1
|
Husain K, Coppola D, Yang CS, Malafa MP. Effect of vitamin E δ-tocotrienol and aspirin on Wnt signaling in human colon cancer stem cells and in adenoma development in APCmin/+ mice. Carcinogenesis 2024; 45:881-892. [PMID: 38877828 DOI: 10.1093/carcin/bgae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024] Open
Abstract
In this study, we evaluated the effects of vitamin E δ-tocotrienol (DT3) and aspirin on Wnt signaling in human colon cancer stem cells (CCSCs) and in the prevention of adenoma formation in APCmin/+ mice. We found that knockdown of the adenomatous polyposis coli (APC) gene led to subsequent activation of Wnt signaling in colon epithelial cells (NCM460-APCsiRNA) and induction of β-catenin and its downstream target proteins c-MYC, cyclin D1, and survivin. When aspirin and DT3 were combined, cell growth and survival were inhibited and apoptosis was induced in colon epithelial cells and CCSCs. However, DT3 and/or aspirin had little or no effect on the control of normal colon epithelial cells (NCM460-NCsiRNA). The induction of apoptosis was directly related to the activation of caspase 8 and cleavage of BH3-interacting-domain (BID) to truncated BID. In addition, DT3- and/or aspirin-induced apoptosis was associated with cleaved Poly (ADP-ribose) polymerase (PARP), elevated levels of cytosolic cytochrome c and BAX, and depletion of antiapoptotic protein BCl-2 in CCSCs. The combination of aspirin and DT3 inhibited the self-renewal capacity, Wnt/β-catenin receptor activity, and expression of β-catenin and its downstream targets c-MYC, cyclin D1, and survivin in CCSCs. We also found that treatment with DT3 alone or combined with aspirin significantly inhibited intestinal adenoma formation and Wnt/β-catenin signaling and induced apoptosis, compared with vehicle, in APCmin/+ mice. Our study demonstrated a rationale for further investigation of the combination of DT3 and aspirin for colorectal cancer prevention and therapy.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Domenico Coppola
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ 08854, United States
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| |
Collapse
|
2
|
Tien P, Bih ZL, Chen WM, Shia BC, Wu SY, Chiang CW. Aspirin use reduces cancer risk in betel nut chewers: a nationwide population-based cohort study. Am J Cancer Res 2024; 14:5921-5934. [PMID: 39803639 PMCID: PMC11711529 DOI: 10.62347/jxmi9007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/10/2024] [Indexed: 01/16/2025] Open
Abstract
Betel nut chewing, common in several Asian populations, is linked to increased cancer risk, including oral, esophageal, gastric, and hepatocellular carcinoma. Aspirin shows potential as a chemopreventive agent. This study investigates the association between aspirin use and cancer risk among betel nut chewers. Betel nut chewers aged 18 and older were included, with aspirin use defined as at least 28 cumulative defined daily doses (cDDDs). Propensity score matching and Cox proportional hazards models, adjusted for time-varying covariates, were used to assess cancer risk. The study included 46,302 betel nut chewers, equally divided between aspirin users and non-users. Aspirin use was associated with a 31% reduction in overall cancer risk (adjusted hazard ratio [aHR], 0.69; 95% confidence interval [CI], 0.66 to 0.73; P<0.0001). A dose-response relationship was observed, with higher cDDDs of aspirin corresponding to greater reductions in cancer risk. The highest quartile of aspirin use (Quartile 4) showed a 62% reduction in cancer risk (aHR, 0.38; 95% CI, 0.34 to 0.41; P<0.0001). Daily aspirin intensity was also associated with a significant reduction in cancer risk, with doses greater than 1 DDD showing an aHR of 0.54 (95% CI, 0.47 to 0.61; P<0.0001) compared to 1 DDD or less. Aspirin use significantly reduces cancer risk among betel nut chewers in a dose-dependent manner. These findings suggest aspirin as a potential chemopreventive agent in high-risk populations, warranting further investigation.
Collapse
Affiliation(s)
- Peng Tien
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265, Taiwan
| | - Zen Lang Bih
- Department of Emergency Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityTaipei 242, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic UniversityTaipei 242, Taiwan
| | - Ben-Chang Shia
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic UniversityTaipei 242, Taiwan
- Artificial Intelligence Development Center, Fu Jen Catholic UniversityTaipei 242, Taiwan
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia UniversityTaichung 413, Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265, Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia UniversityTaichung 413, Taiwan
- Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical UniversityTaipei 116, Taiwan
| | - Ching-Wen Chiang
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai HospitalYilan 265, Taiwan
| |
Collapse
|
3
|
Miret Durazo CI, Zachariah Saji S, Rawat A, Motiño Villanueva AL, Bhandari A, Nurjanah T, Ryali N, Zepeda Martínez IG, Cruz Santiago JA. Exploring Aspirin's Potential in Cancer Prevention: A Comprehensive Review of the Current Evidence. Cureus 2024; 16:e70005. [PMID: 39445288 PMCID: PMC11498354 DOI: 10.7759/cureus.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Aspirin, traditionally recognized for its analgesic, anti-inflammatory, antipyretic, and antiplatelet effects, has recently attracted attention for its potential role in cancer prevention. Initially studied for cardiovascular disease prevention, emerging evidence suggests that aspirin may reduce the risk of certain cancers, particularly colorectal cancer (CRC). This narrative review integrates findings from early studies, animal models, epidemiological data, and clinical trials to evaluate aspirin's efficacy as a chemopreventive agent. Aspirin's anticancer effects are primarily attributed to its cyclooxygenase (COX) enzyme inhibition, which decreases prostaglandin E2 (PGE2) levels and disrupts cancer-related signaling pathways. While epidemiological studies support an association between aspirin use and reduced cancer incidence and mortality, especially for CRC and potentially for breast (BC) and prostate cancers (PCa), the risk of adverse effects, such as gastrointestinal (GI) and intracranial bleeding, complicates its use and warrants careful consideration. The decision to use aspirin for cancer prevention should be individualized, balancing its therapeutic benefits against potential adverse effects. It also underscores the necessity for further research to refine dosage guidelines, assess long-term impacts, and explore additional biomarkers to guide personalized cancer prevention strategies.
Collapse
Affiliation(s)
| | | | - Akash Rawat
- Department of General Medicine, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, IND
| | | | - Amit Bhandari
- Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Tutut Nurjanah
- Department of General Medicine, Universitas Yarsi, Jakarta, IDN
| | - Niharika Ryali
- Department of General Medicine, Gandhi Medical College, Hyderabad, IND
| | | | - Josue A Cruz Santiago
- Department of General Medicine, Universidad Autónoma de Guadalajara, Guadalajara, MEX
| |
Collapse
|
4
|
Shi Y, Zhang X, Pei S, Wang Y. Ethnopharmacological study on Adenosma buchneroides Bonati inhibiting inflammation via the regulation of TLR4/MyD88/NF-κB signaling pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:36. [PMID: 38833115 DOI: 10.1007/s13659-024-00458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Adenosma buchneroides Bonati, also known as fleagrass, is an important medicinal plant used by the Akha (Hani) people of China for treating inflammation-related skin swelling, acne, and diarrhoea, among other conditions. In this study, we aimed to evaluate the anti-inflammatory activities and explore the molecular mechanisms of fleagrass on treating skin swelling and acne. The results demonstrated that fleagrass inhibited the enzymatic activities of 5-LOX and COX-2 in vitro, and decreased the release of NO, IL-6, TNF-α, and IL-10 in the LPS-induced RAW264.7 macrophages. The levels of proteins associated with the nuclear factor-kappa B (NF-κB) pathway were examined by western blotting and immunofluorescence, demonstrating that fleagrass downregulated the expression of TLR4, MyD88, NF-κB/p65, and iNOS and blocked the nuclear translocation of NF-κB/p65. Furthermore, fleagrass exhibited acute anti-inflammatory activity in paw oedema models. The results confirm that fleagrass exhibits remarkable anti-inflammatory activity and can be used in alleviating inflammation, suggesting that fleagrass has the potential to be a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Yuru Shi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Xiaoqian Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Shengji Pei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China
| | - Yuhua Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China.
| |
Collapse
|
5
|
Sarabi PZ, Moradi M, Bagheri M, Khalili MR, Moradifard S, Jamialahmadi T, Ghasemi F, Sahebkar A. A Contemporary Review on the Critical Role of Nonsteroidal Anti-inflammatory Agents in Colorectal Cancer Therapy. Anticancer Agents Med Chem 2024; 24:559-570. [PMID: 38275052 DOI: 10.2174/0118715206271583231206052403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/27/2024]
Abstract
Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) are widely recognized as effective pain relievers and function by inhibiting the cyclooxygenase enzyme (COXs). Moreover, they have been found to participate in various cellular processes through different signaling pathways, such as WNT, MAPK, NF-κB, and PI3K/AKT/mTOR. This makes them potential candidates for chemoprevention of several malignancies, particularly colorectal cancer (CRC). However, the use of NSAIDs in cancer prevention and treatment is a complex issue due to their adverse effects and gastrointestinal toxicity. Therefore, it is crucial to explore combination therapies that can minimize side effects while maximizing synergistic effects with other agents and to evaluate the success rate of such approaches in both pre-clinical and clinical studies. In this review, we aim to provide an overview of the effects of NSAIDs in the prevention and treatment of CRC. We will focus on elucidating the possible mechanisms of action of these drugs, the signaling pathways involved in CRC, and the potential synergistic effects when combined with other therapeutic agents.
Collapse
Affiliation(s)
- Parisa Zia Sarabi
- Laboratorio de Psicobiología, Campus Santiago Ramón y Cajal, University of Sevilla, 41018, Sevilla, Spain
| | - Mohammad Moradi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Malihe Bagheri
- Department of Biotechnology and Molecular Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Reza Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| | - Shahrzad Moradifard
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Holt AK, Najumudeen AK, Collard TJ, Li H, Millett LM, Hoskin AJ, Legge DN, Mortensson EMH, Flanagan DJ, Jones N, Kollareddy M, Timms P, Hitchings MD, Cronin J, Sansom OJ, Williams AC, Vincent EE. Aspirin reprogrammes colorectal cancer cell metabolism and sensitises to glutaminase inhibition. Cancer Metab 2023; 11:18. [PMID: 37858256 PMCID: PMC10588174 DOI: 10.1186/s40170-023-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND To support proliferation and survival within a challenging microenvironment, cancer cells must reprogramme their metabolism. As such, targeting cancer cell metabolism is a promising therapeutic avenue. However, identifying tractable nodes of metabolic vulnerability in cancer cells is challenging due to their metabolic plasticity. Identification of effective treatment combinations to counter this is an active area of research. Aspirin has a well-established role in cancer prevention, particularly in colorectal cancer (CRC), although the mechanisms are not fully understood. METHODS We generated a model to investigate the impact of long-term (52 weeks) aspirin exposure on CRC cells, which has allowed us comprehensively characterise the metabolic impact of long-term aspirin exposure (2-4mM for 52 weeks) using proteomics, Seahorse Extracellular Flux Analysis and Stable Isotope Labelling (SIL). Using this information, we were able to identify nodes of metabolic vulnerability for further targeting, investigating the impact of combining aspirin with metabolic inhibitors in vitro and in vivo. RESULTS We show that aspirin regulates several enzymes and transporters of central carbon metabolism and results in a reduction in glutaminolysis and a concomitant increase in glucose metabolism, demonstrating reprogramming of nutrient utilisation. We show that aspirin causes likely compensatory changes that render the cells sensitive to the glutaminase 1 (GLS1) inhibitor-CB-839. Of note given the clinical interest, treatment with CB-839 alone had little effect on CRC cell growth or survival. However, in combination with aspirin, CB-839 inhibited CRC cell proliferation and induced apoptosis in vitro and, importantly, reduced crypt proliferation in Apcfl/fl mice in vivo. CONCLUSIONS Together, these results show that aspirin leads to significant metabolic reprogramming in colorectal cancer cells and raises the possibility that aspirin could significantly increase the efficacy of metabolic cancer therapies in CRC.
Collapse
Affiliation(s)
- Amy K Holt
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Arafath K Najumudeen
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tracey J Collard
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Hao Li
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Ashley J Hoskin
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Danny N Legge
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Eleanor M H Mortensson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | | | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Madhu Kollareddy
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Penny Timms
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - James Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ann C Williams
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TW, UK
| | - Emma E Vincent
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, Bristol, BS8 2BN, UK.
| |
Collapse
|
7
|
Hoskin AJ, Holt AK, Legge DN, Collard TJ, Williams AC, Vincent EE. Aspirin and the metabolic hallmark of cancer: novel therapeutic opportunities for colorectal cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:600-615. [PMID: 37720350 PMCID: PMC10501897 DOI: 10.37349/etat.2023.00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Aspirin is a well-known nonsteroidal anti-inflammatory drug (NSAID) that has a recognized role in cancer prevention as well as evidence to support its use as an adjuvant for cancer treatment. Importantly there has been an increasing number of studies contributing to the mechanistic understanding of aspirins' anti-tumour effects and these studies continue to inform the potential clinical use of aspirin for both the prevention and treatment of cancer. This review focuses on the emerging role of aspirin as a regulator of metabolic reprogramming, an essential "hallmark of cancer" required to support the increased demand for biosynthetic intermediates needed for sustained proliferation. Cancer cells frequently undergo metabolic rewiring driven by oncogenic pathways such as hypoxia-inducible factor (HIF), wingless-related integration site (Wnt), mammalian target of rapamycin (mTOR), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB), which supports the increased proliferative rate as tumours develop and progress. Reviewed here, cellular metabolic reprogramming has been identified as a key mechanism of action of aspirin and include the regulation of key metabolic drivers, the regulation of enzymes involved in glycolysis and glutaminolysis, and altered nutrient utilisation upon aspirin exposure. Importantly, as aspirin treatment exposes metabolic vulnerabilities in tumour cells, there is an opportunity for the use of aspirin in combination with specific metabolic inhibitors in particular, glutaminase (GLS) inhibitors currently in clinical trials such as telaglenastat (CB-839) and IACS-6274 for the treatment of colorectal and potentially other cancers. The increasing evidence that aspirin impacts metabolism in cancer cells suggests that aspirin could provide a simple, relatively safe, and cost-effective way to target this important hallmark of cancer. Excitingly, this review highlights a potential new role for aspirin in improving the efficacy of a new generation of metabolic inhibitors currently undergoing clinical investigation.
Collapse
Affiliation(s)
- Ashley J. Hoskin
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Amy K. Holt
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Danny N. Legge
- Department of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, BS1 3NY Bristol, UK
| | - Tracey J. Collard
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Ann C. Williams
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Emma E. Vincent
- Department of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, BS1 3NY Bristol, UK
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, BS8 2BN Bristol, UK
| |
Collapse
|
8
|
Rashid G, Khan NA, Elsori D, Rehman A, Tanzeelah, Ahmad H, Maryam H, Rais A, Usmani MS, Babker AM, Kamal MA, Hafez W. Non-steroidal anti-inflammatory drugs and biomarkers: A new paradigm in colorectal cancer. Front Med (Lausanne) 2023; 10:1130710. [PMID: 36950511 PMCID: PMC10025514 DOI: 10.3389/fmed.2023.1130710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer is a sporadic, hereditary, or familial based disease in its origin, caused due to diverse set of mutations in large intestinal epithelial cells. Colorectal cancer (CRC) is a common and deadly disease that accounts for the 4th worldwide highly variable malignancy. For the early detection of CRC, the most common predictive biomarker found endogenously are KRAS and ctDNA/cfDNA along with SEPT9 methylated DNA. Early detection and screening for CRC are necessary and multiple methods can be employed to screen and perform early diagnosis of CRC. Colonoscopy, an invasive method is most prevalent for diagnosing CRC or confirming the positive result as compared to other screening methods whereas several non-invasive techniques such as molecular analysis of breath, urine, blood, and stool can also be performed for early detection. Interestingly, widely used medicines known as non-steroidal anti-inflammatory drugs (NSAIDs) to reduce pain and inflammation have reported chemopreventive impact on gastrointestinal malignancies, especially CRC in several epidemiological and preclinical types of research. NSAID acts by inhibiting two cyclooxygenase enzymes, thereby preventing the synthesis of prostaglandins (PGs) and causing NSAID-induced apoptosis and growth inhibition in CRC cells. This review paper majorly focuses on the diversity of natural and synthetic biomarkers and various techniques for the early detection of CRC. An approach toward current advancement in CRC detection techniques and the role of NSAIDs in CRC chemoprevention has been explored systematically. Several prominent governing mechanisms of the anti-cancer effects of NSAIDs and their synergistic effect with statins for an effective chemopreventive measure have also been discussed in this review paper.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Amity Medical School, Amity University, Gurugram, India
| | - Nihad Ashraf Khan
- Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi, India
| | - Deena Elsori
- Faculty of Resillience, Deans Office Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Andleeb Rehman
- Department of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Tanzeelah
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Haleema Ahmad
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Humaira Maryam
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Amaan Rais
- Department of Biochemistry, Faculty of Life Sciences, AMU, Aligarh, India
| | - Mohd Salik Usmani
- The Department of Surgery, Faculty of Medicine, JNMCH, AMU, Uttar Pradesh, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Wael Hafez
- Department of Internal Medicine, NMC Royal Hospital, Abu Dhabi, United Arab Emirates
- The Medical Research Division, Department of Internal Medicine, The National Research Center, Ad Doqi, Egypt
| |
Collapse
|
9
|
Imai A, Horinaka M, Aono Y, Iizumi Y, Takakura H, Ono H, Yasuda S, Taniguchi K, Nishimoto E, Ishikawa H, Mutoh M, Sakai T. Salicylic acid directly binds to ribosomal protein S3 and suppresses CDK4 expression in colorectal cancer cells. Biochem Biophys Res Commun 2022; 628:110-115. [DOI: 10.1016/j.bbrc.2022.08.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
|
10
|
Angre T, Kumar A, Singh AK, Thareja S, Kumar P. Role of collagen regulators in cancer treatment: A comprehensive review. Anticancer Agents Med Chem 2022; 22:2956-2984. [DOI: 10.2174/1871520622666220501162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Abstract:
Collagen is the most important structural protein and also a main component of extra-cellular matrix (ECM). It plays a role in tumor progression. Collagen can be regulated by altering it’s biosynthesis pathway through various signaling pathways, receptors and genes. Activity of cancer cells can also be regulated by other ECM components like metalloproteinases, hyaluronic acid, fibronectin and so on. Hypoxia is also one of the condition which leads to cancer progression by stimulating the expression of procollagen lysine as a collagen crosslinker, which increases the size of collagen fibres promoting cancer spread. The collagen content in cancerous cells leads to resistance in chemotherapy. So, to reduce this resistance, some of the collagen regulating therapies are introduced, which include inhibiting its biosynthesis, disturbing cancer cell signaling pathway, mediating ECM components and directly utilizing collagenase. This study is an effort to compile the strategies reported to control the collagen level and different collagen inhibitors reported so far. More research is needed in this area, growing understandings of collagen’s structural features and its role in cancer progression will aid in the advancement of newer chemotherapies.
Collapse
Affiliation(s)
- Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, India
| |
Collapse
|
11
|
He X, Wang X, Yang L, Yang Z, Yu W, Wang Y, Liu R, Chen M, Gao H. Intelligent lesion blood brain barrier targeting nano-missiles for Alzheimer’s disease treatment by anti-neuroinflammation and neuroprotection. Acta Pharm Sin B 2022; 12:1987-1999. [PMID: 35847512 PMCID: PMC9279705 DOI: 10.1016/j.apsb.2022.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xueqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lianyi Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhihang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqi Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yazhen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Corresponding author.
| |
Collapse
|
12
|
Sinniah A, Yazid S, Flower RJ. From NSAIDs to Glucocorticoids and Beyond. Cells 2021; 10:3524. [PMID: 34944032 PMCID: PMC8700685 DOI: 10.3390/cells10123524] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/31/2022] Open
Abstract
Our interest in inflammation and its treatment stems from ancient times. Hippocrates used willow bark to treat inflammation, and many centuries later, salicylic acid and its derivative aspirin's ability to inhibit cyclooxygenase enzymes was discovered. Glucocorticoids (GC) ushered in a new era of treatment for both chronic and acute inflammatory disease, but their potentially dangerous side effects led the pharmaceutical industry to seek other, safer, synthetic GC drugs. The discovery of the GC-inducible endogenous anti-inflammatory protein annexin A1 (AnxA1) and other endogenous proresolving mediators has opened a new era of anti-inflammatory therapy. This review aims to recapitulate the last four decades of research on NSAIDs, GCs, and AnxA1 and their anti-inflammatory effects.
Collapse
Affiliation(s)
- Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Samia Yazid
- Trio Medicines Ltd., Hammersmith Medicines Research, London NW10 7EW, UK;
| | - Rod J. Flower
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| |
Collapse
|
13
|
Thoms HC, Stark LA. The NF-κB Nucleolar Stress Response Pathway. Biomedicines 2021; 9:biomedicines9091082. [PMID: 34572268 PMCID: PMC8471347 DOI: 10.3390/biomedicines9091082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
The nuclear organelle, the nucleolus, plays a critical role in stress response and the regulation of cellular homeostasis. P53 as a downstream effector of nucleolar stress is well defined. However, new data suggests that NF-κB also acts downstream of nucleolar stress to regulate cell growth and death. In this review, we will provide insight into the NF-κB nucleolar stress response pathway. We will discuss apoptosis mediated by nucleolar sequestration of RelA and new data demonstrating a role for p62 (sequestosome (SQSTM1)) in this process. We will also discuss activation of NF-κB signalling by degradation of the RNA polymerase I (PolI) complex component, transcription initiation factor-IA (TIF-IA (RRN3)), and contexts where TIF-IA-NF-κB signalling may be important. Finally, we will discuss how this pathway is targeted by aspirin to mediate apoptosis of colon cancer cells.
Collapse
|
14
|
Tran PHL, Lee BJ, Tran TTD. Current Studies of Aspirin as an Anticancer Agent and Strategies to Strengthen its Therapeutic Application in Cancer. Curr Pharm Des 2021; 27:2209-2220. [PMID: 33138752 DOI: 10.2174/1381612826666201102101758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
Aspirin has emerged as a promising intervention in cancer in the past decade. However, there are existing controversies regarding the anticancer properties of aspirin as its mechanism of action has not been clearly defined. In addition, the risk of bleeding in the gastrointestinal tract from aspirin is another consideration that requires medical and pharmaceutical scientists to work together to develop more potent and safe aspirin therapy in cancer. This review presents the most recent studies of aspirin with regard to its role in cancer prevention and treatment demonstrated by highlighted clinical trials, mechanisms of action as well as approaches to develop aspirin therapy best beneficial to cancer patients. Hence, this review provides readers with an overview of aspirin research in cancer that covers not only the unique features of aspirin, which differentiate aspirin from other non-steroidal anti-inflammatory drugs (NSAIDs), but also strategies that can be used in the development of drug delivery systems carrying aspirin for cancer management. These studies convey optimistic messages on the continuing efforts of the scientist on the way of developing an effective therapy for patients with a low response to current cancer treatments.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Savukaitytė A, Gudoitytė G, Bartnykaitė A, Ugenskienė R, Juozaitytė E. siRNA Knockdown of REDD1 Facilitates Aspirin-Mediated Dephosphorylation of mTORC1 Target 4E-BP1 in MDA-MB-468 Human Breast Cancer Cell Line. Cancer Manag Res 2021; 13:1123-1133. [PMID: 33574709 PMCID: PMC7872862 DOI: 10.2147/cmar.s264414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Mutations within genes encoding components of the PI3K/AKT/mTOR (phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin) signaling axis frequently activate the pathway in breast cancer, making it an attractive therapeutic target. Inhibition of mTORC1 (mechanistic target of rapamycin complex 1) activity upon aspirin treatment has been reported in breast cancer cells harboring PI3KCA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) mutation and is considered to account for anticancer action. Methods MDA-MB-468 (harbors mutated PTEN (phosphatase and TENsin homolog)), MCF-7 (PI3KCA-mutated), MDA-MB-231 (no PI3K pathway mutations) cancer cell lines and MCF10A non-cancerous breast epithelial cells were employed for the assessment of modulation of mTORC1 signaling by aspirin. Targeted amplicon-based next-generation sequencing using the Ion Torrent technology was carried out to determine gene expression changes following drug treatment. Western blot was performed to analyze the expression and phosphorylation of proteins. Knockdown by siRNA approach was applied to assess the role of REDD1/DDIT4 (DNA damage-inducible transcript 4) in mTORC1 inhibition by aspirin. Results We show a decline in phosphorylation of mTORC1 downstream substrate 4E-BP1 (eukaryotic translation initiation factor 4E-binding protein 1) in response to treatment with aspirin and its metabolite salicylic acid in MDA-MB-468, MCF-7, MDA-MB-231, and MCF10A cell lines. We further demonstrate a novel molecular response to aspirin in breast cancer cells. Specifically, we found that aspirin and salicylic acid increase the expression of REDD1 protein, that is known for its suppressive function towards mTORC1. Unexpectedly, we observed that siRNA knockdown of REDD1 expression facilitated aspirin-mediated suppression of mTORC1 downstream substrate 4E-BP1 phosphorylation in the MDA-MB-468 cell line. REDD1 downregulation slightly encouraged reduction in 4E-BP1 phosphorylation by aspirin in MCF-7 cells but did not elicit a reproducible effect in the MDA-MB-231 cell line. siRNA knockdown of REDD1 did not affect the expression of phosphorylated form of 4E-BP1 following aspirin treatment in MCF10A non-cancerous breast epithelial cells. Conclusion The current findings suggest that REDD1 downregulation might improve the anticancer activity of aspirin in a subset of breast tumors.
Collapse
Affiliation(s)
- Aistė Savukaitytė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Gudoitytė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Agnė Bartnykaitė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Institute of Oncology, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Institute of Biology Systems and Genetic Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Elona Juozaitytė
- Department of Oncology and Hematology, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
| |
Collapse
|
16
|
Belayneh YM, Amare GG, Meharie BG. Updates on the molecular mechanisms of aspirin in the prevention of colorectal cancer: Review. J Oncol Pharm Pract 2021; 27:954-961. [PMID: 33427041 DOI: 10.1177/1078155220984846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colorectal cancer is one of the commonest malignancies worldwide. The estimated lifetime risk of the disease is about 5% with an incidence of one million new cases and 600,000 deaths worldwide every year. It is estimated that in 2019, approximately 134,490 new cases of colorectal cancer will be diagnosed with 49,190 mortalities. Though the disease is regarded as a disorder of the more developed world, the occurrence is steadily increasing in many developing countries. Since chronic inflammation is a known aggravating risk factor for colorectal cancer, anti-inflammatory agents such as aspirin have been used to prevent the development of colorectal cancer and related mortality. The potential mechanisms for the effect of aspirin in the prevention of colorectal cancer have been proposed and broadly classified as cyclooxygenase (COX) dependent and COX-independent. Some of the primary effectors of COX-dependent mechanisms in carcinogenesis are likely to be prostaglandins. In contrast to the reversible action of other nonsteroidal anti-inflammatory drugs, aspirin is known to irreversibly inactivate COX enzymes to suppress production of prostaglandins. COX-independent mechanisms of anticancer effects of aspirin include down-regulation of nuclear factor kappa B activity and Akt activation, modulation of Bcl-2 and Bax family proteins, suppression of vascular endothelial growth factor, induction of apoptosis, disruption of DNA repair mechanisms, and induction of spermidine/spermine N1-acetyltransferase that modulates polyamine catabolism.
Collapse
Affiliation(s)
- Yaschilal Muche Belayneh
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Gedefew Getnet Amare
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Birhanu Geta Meharie
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
17
|
Mills C, Muruganujan A, Ebert D, Marconett CN, Lewinger JP, Thomas PD, Mi H. PEREGRINE: A genome-wide prediction of enhancer to gene relationships supported by experimental evidence. PLoS One 2020; 15:e0243791. [PMID: 33320871 PMCID: PMC7737992 DOI: 10.1371/journal.pone.0243791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 12/28/2022] Open
Abstract
Enhancers are powerful and versatile agents of cell-type specific gene regulation, which are thought to play key roles in human disease. Enhancers are short DNA elements that function primarily as clusters of transcription factor binding sites that are spatially coordinated to regulate expression of one or more specific target genes. These regulatory connections between enhancers and target genes can therefore be characterized as enhancer-gene links that can affect development, disease, and homeostatic cellular processes. Despite their implication in disease and the establishment of cell identity during development, most enhancer-gene links remain unknown. Here we introduce a new, publicly accessible database of predicted enhancer-gene links, PEREGRINE. The PEREGRINE human enhancer-gene links interactive web interface incorporates publicly available experimental data from ChIA-PET, eQTL, and Hi-C assays across 78 cell and tissue types to link 449,627 enhancers to 17,643 protein-coding genes. These enhancer-gene links are made available through the new Enhancer module of the PANTHER database and website where the user may easily access the evidence for each enhancer-gene link, as well as query by target gene and enhancer location.
Collapse
Affiliation(s)
- Caitlin Mills
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Anushya Muruganujan
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Dustin Ebert
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine USC, Los Angeles, CA, United States of America
- Norris Cancer Center, Keck School of Medicine USC, Los Angeles, CA, United States of America
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Paul D. Thomas
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
18
|
Lobb IT, Morin P, Martin K, Thoms HC, Wills JC, Lleshi X, Olsen KCF, Duncan RR, Stark LA. A Role for the Autophagic Receptor, SQSTM1/p62, in Trafficking NF-κB/RelA to Nucleolar Aggresomes. Mol Cancer Res 2020; 19:274-287. [PMID: 33097627 DOI: 10.1158/1541-7786.mcr-20-0336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
Elevated NF-κB activity is a contributory factor in many hematologic and solid malignancies. Nucleolar sequestration of NF-κB/RelA represses this elevated activity and mediates apoptosis of cancer cells. Here, we set out to understand the mechanisms that control the nuclear/nucleolar distribution of RelA and other regulatory proteins, so that agents can be developed that specifically target these proteins to the organelle. We demonstrate that RelA accumulates in intranucleolar aggresomes in response to specific stresses. We also demonstrate that the autophagy receptor, SQSTM1/p62, accumulates alongside RelA in these nucleolar aggresomes. This accumulation is not a consequence of inhibited autophagy. Indeed, our data suggest nucleolar and autophagosomal accumulation of p62 are in active competition. We identify a conserved motif at the N-terminus of p62 that is essential for nucleoplasmic-to-nucleolar transport of the protein. Furthermore, using a dominant-negative mutant deleted for this nucleolar localization signal (NoLS), we demonstrate a role for p62 in trafficking RelA and other aggresome-related proteins to nucleoli, to induce apoptosis. Together, these data identify a novel role for p62 in trafficking nuclear proteins to nucleolar aggresomes under conditions of cell stress, thus maintaining cellular homeostasis. They also provide invaluable information on the mechanisms that regulate the nuclear/nucleolar distribution of RelA that could be exploited for therapeutic purpose. IMPLICATIONS: The data open up avenues for the development of a unique class of therapeutic agents that act by targeting RelA and other aberrantly active proteins to nucleoli, thus killing cancer cells.
Collapse
Affiliation(s)
- Ian T Lobb
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Pierre Morin
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Kirsty Martin
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, Scotland
| | - Hazel C Thoms
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | | | - Xhordi Lleshi
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Karl C F Olsen
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Rory R Duncan
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, Scotland
| | - Lesley A Stark
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland.
| |
Collapse
|
19
|
Gassen J, Mengelkoch S, Bradshaw HK, Hill SE. Does the Punishment Fit the Crime (and Immune System)? A Potential Role for the Immune System in Regulating Punishment Sensitivity. Front Psychol 2020; 11:1263. [PMID: 32655448 PMCID: PMC7323590 DOI: 10.3389/fpsyg.2020.01263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Although the criminal justice system is designed around the idea that individuals are invariant in their responses to punishment, research indicates that individuals exhibit a tremendous amount of variability in their punishment sensitivity. This raises the question of why; what are the individual- and situation-level variables that impact a person’s sensitivity to punishment? In the current research, we synthesize theory and research on inflammation, learning, and evolutionary biology to examine the relationship between inflammatory activity and sensitivity to punishment. These theories combine to predict that inflammatory activity – which is metabolically costly and reflects a context in which the net payoff associated with future oriented behaviors is diminished – will decrease sensitivity to punishment, but not rewards. Consistent with this hypothesis, Study 1 found that in U.S. states with a higher infectious disease burden (a proxy for average levels of inflammatory activity) exhibit harsher sentencing in their criminal justice systems. Studies 2 and 3 experimentally manipulated variables known to impact bodily inflammatory activity and measured subsequent punishment and reward sensitivity using a probabilistic selection task. Results revealed that (a) increasing inflammation (i.e., completing the study in a dirty vs. clean room) diminished punishment sensitivity (Study 2), whereby (b) administering a non-steroidal anti-inflammatory drug, suppressing inflammatory activity, enhanced it. No such changes were found for reward sensitivity. Together, these results provide evidence of a link between the activities of the immune system and punishment sensitivity, which may have implications for criminal justice outcomes.
Collapse
Affiliation(s)
- Jeffrey Gassen
- Department of Psychology, Texas Christian University, Fort Worth, TX, United States
| | - Summer Mengelkoch
- Department of Psychology, Texas Christian University, Fort Worth, TX, United States
| | - Hannah K Bradshaw
- Department of Psychology, Texas Christian University, Fort Worth, TX, United States
| | - Sarah E Hill
- Department of Psychology, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
20
|
Abdalla LF, Chaudhry Ehsanullah R, Karim F, Oyewande AA, Khan S. Role of Using Nonsteroidal Anti-Inflammatory Drugs in Chemoprevention of Colon Cancer in Patients With Inflammatory Bowel Disease. Cureus 2020; 12:e8240. [PMID: 32582499 PMCID: PMC7306635 DOI: 10.7759/cureus.8240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The process of inflammation occurs due to inflammatory mediators, including prostaglandins, cytokines, and tumor necrosis factor (TNF). All these mediators activate the process of tumorigenesis and dysplasia, leading to colitis-associated cancer. Several drugs used to decrease these mediators will help in the treatment of acute attacks and also help in prolonged remissions of the disease by using nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, and biological factors. Reducing these inflammatory mediators also have a role in chemoprevention and prevent progression to colorectal carcinoma. The most researched drugs in this process of chemoprevention are NSAIDs as it has both cyclooxygenase-2 (COX-2) inhibitory and non-inhibitory effects. These drugs should be taken for a long time and in large doses to reach this effect, which puts the patient at risk for various side effects. Researchers will need to do more research in the future to find the lowest effective dose that can reach the chemopreventive effect. We used database Pubmed as the main source for data search and extracted articles exploring the relationship between NSAIDs and their role in chemoprevention of colorectal carcinoma in inflammatory bowel disease (IBD) patients. We chose 23 studies which included seven review articles. We found that inflammatory mediators have a key role in colitis-associated cancer.
Collapse
Affiliation(s)
- Lamis F Abdalla
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | | | - Fazida Karim
- Psychology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA.,Business & Management, University Sultan Zainal Abidin, Terengganu, MYS
| | - Azeezat A Oyewande
- Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA.,Family Medicine, Lagos State Health Service Commission/Alimosho General Hospital, Lagos, NGA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
21
|
Kim SW, Goossens A, Libert C, Van Immerseel F, Staal J, Beyaert R. Phytohormones: Multifunctional nutraceuticals against metabolic syndrome and comorbid diseases. Biochem Pharmacol 2020; 175:113866. [PMID: 32088261 DOI: 10.1016/j.bcp.2020.113866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is characterized by the co-occurrence of diverse symptoms initiating the development of type 2 diabetes, cardiovascular diseases, and a variety of comorbid diseases. The complex constellation of numerous comorbidities makes it difficult to develop common therapeutic approaches that ameliorate these pathological features simultaneously. The plant hormones abscisic acid, salicylic acid, auxin, and cytokinins, have shown promising anti-inflammatory and pro-metabolic effects that could mitigate several disorders relevant to metabolic syndrome. Intriguingly, besides plants, human cells and gut microbes also endogenously produce these molecules, indicating a role in the complex interplay between inflammatory responses associated with metabolic syndrome, the gut microbiome, and nutrition. Here, we introduce how bioactive phytohormones can be generated endogenously and through the gut microbiome. These molecules subsequently influence immune responses and metabolism. We also elaborate on how phytohormones can beneficially modulate metabolic syndrome comorbidities, and propose them as nutraceuticals.
Collapse
Affiliation(s)
- Seo Woo Kim
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Alain Goossens
- VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jens Staal
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
22
|
Jiang W, Yan Y, Chen M, Luo G, Hao J, Pan J, Hu S, Guo P, Li W, Wang R, Zuo Y, Sun Y, Sui S, Yu W, Pan Z, Zou K, Zheng Z, Deng W, Wu X, Guo W. Aspirin enhances the sensitivity of colon cancer cells to cisplatin by abrogating the binding of NF-κB to the COX-2 promoter. Aging (Albany NY) 2020; 12:611-627. [PMID: 31905343 PMCID: PMC6977689 DOI: 10.18632/aging.102644] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Cisplatin is one of the most potent chemotherapeutic agents for the treatment of colon cancer. Nevertheless, the unavoidability of the notable toxicity and the development of the acquired resistance severely restricted its clinical application. Aspirin and some other non-steroidal anti-inflammatory drugs have been used to prevent colon tumorigenesis as chemopreventive agents. Here, we explored the possibility of aspirin as an adjuvant drug to boost the anti-cancer effect of cisplatin for colon cancer. We found that aspirin significantly enhanced the cisplatin-mediated inhibitions of cell proliferation, migration and invasion and the induction of apoptosis in colon cancer cells. The combined treatment of aspirin and cisplatin suppressed the expression of the anti-apoptotic protein Bcl-2 and the EMT-related proteins, up-regulated the levels of the cleaved PARP and Bax, and blocked the PI3K/AKT and RAF-MEK-ERK signaling pathway. In addition, we demonstrated that the enhanced effect of aspirin on the cisplatin-induced inhibition of tumor cell growth was also mediated through the suppression of the binding activity of NF-κB to the COX-2 promoter. The combination of aspirin and cisplatin effectively attenuated the translocation of NF-κB p65/p50 from the cytoplasm to the nucleus, and abrogated the binding of NF-κB p65/p50 to the COX-2 promoter, thereby down-regulating COX-2 expression and PGE2 synthesis. Moreover, the in vivo study also verified the enhanced anti-tumor activity of such combined therapy in colon cancer by targeting the NF-κB/COX-2 signaling. Our results provided new insights into understanding the molecular mechanisms of aspirin in sensitizing cisplatin-mediated chemotherapeutic effect in colon cancer and indicated a great potential of this combined therapy for cancer treatment.
Collapse
Affiliation(s)
- Wei Jiang
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yue Yan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Manyu Chen
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guangyu Luo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jinjin Pan
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenyang Li
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ruozu Wang
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yan Zuo
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yao Sun
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Silei Sui
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhe Pan
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kun Zou
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zongheng Zheng
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaojun Wu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cells and The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Sankaranarayanan R, Valiveti CK, Dachineni R, Kumar DR, Lick T, Bhat GJ. Aspirin metabolites 2,3‑DHBA and 2,5‑DHBA inhibit cancer cell growth: Implications in colorectal cancer prevention. Mol Med Rep 2019; 21:20-34. [PMID: 31746356 PMCID: PMC6896348 DOI: 10.3892/mmr.2019.10822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022] Open
Abstract
Although compelling evidence exists on the ability of aspirin to treat colorectal cancer (CRC), and numerous theories and targets have been proposed, a consensus has not been reached regarding its mechanism of action. In this regard, a relatively unexplored area is the role played by aspirin metabolites 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA) in its chemopreventive actions. In a previous study, we demonstrated that 2,3-DHBA and 2,5-DHBA inhibited CDK1 enzyme activity in vitro. The aim of the present study was to understand the effect of these metabolites on the enzyme activity of all CDKs involved in cell cycle regulation (CDKs 1, 2, 4 and 6) as well as their effect on clonal formation in three different cancer cell lines. Additionally, in silico studies were performed to determine the potential sites of interactions of 2,3-DHBA and 2,5-DHBA with CDKs. We demonstrated that 2,3-DHBA and 2,5-DHBA inhibits CDK-1 enzyme activity beginning at 500 µM, while CDK2 and CDK4 activity was inhibited only at higher concentrations (>750 µM). 2,3-DHBA inhibited CDK6 enzyme activity from 250 µM, while 2,5-DHBA inhibited its activity >750 µM. Colony formation assays showed that 2,5-DHBA was highly effective in inhibiting clonal formation in HCT-116 and HT-29 CRC cell lines (250–500 µM), and in the MDA-MB-231 breast cancer cell line (~100 µM). In contrast 2,3-DHBA was effective only in MDA-MB-231 cells (~500 µM). Both aspirin and salicylic acid failed to inhibit all four CDKs and colony formation. Based on the present results, it is suggested that 2,3-DHBA and 2,5-DHBA may contribute to the chemopreventive properties of aspirin, possibly through the inhibition of CDKs. The present data and the proposed mechanisms should open new areas for future investigations.
Collapse
Affiliation(s)
- Ranjini Sankaranarayanan
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, Avera Health and Sciences Center, South Dakota State University, Brookings, SD 57007, USA
| | - Chaitanya K Valiveti
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, Avera Health and Sciences Center, South Dakota State University, Brookings, SD 57007, USA
| | - Rakesh Dachineni
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, Avera Health and Sciences Center, South Dakota State University, Brookings, SD 57007, USA
| | - D Ramesh Kumar
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Tana Lick
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, Avera Health and Sciences Center, South Dakota State University, Brookings, SD 57007, USA
| | - G Jayarama Bhat
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, College of Pharmacy and Allied Health Professions, Avera Health and Sciences Center, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
24
|
Pyo JS, Kim EK. Clinicopathological significance and prognostic implication of nuclear factor-κB activation in colorectal cancer. Pathol Res Pract 2019; 215:152469. [PMID: 31201065 DOI: 10.1016/j.prp.2019.152469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the present study was to evaluate the clinicopathological significance of phosphorylated nuclear factor-κB (pNF-κB) expression, and its impact on epithelial-mesenchymal transition and angiogenesis in colorectal cancer (CRC). METHODS We carried out immunohistochemistry of pNF-κB on 261 human CRC tissues, and evaluated nuclear expression, regardless of cytoplasmic expression. We also investigated the correlation between pNF-κB expression and clinicopathological characteristics, survival, and epithelial-mesenchymal transition and angiogenesis-related markers in CRC. RESULTS pNF-κB was expressed in the nuclei of 164 of the 261 CRC tissues (62.8%). Furthermore, pNF-κB was significantly correlated with frequent perineural invasion, lymph node metastasis, and higher pTNM stage. However, there was no significant correlation between pNF-κB expression and other clinicopathological parameters. Among the epithelial-mesenchymal transition markers examined, SNAIL expression was significantly correlated with pNF-κB expression (P = 0.001) but E-cadherin expression was not. CRC with pNF-κB expression had significantly higher SIRT1 expression levels and hypoxia-inducible factor-1α expression levels than CRC without pNF-κB expression (P < 0.001 and P < 0.001, respectively). However, there was no correlation between the expression levels of pNF-κB and VEGF. pNF-κB expression was significantly correlated with worse overall and recurrence-free survival rates (P < 0.001 and P < 0.001, respectively). CONCLUSION pNF-κB expression was significantly correlated with aggressive tumor behaviors and worse survival rates. Furthermore, pNF-κB expression may affect tumor invasion and progression through SNAIL-related epithelial-mesenchymal transition and SIRT1- and hypoxia-inducible factor-1α-induced angiogenesis.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Eun Kyung Kim
- Department of Pathology, Eulji Hospital, Eulji University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Zhang X, Feng Y, Liu X, Ma J, Li Y, Wang T, Li X. Beyond a chemopreventive reagent, aspirin is a master regulator of the hallmarks of cancer. J Cancer Res Clin Oncol 2019; 145:1387-1403. [PMID: 31037399 DOI: 10.1007/s00432-019-02902-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Aspirin, one of the most commonly used nonsteroidal anti-inflammatory drugs (NAIDS), not only shows cancer chemoprevention effects but also improves cancer therapeutic effects when combined with other therapies. Studies that focus on aspirin regulation of the hallmarks of cancer and the associated molecular mechanisms facilitate a more thorough understanding of aspirin in mediating chemoprevention and may supply additional information for the development of novel cancer therapeutic agents. METHODS The relevant literatures from PubMed have been reviewed in this article. RESULTS Current studies have revealed that aspirin regulates almost all the hallmarks of cancer. Within tumor tissue, aspirin suppresses the bioactivities of cancer cells themselves and deteriorates the tumor microenvironment that supports cancer progression. In addition to tumor tissues, blocking of platelet activation also contributes to the ability of aspirin to inhibit cancer progression. In terms of the molecular mechanism, aspirin targets oncogenes and cancer-related signaling pathways and activates certain tumor suppressors. CONCLUSION Beyond a chemopreventive agent, aspirin is a master regulator of the hallmarks of cancer.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Yukuan Feng
- Key Laboratory of Heilongjiang Province for Cancer Prevention and Control, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xi Liu
- Center of Cardiovascular Disease, Inner Mongolia People's Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jianhui Ma
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Yafei Li
- Department of Pathology, Harbin Medical University, Harbin, 150086, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, 150086, China.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
26
|
Michel J, Nolin F, Wortham L, Lalun N, Tchelidze P, Banchet V, Terryn C, Ploton D. Various Nucleolar Stress Inducers Result in Highly Distinct Changes in Water, Dry Mass and Elemental Content in Cancerous Cell Compartments: Investigation Using a Nano-Analytical Approach. Nanotheranostics 2019; 3:179-195. [PMID: 31183313 PMCID: PMC6536780 DOI: 10.7150/ntno.31878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Numerous chemotherapeutic drugs that affect ribosome biogenesis in the nucleolus induce nucleolar stress. Improving our understanding of the effects of these drugs will require uncovering and comparing their impact on several biophysical parameters of the major cell compartments. Here, we quantified the water content and dry mass of cancerous cells treated with CX-5461, DRB or DAM to calculate macromolecular crowding and the volume occupied by free water, as well as elemental content. Methods: HeLa-H2B-GFP cells were treated with CX-5461, DRB or DAM. Water content and dry mass were measured in numerous regions of interest of ultrathin cryo-sections by quantitative scanning transmission electron microscope dark-field imaging and the elements quantified by energy dispersive X-ray spectrometry. The data were used to calculate macromolecular crowding and the volume occupied by free water in all cell compartments of control and treated cells. Hydrophobic and unfolded proteins were revealed by 8-Anilinonaphtalene-1-sulfonic acid (ANS) staining and imaging by two-photon microscopy. Immunolabeling of UBF, pNBS1 and pNF-κB was carried out and the images acquired with a confocal microscope for 3D imaging to address whether the localization of these proteins changes in treated cells. Results: Treatment with CX-5461, DRB or DAM induced completely different changes in macromolecular crowding and elemental content. Macromolecular crowding and elemental content were much higher in CX-5461-treated, moderately higher in DRB-treated, and much lower in DAM-treated cells than control cells. None of the drugs alone induced nucleolar ANS staining but it was induced by heat-shock of control cells and cells previously treated with DAM. UBF and pNBS1 were systematically co-localized in the nucleolus of CX-5461- and DAM-treated cells. pNF-κB only localized to the nucleolar caps of pre-apoptotic DAM-treated cells. Conclusion: We directly quantified water and ion content in cell compartments using cryo-correlative electron microscopy. We show that different chemotherapeutic nucleolar stress inducers result in distinctive, thus far-unrecognized changes in macromolecular crowding and elemental content which are known to modify cell metabolism. Moreover we were able to correlate these changes to the sensitivity of treated cells to heat-shock and the behavior of nucleolar pNBS1 and pNF-κB.
Collapse
Affiliation(s)
- Jean Michel
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | | | - Laurence Wortham
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | - Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | | | - Christine Terryn
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | | |
Collapse
|
27
|
Wu W, He K, Guo Q, Chen J, Zhang M, Huang K, Yang D, Wu L, Deng Y, Luo X, Yu H, Ding Q, Xiang G. SSRP1 promotes colorectal cancer progression and is negatively regulated by miR-28-5p. J Cell Mol Med 2019; 23:3118-3129. [PMID: 30762286 PMCID: PMC6484412 DOI: 10.1111/jcmm.14134] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/13/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, microarray data analysis, real-time quantitative PCR and immunohistochemistry were used to detect the expression levels of SSRP1 in colorectal cancer (CRC) tissue and in corresponding normal tissue. The association between structure-specific recognition protein 1 (SSRP1) expression and patient prognosis was examined by Kaplan-Meier analysis. SSRP1 was knocked down and overexpressed in CRC cell lines, and its effects on proliferation, cell cycling, migration, invasion, cellular energy metabolism, apoptosis, chemotherapeutic drug sensitivity and cell phenotype-related molecules were assessed. The growth of xenograft tumours in nude mice was also assessed. MiRNAs that potentially targeted SSRP1 were determined by bioinformatic analysis, Western blotting and luciferase reporter assays. We showed that SSRP1 mRNA levels were significantly increased in CRC tissue. We also confirmed that this upregulation was related to the terminal tumour stage in CRC patients, and high expression levels of SSRP1 predicted shorter disease-free survival and faster relapse. We also found that SSRP1 modulated proliferation, metastasis, cellular energy metabolism and the epithelial-mesenchymal transition in CRC. Furthermore, SSRP1 induced apoptosis and SSRP1 knockdown augmented the sensitivity of CRC cells to 5-fluorouracil and cisplatin. Moreover, we explored the molecular mechanisms accounting for the dysregulation of SSRP1 in CRC and identified microRNA-28-5p (miR-28-5p) as a direct upstream regulator of SSRP1. We concluded that SSRP1 promotes CRC progression and is negatively regulated by miR-28-5p.
Collapse
Affiliation(s)
- Wei Wu
- Department of Critical Care MedicineRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Ke He
- Department of General SurgeryThe Second People's Hospital of Guangdong Province, Southern Medical UniversityGuangzhouGuangdongP.R.China
| | - Qian Guo
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese MedicineWuhanHubeiP.R. China
| | - Jingdi Chen
- Department of orthopedicsThe Airborne Military HospitalWuhanHubeiP.R. China
| | - Mengjiao Zhang
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Kai Huang
- Eppley Institute for Research in Cancer and Allied DiseasesFred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraska
| | - Dongmei Yang
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Lu Wu
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yunchao Deng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied DiseasesFred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraska
| | - Honggang Yu
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qianshan Ding
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore
| | - Guoan Xiang
- Department of General SurgeryThe Second People's Hospital of Guangdong Province, Southern Medical UniversityGuangzhouGuangdongP.R.China
| |
Collapse
|
28
|
Wang M, Bokros M, Theodoridis PR, Lee S. Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Front Genet 2019; 10:1179. [PMID: 31824572 PMCID: PMC6881480 DOI: 10.3389/fgene.2019.01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023] Open
Abstract
This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Phaedra Rebecca Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Urology, Miller School of Medicine, University of Miami, FL, United States
- *Correspondence: Stephen Lee,
| |
Collapse
|
29
|
Petrera M, Paleari L, Clavarezza M, Puntoni M, Caviglia S, Briata IM, Oppezzi M, Mislej EM, Stabuc B, Gnant M, Bachleitner-Hofmann T, Roth W, Scherer D, Haefeli WE, Ulrich CM, DeCensi A. The ASAMET trial: a randomized, phase II, double-blind, placebo-controlled, multicenter, 2 × 2 factorial biomarker study of tertiary prevention with low-dose aspirin and metformin in stage I-III colorectal cancer patients. BMC Cancer 2018; 18:1210. [PMID: 30514262 PMCID: PMC6280542 DOI: 10.1186/s12885-018-5126-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Epidemiological studies and cardiovascular prevention trials have shown that low-dose aspirin can reduce colorectal cancer (CRC) incidence and mortality, including inhibition of distant metastases. Metformin has also been associated with decreased colon adenoma recurrence in clinical trials and lower CRC incidence and mortality in epidemiological studies in diabetics. While both drugs have been tested as single agents, their combination has not been tested in cancer prevention trials. Methods/design This is a randomized, placebo-controlled, double-blind, 2 × 2 biomarker trial of aspirin and metformin to test the activity of either agent alone and the potential synergism of their combination on a set of surrogate biomarkers of colorectal carcinogenesis. After surgery, 160 patients with stage I-III CRC are randomly assigned in a four-arm trial to either aspirin (100 mg day), metformin (850 mg bis in die), their combination, or placebo for one year. The primary endpoint biomarker is the change of IHC expression of nuclear factor kappa-B (NFκB) in the unaffected mucosa of proximal and distal colon obtained by multiple biopsies in two paired colonoscopies one year apart. Additional biomarkers will include: 1) the measurement of circulating IL-6, CRP and VEGF; 2) the IHC expression of tissue pS6K, p53, beta-catenin, PI3K; 3) the associations of genetic markers with treatment response as assessed by next generation sequencing of primary tumors; 4) the genomic profile of candidate genes, pathways, and overall genomic patterns in tissue biopsies by genome wide gene expression arrays; and 5) the evaluation of adenoma occurrence at 1 year. Discussion A favorable biomarker modulation by aspirin and metformin may provide important clues for a subsequent phase III adjuvant trial aimed at preventing second primary cancer, delaying recurrence and improving prognosis in patients with CRC. Trial registration EudraCT Number: 2015–004824-77; ClinicalTrial.gov Identifier: NCT03047837. Registered on February 1, 2017.
Collapse
Affiliation(s)
- Marilena Petrera
- Division of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Laura Paleari
- Division of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy.,A.Li.Sa., Public Health Agency, Liguria Region, Italy
| | - Matteo Clavarezza
- Division of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Matteo Puntoni
- Clinical trial office, Scientific directorate, E.O. Ospedali Galliera, Genoa, Italy
| | - Silvia Caviglia
- Division of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Irene Maria Briata
- Division of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Massimo Oppezzi
- Department of Gastroenterology and Digestive Endoscopy, E.O. Ospedali Galliera, Genoa, Italy
| | - Eva Mihajlovic Mislej
- Clinical Department of Gastroenterology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Borut Stabuc
- Clinical Department of Gastroenterology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Michael Gnant
- Department of Surgery and Comprehensive Cancer Center and Austrian Breast and Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Thomas Bachleitner-Hofmann
- Department of Surgery and Comprehensive Cancer Center and Austrian Breast and Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Wilfried Roth
- Institute of Pathology University Medical Center Mainz, Mainz, Germany
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Walter-E Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Andrea DeCensi
- Division of Medical Oncology, E.O. Ospedali Galliera, Mura delle Cappuccine 14, 16128, Genoa, Italy. .,Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.
| |
Collapse
|
30
|
Cordero OJ, Varela-Calviño R. Oral hygiene might prevent cancer. Heliyon 2018; 4:e00879. [PMID: 30417145 PMCID: PMC6218413 DOI: 10.1016/j.heliyon.2018.e00879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Many evidences support that species from the Human Oral Microbiome Database such as Fusobacterium nucleatum or Bacteroides, linked previously to periodontitis and appendicitis, play a role in colorectal cancer (CRC), including metastasis. These typically oral species are invasive anaerobes that form biofilms in their virulent state. Aspirin (a NSAID) has been recently included into routine CRC prevention rationale. NSAIDs can prevent the growth of neoplastic lesions by inhibiting COX enzymes and another set of recently identified COX-independent targets, which include the WNT, AMPK and MTOR signaling pathways, the crosstalk between nucleoli and NF-κB transcriptional activity in apoptosis, and the biochemistry of platelets. These are signaling pathways related to tumor-promoting inflammation. In this process, pathogens or simple deregulation of the microbiota play an important role in CRC. Aspirin and other NSAIDs are efficient inhibitors of biofilm formation and able to control periodontitis development preventing inflammation related to the microbiota of the gingival tissue, so its seems plausible to include this pathway in the mechanisms that aspirin uses to prevent CRC. We propose arguments suggesting that current oral hygiene methods and other future developments against periodontitis might prevent CRC and probably other cancers, alone or in combination with other options; and that the multidisciplinary studies needed to prove this hypothesis might be relevant for cancer prevention.
Collapse
Affiliation(s)
- Oscar J. Cordero
- University of Santiago de Compostela, Department of Biochemistry and Molecular Biology, Campus Vida, 15782 Santiago de Compostela, Spain
| | | |
Collapse
|
31
|
Zhang X, Feng H, Du J, Sun J, Li D, Hasegawa T, Amizuka N, Li M. Aspirin promotes apoptosis and inhibits proliferation by blocking G0/G1 into S phase in rheumatoid arthritis fibroblast-like synoviocytes via downregulation of JAK/STAT3 and NF-κB signaling pathway. Int J Mol Med 2018; 42:3135-3148. [PMID: 30221683 PMCID: PMC6202076 DOI: 10.3892/ijmm.2018.3883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a commonly occurring autoimmune disease. Its defining pathological characteristic is the excessive proliferation of fibroblast‑like synoviocytes (FLS), which is similar to tumor cells and results in a range of clinical problems. As a commonly used antipyretic, analgesic and anti‑inflammatory drug, aspirin is the first‑line treatment for RA. However, its mechanism of action has not been well explained. The goal is to investigate the biological effects of aspirin on primary RA‑FLS and its underlying mechanisms. In this experiment we treated cells with various concentrations of aspirin (0, DMSO, 1, 2, 5, 10 mM). Cell proliferation activity was detected with CCK‑8 assays. Apoptosis and cell cycle distribution were detected via flow cytometry. Apoptosis and cell cycle‑associated proteins (Bcl‑2, Bax, PRAP1, Cyclin D1, P21), as well as the key proteins and their phosphorylation levels of the NF‑κB and JAK/STAT3 signaling pathways, were detected via western blot analysis. Bioinformatics prediction revealed that aspirin was closely associated with cell proliferation and apoptosis, including the p53 and NF‑κB signaling pathways. By stimulating with aspirin, cell viability decreased, while the proportion of apoptotic cells increased, and the number of cells arrested in the G0/G1 phase increased in a dose‑dependent manner. The expression of Bax increased with aspirin stimulation, while the levels of Bcl‑2, PRAP1, Cyclin D1 and P21 decreased; p‑STAT3, p‑P65 and p‑50 levels also decreased while STAT3, P65, P50, p‑P105 and P105 remained unchanged. From our data, it can be concluded that aspirin is able to promote apoptosis and inhibit the proliferation of RA‑FLS through blocking the JAK/STAT3 and NF‑κB signaling pathways.
Collapse
Affiliation(s)
- Xiaoqi Zhang
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
| | - Hao Feng
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
| | - Juan Du
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
| | - Jing Sun
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
| | - Dongfang Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo 063‑0000, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo 063‑0000, Japan
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
32
|
Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018; 7:cells7090115. [PMID: 30142927 PMCID: PMC6162708 DOI: 10.3390/cells7090115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
Deregulated NF-κB signalling is implicated in the pathogenesis of numerous human inflammatory disorders and malignancies. Consequently, the NF-κB pathway has attracted attention as an attractive therapeutic target for drug discovery. As the primary, druggable mediator of canonical NF-κB signalling the IKKβ protein kinase has been the historical focus of drug development pipelines. Thousands of compounds with activity against IKKβ have been characterised, with many demonstrating promising efficacy in pre-clinical models of cancer and inflammatory disease. However, severe on-target toxicities and other safety concerns associated with systemic IKKβ inhibition have thus far prevented the clinical approval of any IKKβ inhibitors. This review will discuss the potential reasons for the lack of clinical success of IKKβ inhibitors to date, the challenges associated with their therapeutic use, realistic opportunities for their future utilisation, and the alternative strategies to inhibit NF-κB signalling that may overcome some of the limitations associated with IKKβ inhibition.
Collapse
Affiliation(s)
- Jack A Prescott
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
33
|
Clinically Relevant Anti-Inflammatory Agents for Chemoprevention of Colorectal Cancer: New Perspectives. Int J Mol Sci 2018; 19:ijms19082332. [PMID: 30096840 PMCID: PMC6121559 DOI: 10.3390/ijms19082332] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022] Open
Abstract
Substantial efforts are underway for prevention of early stages or recurrence of colorectal cancers (CRC) or new polyp formation by chemoprevention strategies. Several epidemiological, clinical and preclinical studies to date have supported the chemopreventive potentials of several targeted drug classes including non-steroidal anti-inflammatory drugs (NSAIDs) (aspirin, naproxen, sulindac, celecoxib, and licofelone), statins and other natural agents—both individually, and in combinations. Most preclinical trials although were efficacious, only few agents entered clinical trials and have been proven to be potential chemopreventive agents for colon cancer. However, there are limitations for these agents that hinder their approval by the food and drug administration for chemoprevention use in high-risk individuals and in patients with early stages of CRC. In this review, we update the recent advancement in pre-clinical and clinical development of selected anti-inflammatory agents (aspirin, naproxen, sulindac, celecoxib, and licofelone) and their combinations for further development as novel colon cancer chemopreventive drugs. We provide further new perspectives from this old research, and insights into precision medicine strategies to overcome unwanted side-effects and overcoming strategies for colon cancer chemoprevention.
Collapse
|
34
|
Park JH, Kim JK. Pristimerin, a naturally occurring triterpenoid, attenuates tumorigenesis in experimental colitis-associated colon cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:164-171. [PMID: 29655682 DOI: 10.1016/j.phymed.2018.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/24/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pristimerin is a quinonemethide triterpenoid with anti-cancer, anti-angiogenic, anti-inflammatory and anti-protozoal activity. However, the therapeutic role of pristimerin in colitis-associated colorectal carcinogenesis is unknown. PURPOSE We sought to examine the therapeutic effects of pristimerin on colitis-associated colon cancer induced in mice using azoxymethane (AOM)/dextran sulfate sodium (DSS). The goal was to identify the potential mechanism of action underlying the pharmacological activity of pristimerin. METHODS BALB/c mice were injected with AOM and administered 2% DSS in drinking water. The mice were fed with a diet supplemented with pristimerin (1 to 5 ppm), and colonic tissue was collected at 64 days. The inflammatory status of the colon was assessed by determining the levels of cyclooxygenase-2, inducible nitric oxide synthase and pro-inflammatory cytokines using Western blotting, immunohistochemistry and real-time RT-PCR analyses. Markers of proliferation (proliferating cell nuclear antigen) and apoptosis (TUNEL) were identified in the colon tissues immunohistochemically. The levels of cell cycle-, apoptosis-, and signaling-related proteins were detected by Western blot in colon tissues. RESULTS Administration of pristimerin significantly reduced the formation of colonic tumors. Western blot and immunohistological analyses revealed that dietary pristimerin markedly reduced NF-κB-positive cells and levels of inflammation-related proteins in colon tissue. Pristimerin also reduced cell proliferation, induced apoptosis, and decreased the phosphorylation of AKT and FOXO3a in colon tissue. CONCLUSION Pristimerin administration decreased inflammation and proliferation induced by AOM/DSS in colon tissue. It also induced apoptosis and regulated the AKT/FOXO3a signaling pathway. Overall, this study indicates the potential value of pristimerin in suppressing colon tumorigenesis.
Collapse
Affiliation(s)
- Ju-Hyung Park
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan-Si 38430, Republic of Korea
| | - Jin-Kyung Kim
- Department of Biomedical Science, Catholic University of Daegu, Gyeongsan-Si 38430, Republic of Korea.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This review aims to appraise the most recent evidence for the use of NSAIDS in cancer pain. RECENT FINDINGS The Cochrane review reveals the paucity of high-quality evidence for the use of NSAIDS for cancer pain, highlighting methodological considerations for future research. There is limited evidence for the role of combined NSAIDs (celecoxib and diclofenac) alongside opioids for cancer pain. Recent retrospective data suggests NSAIDS may contribute to better pain control in hospitalized patients. In elderly patients in the last weeks of life, retrospective data shows a reduction in NSAID prescribing, without significant implications for pain relief. A recent systematic review looking at the increased risk of anastomotic leaks versus the survival benefits in cancer patients prescribed NSAIDs post oncological surgery was inconclusive. Considering the prescription of PPIs for gastroprotection, studies in the general population suggest potential risks of long-term use, including renal dysfunction and greater risk of fractures. Although current evidence for the anticancer properties of NSAIDS is based on retrospective cohort studies, there may be a role for aspirin and nonaspirin NSAIDs in reducing the risk of cancer. SUMMARY Given the lack of quality evidence, NSAIDS should be prescribed on a case by case basis in discussion with the patient, with regular review of efficacy, whilst balancing the ongoing benefits and risks of continued use, taking into account the patient's likely prognosis.
Collapse
|