS Analysis of serum exosomes from T2DM mice revealed dysregulation of NEAT1, mmu-miR-129-5p, and BDNF. In vitro investigations demonstrated that NEAT1 upregulated BDNF expression by inhibiting mmu-miR-129-5p. Overexpression of mmu-miR-129-5p or silencing NEAT1 resulted in the downregulation of insulin-related protein expression, enhanced apoptosis, and suppressed neuronal proliferation. In vivo studies validated that quercetin treatment significantly ameliorated T2DM-related cognitive impairment in mice. SIGNIFICANCE These findings suggest that quercetin holds promise in inhibiting hippocampal neuron apoptosis and improving T2DM-related cognitive impairment by modulating the NEAT1/miR-129-5p/BDNF pathway within serum exosomes.
Collapse
Affiliation(s)
- Hui Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu 322000, China
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező, H-1084 Budapest, Hungary
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Enaam Anad
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | - Sinan F Hussein
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, Poland.
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|