1
|
Sim SY, Cho HD, Lee SB. Amelioration of Alcoholic Hepatic Steatosis in a Rat Model via Consumption of Poly-γ-Glutamic Acid-Enriched Fermented Protaetia brevitarsis Larvae Using Bacillus subtilis. Foods 2025; 14:861. [PMID: 40077563 PMCID: PMC11899319 DOI: 10.3390/foods14050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Alcoholic hepatic steatosis (AHS) is a common early-stage symptom of liver disease caused by alcohol consumption. Accordingly, several aspects of AHS have been studied as potential preventive and therapeutic targets. In this study, a novel strategy was employed to inhibit fatty liver accumulation and counteract AHS through the consumption of microorganism-fermented Protaetia brevitarsis larvae (FPBs). By using an AHS rat model, we assessed the efficacy of FPB by examining the lipid profile of liver/serum and liver function tests to evaluate lipid metabolism modulation. After FPB administration, the lipid profile-including high-density lipoprotein, total cholesterol, and total triglycerides-and histopathological characteristics exhibited improvement in the animal model. Interestingly, AHS amelioration via FPBs administration was potentially associated with poly-γ-glutamic acid (PγG), which is produced by Bacillus species during fermentation. These findings support the formulation of novel natural remedies for AHS through non-clinical animal studies, suggesting that PγG-enriched FPBs are a potentially valuable ingredient for functional foods, providing an ameliorative effect on AHS.
Collapse
Affiliation(s)
- So-Yeon Sim
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea;
| | - Hyun-Dong Cho
- Department of Food and Nutrition, Sunchon National University, Sunchon 57922, Republic of Korea;
| | - Sae-Byuk Lee
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea;
- Institute of Fermentation Biotechnology, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Zhang J, Yang Z, Liu X, Yang X, Li Y, Jin X, Duan H, Chen H, Zhao W, Wang Q, Liu Y. New Insights into the Pathogenesis of Alcoholic Liver Disease Based on Global Research. Dig Dis Sci 2025; 70:903-918. [PMID: 39806089 DOI: 10.1007/s10620-024-08778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND AIMS Alcoholic liver disease (ALD) is the leading cause of death among alcohol-related diseases, yet its pathogenesis remains incompletely understood. This article employs data mining methods to conduct an indepth study of articles on ALD published in the past three decades, aiming to elucidate the pathogenesis of ALD. METHODS Firstly, articles related to the pathogenesis of ALD were retrieved from the Web of Science (WOS) database. CiteSpace 6.1.R2 and VOSviewer 1.6.18 were used to visually analyze the authors, institutions, journals, and keywords of the published articles. Secondly, by thoroughly reading the top 100 most cited articles and focusing on research hotspots such as cytochrome P450 2E1 (CYP2E1), gut microbiota, acetaldehyde dehydrogenase (ALDH), and alcohol dehydrogenase (ADH), the pathogenesis of ALD was preliminarily explored. Finally, the pathogenesis of ALD was further analyzed based on disease databases. RESULTS A total of 1521 articles were retrieved from the WOS database, and 384 of these were selected for in-depth reading. From GeneCards, 9084 genes related to ALD were identified. KEGG enrichment analysis was performed using DAVID, and the hsa04936: Alcoholic liver disease pathway was selected for visualization. CONCLUSIONS This study preliminarily elucidates the pathogenesis of ALD, which may be associated with the release of acetaldehyde, reactive oxygen species (ROS), and various pro-inflammatory factors during alcohol metabolism. It is also closely related to gut microbiota dysbiosis and increased intestinal permeability induced by multiple factors.
Collapse
Affiliation(s)
- Jinbao Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China.
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China.
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China.
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China.
| | - Zonghui Yang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
| | - Xiaona Liu
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
| | - Xiujuan Yang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China
| | - Yaling Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haijing Duan
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China
| | - Honggang Chen
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China
| | - Wenlong Zhao
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China
| | - Qian Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Yu Z, Lin S, Gong X, Zou Z, Yang X, Ruan Y, Qian L, Liu Y, Si Z. The role of macroautophagy in substance use disorders. Ann N Y Acad Sci 2025; 1543:68-78. [PMID: 39714908 DOI: 10.1111/nyas.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Macroautophagy, a universal cellular process, sends cellular material to lysosomes for breakdown and is often activated by stressors like hypoxia or drug exposure. It is vital for protein balance, neurotransmitter release, synaptic function, and neuron survival. The role of macroautophagy in substance use disorders is dual. On one hand, substances like cocaine, methamphetamine, opiates, and alcohol can activate macroautophagy pathways to degrade various neuroinflammatory factors in neuronal cells, providing a protective function. On the other hand, long-term and excessive use of addictive substances can inhibit macroautophagy pathways, obstructing the fusion of autophagosomes with lysosomes and losing the original protective function. This review first summarizes the key proteins and signaling pathways involved in macroautophagy, including mTORC1, AMPK, and endoplasmic reticulum stress, and suggests that the regulation of macroautophagy plays a central role in drug-rewarding behavior and addiction. Second, we focus on the interactions between macroautophagy and neuroinflammation induced by drugs, evaluating the potential of macroautophagy modulators as therapeutic strategies for substance use disorder (SUD), and identifying autophagy-related biomarkers that can be used for early diagnosis and monitoring of treatment response. Our review summarizes the important scientific basis involved in macroautophagy pathways for the development of new therapies for SUD.
Collapse
Affiliation(s)
- Zhaoying Yu
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Shujun Lin
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Xinshuang Gong
- Department of Medicine, School of Public Health, Ningbo University, Ningbo, China
| | - Zhiting Zou
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Xiangdong Yang
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Yuer Ruan
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Liyin Qian
- Department of Medicine, School of Public Health, Ningbo University, Ningbo, China
| | - Yu Liu
- Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China
| | - Zizhen Si
- Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Teschke R. Copper, Iron, Cadmium, and Arsenic, All Generated in the Universe: Elucidating Their Environmental Impact Risk on Human Health Including Clinical Liver Injury. Int J Mol Sci 2024; 25:6662. [PMID: 38928368 PMCID: PMC11203474 DOI: 10.3390/ijms25126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Humans are continuously exposed to various heavy metals including copper, iron, cadmium, and arsenic, which were specifically selected for the current analysis because they are among the most frequently encountered environmental mankind and industrial pollutants potentially causing human health hazards and liver injury. So far, these issues were poorly assessed and remained a matter of debate, also due to inconsistent results. The aim of the actual report is to thoroughly analyze the positive as well as negative effects of these four heavy metals on human health. Copper and iron are correctly viewed as pollutant elements essential for maintaining human health because they are part of important enzymes and metabolic pathways. Healthy individuals are prepared through various genetically based mechanisms to maintain cellular copper and iron homeostasis, thereby circumventing or reducing hazardous liver and organ injury due to excessive amounts of these metals continuously entering the human body. In a few humans with gene aberration, however, liver and organ injury may develop because excessively accumulated copper can lead to Wilson disease and substantial iron deposition to hemochromatosis. At the molecular level, toxicities of some heavy metals are traced back to the Haber Weiss and Fenton reactions involving reactive oxygen species formed in the course of oxidative stress. On the other hand, cellular homeostasis for cadmium and arsenic cannot be provided, causing their life-long excessive deposition in the liver and other organs. Consequently, cadmium and arsenic represent health hazards leading to higher disability-adjusted life years and increased mortality rates due to cancer and non-cancer diseases. For unknown reasons, however, liver injury in humans exposed to cadmium and arsenic is rarely observed. In sum, copper and iron are good for the human health of most individuals except for those with Wilson disease or hemochromatosis at risk of liver injury through radical formation, while cadmium and arsenic lack any beneficial effects but rather are potentially hazardous to human health with a focus on increased disability potential and risk for cancer. Primary efforts should focus on reducing the industrial emission of hazardous heavy metals.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Germany; ; Tel.: +49-6181/21859; Fax: +49-6181/2964211
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60590 Hanau, Germany
| |
Collapse
|
5
|
Hsu MF, Koike S, Chen CS, Najjar SM, Meng TC, Haj FG. Pharmacological inhibition of the Src homology phosphatase 2 confers partial protection in a mouse model of alcohol-associated liver disease. Biomed Pharmacother 2024; 175:116590. [PMID: 38653109 DOI: 10.1016/j.biopha.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a leading factor of liver-related death worldwide. ALD has various manifestations that include steatosis, hepatitis, and cirrhosis and is currently without approved pharmacotherapies. The Src homology phosphatase 2 (Shp2) is a drug target in some cancers due to its positive regulation of Ras-mitogen-activated protein kinase signaling and cell proliferation. Shp2 pharmacological inhibition yields beneficial outcomes in animal disease models, but its impact on ALD remains unexplored. This study aims to investigate the effects of Shp2 inhibition and its validity using a preclinical mouse model of ALD. We report that the administration of SHP099, a potent and selective allosteric inhibitor of Shp2, partially ameliorated ethanol-induced hepatic injury, inflammation, and steatosis in mice. Additionally, Shp2 inhibition was associated with reduced ethanol-evoked activation of extracellular signal-regulated kinase (ERK), oxidative, and endoplasmic reticulum (ER) stress in the liver. Besides the liver, excessive alcohol consumption induces multi-organ injury and dysfunction, including the intestine. Notably, Shp2 inhibition diminished ethanol-induced intestinal inflammation and permeability, abrogated the reduction in tight junction protein expression, and the activation of ERK and stress signaling in the ileum. Collectively, Shp2 pharmacological inhibition mitigates the deleterious effects of ethanol in the liver and intestine in a mouse model of ALD. Given the multifactorial aspects underlying ALD pathogenesis, additional studies are needed to decipher the utility of Shp2 inhibition alone or as a component in a multitherapeutic regimen to combat this deadly malady.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Chang-Shan Chen
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
6
|
Teschke R, Eickhoff A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. Int J Mol Sci 2024; 25:4753. [PMID: 38731973 PMCID: PMC11084815 DOI: 10.3390/ijms25094753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Wilson disease is a genetic disorder of the liver characterized by excess accumulation of copper, which is found ubiquitously on earth and normally enters the human body in small amounts via the food chain. Many interesting disease details were published on the mechanistic steps, such as the generation of reactive oxygen species (ROS) and cuproptosis causing a copper dependent cell death. In the liver of patients with Wilson disease, also, increased iron deposits were found that may lead to iron-related ferroptosis responsible for phospholipid peroxidation within membranes of subcellular organelles. All topics are covered in this review article, in addition to the diagnostic and therapeutic issues of Wilson disease. Excess Cu2+ primarily leads to the generation of reactive oxygen species (ROS), as evidenced by early experimental studies exemplified with the detection of hydroxyl radical formation using the electron spin resonance (ESR) spin-trapping method. The generation of ROS products follows the principles of the Haber-Weiss reaction and the subsequent Fenton reaction leading to copper-related cuproptosis, and is thereby closely connected with ROS. Copper accumulation in the liver is due to impaired biliary excretion of copper caused by the inheritable malfunctioning or missing ATP7B protein. As a result, disturbed cellular homeostasis of copper prevails within the liver. Released from the liver cells due to limited storage capacity, the toxic copper enters the circulation and arrives at other organs, causing local accumulation and cell injury. This explains why copper injures not only the liver, but also the brain, kidneys, eyes, heart, muscles, and bones, explaining the multifaceted clinical features of Wilson disease. Among these are depression, psychosis, dysarthria, ataxia, writing problems, dysphagia, renal tubular dysfunction, Kayser-Fleischer corneal rings, cardiomyopathy, cardiac arrhythmias, rhabdomyolysis, osteoporosis, osteomalacia, arthritis, and arthralgia. In addition, Coombs-negative hemolytic anemia is a key feature of Wilson disease with undetectable serum haptoglobin. The modified Leipzig Scoring System helps diagnose Wilson disease. Patients with Wilson disease are well-treated first-line with copper chelators like D-penicillamine that facilitate the removal of circulating copper bound to albumin and increase in urinary copper excretion. Early chelation therapy improves prognosis. Liver transplantation is an option viewed as ultima ratio in end-stage liver disease with untreatable complications or acute liver failure. Liver transplantation finally may thus be a life-saving approach and curative treatment of the disease by replacing the hepatic gene mutation. In conclusion, Wilson disease is a multifaceted genetic disease representing a molecular and clinical challenge.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany;
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt, D-60590 Frankfurt, Germany
| |
Collapse
|
7
|
Hsu MF, LeBleu G, Flores L, Parkhurst A, Nagy LE, Haj FG. Hepatic protein tyrosine phosphatase Shp2 disruption mitigates the adverse effects of ethanol in the liver by modulating oxidative stress and ERK signaling. Life Sci 2024; 340:122451. [PMID: 38253311 DOI: 10.1016/j.lfs.2024.122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Chronic excessive alcohol intake is a significant cause of alcohol-associated liver disease (ALD), a leading contributor to liver-related morbidity and mortality. The Src homology phosphatase 2 (Shp2; encoded by Ptpn11) is a widely expressed protein tyrosine phosphatase that modulates hepatic functions, but its role in ALD is mostly uncharted. MAIN METHODS Herein, we explore the effects of liver-specific Shp2 genetic disruption using the established chronic-plus-binge mouse model of ALD. KEY FINDINGS We report that the hepatic Shp2 disruption had beneficial effects and partially ameliorated ethanol-induced injury, inflammation, and steatosis in the liver. Consistently, Shp2 deficiency was associated with decreased ethanol-evoked activation of extracellular signal-regulated kinase (ERK) and oxidative stress in the liver. Moreover, primary hepatocytes with Shp2 deficiency exhibited similar outcomes to those observed upon Shp2 disruption in vivo, including diminished ethanol-induced ERK activation, inflammation, and oxidative stress. Furthermore, pharmacological inhibition of ERK in primary hepatocytes mimicked the effects of Shp2 deficiency and attenuated oxidative stress caused by ethanol. SIGNIFICANCE Collectively, these findings highlight Shp2 as a modulator of hepatic oxidative stress upon ethanol challenge and suggest the evaluation of this phosphatase as a potential therapeutic target for ALD.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA.
| | - Grace LeBleu
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Lizbeth Flores
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Amy Parkhurst
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
8
|
Teschke R. Hemochromatosis: Ferroptosis, ROS, Gut Microbiome, and Clinical Challenges with Alcohol as Confounding Variable. Int J Mol Sci 2024; 25:2668. [PMID: 38473913 DOI: 10.3390/ijms25052668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hemochromatosis represents clinically one of the most important genetic storage diseases of the liver caused by iron overload, which is to be differentiated from hepatic iron overload due to excessive iron release from erythrocytes in patients with genetic hemolytic disorders. This disorder is under recent mechanistic discussion regarding ferroptosis, reactive oxygen species (ROS), the gut microbiome, and alcohol abuse as a risk factor, which are all topics of this review article. Triggered by released intracellular free iron from ferritin via the autophagic process of ferritinophagy, ferroptosis is involved in hemochromatosis as a specific form of iron-dependent regulated cell death. This develops in the course of mitochondrial injury associated with additional iron accumulation, followed by excessive production of ROS and lipid peroxidation. A low fecal iron content during therapeutic iron depletion reduces colonic inflammation and oxidative stress. In clinical terms, iron is an essential trace element required for human health. Humans cannot synthesize iron and must take it up from iron-containing foods and beverages. Under physiological conditions, healthy individuals allow for iron homeostasis by restricting the extent of intestinal iron depending on realistic demand, avoiding uptake of iron in excess. For this condition, the human body has no chance to adequately compensate through removal. In patients with hemochromatosis, the molecular finetuning of intestinal iron uptake is set off due to mutations in the high-FE2+ (HFE) genes that lead to a lack of hepcidin or resistance on the part of ferroportin to hepcidin binding. This is the major mechanism for the increased iron stores in the body. Hepcidin is a liver-derived peptide, which impairs the release of iron from enterocytes and macrophages by interacting with ferroportin. As a result, iron accumulates in various organs including the liver, which is severely injured and causes the clinically important hemochromatosis. This diagnosis is difficult to establish due to uncharacteristic features. Among these are asthenia, joint pain, arthritis, chondrocalcinosis, diabetes mellitus, hypopituitarism, hypogonadotropic hypogonadism, and cardiopathy. Diagnosis is initially suspected by increased serum levels of ferritin, a non-specific parameter also elevated in inflammatory diseases that must be excluded to be on the safer diagnostic side. Diagnosis is facilitated if ferritin is combined with elevated fasting transferrin saturation, genetic testing, and family screening. Various diagnostic attempts were published as algorithms. However, none of these were based on evidence or quantitative results derived from scored key features as opposed to other known complex diseases. Among these are autoimmune hepatitis (AIH) or drug-induced liver injury (DILI). For both diseases, the scored diagnostic algorithms are used in line with artificial intelligence (AI) principles to ascertain the diagnosis. The first-line therapy of hemochromatosis involves regular and life-long phlebotomy to remove iron from the blood, which improves the prognosis and may prevent the development of end-stage liver disease such as cirrhosis and hepatocellular carcinoma. Liver transplantation is rarely performed, confined to acute liver failure. In conclusion, ferroptosis, ROS, the gut microbiome, and concomitant alcohol abuse play a major contributing role in the development and clinical course of genetic hemochromatosis, which requires early diagnosis and therapy initiation through phlebotomy as a first-line treatment.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Chen D, Lu P, Sun T, Ding A. Long non-coding RNA HOX transcript antisense intergenic RNA depletion protects against alcoholic hepatitis through the microRNA-148a-3p/sphingosine 1-phosphate receptor 1 axis. Cell Tissue Res 2023; 394:471-485. [PMID: 37851113 DOI: 10.1007/s00441-023-03835-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The aggravating role of long noncoding RNA (lncRNA) HOTAIR has been indicated in liver injury caused by hepatic ischemia/reperfusion. However, under the condition of alcoholic hepatitis (AH), its effects remain unclear. The present study aimed to examine the effect of lncRNA HOTAIR on hepatic stellate cell viability and apoptosis during liver injury caused by AH. In the liver tissues of AH rats, HOTAIR and S1PR1 were overexpressed, and microRNA (miR)-148a-3p was poorly expressed. Loss-of-function assays revealed that silencing of HOTAIR alleviated liver injury in AH by inhibiting the activated phenotype of hepatic stellate cells, inflammation, and fibrosis. Using the bioinformatics databases, dual-luciferase, RIP, and FISH assays, we observed that HOTAIR was mainly localized in the cytoplasm of hepatic stellate cells, and HOTAIR could bind specifically to miR-148a-3p. In addition, miR-148a-3p could target S1PR1 expression. Rescue experiments showed that silencing of miR-148a-3p or overexpression of S1PR1 reversed the alleviating effects of HOTAIR silencing on liver injury. Taken together, our findings revealed that HOTAIR regulates hepatic stellate cell proliferation via the miR-148a-3p/S1PR1 axis in liver injury, which may serve as the basis for developing novel therapeutic strategies to treat AH.
Collapse
Affiliation(s)
- Dan Chen
- Department of Integrated TCM & Western Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| | - Ping Lu
- Department of Hepatology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 39, Xiashatang, Mudu Town, Wuzhong District, Suzhou, Jiangsu, 215101, People's Republic of China.
| | - Tianfeng Sun
- Department of Liver Disease Infection, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| | - Aliang Ding
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| |
Collapse
|
10
|
Pemmasani G, Tremaine WJ, Suresh Kumar VC, Aswath G, Sapkota B, Karagozian R, John S. Sex differences in clinical characteristics and outcomes associated with alcoholic hepatitis. Eur J Gastroenterol Hepatol 2023; 35:1192-1196. [PMID: 37577797 DOI: 10.1097/meg.0000000000002612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Alcohol-associated liver disease is increasing among females with an earlier onset and more severe disease at lower levels of exposure. However, there is paucity of literature regarding sex differences related to alcoholic hepatitis. METHODS Hospitalized patients with alcoholic hepatitis were selected from the US Nationwide readmissions database 2019. In this cohort, we evaluated sex differences in baseline comorbidities, alcoholic hepatitis related complications and mortality. A subset of patients with alcoholic hepatitis who were hospitalized between January and June 2019 were identified to study sex differences in 6 month readmission rate, mortality during readmission, and composite of mortality during index hospitalization or readmission. RESULTS Among 112 790 patients with alcoholic hepatitis, 33.3% were female. Female patients were younger [48 (38-57) vs. 49 (39-58) years; both P < 0.001] but had higher rates of important medical and mental-health related comorbidities. Compared with males, females had higher rates of hepatic encephalopathy (11.5% vs. 10.1; P < 0.001), ascites (27.9% vs. 22.5%; P < 0.001), portal hypertension (18.5% vs. 16.4%; P < 0.001), cirrhosis (37.3% vs. 31.9%; P < 0.001), weight loss (19.0% vs. 14.5%; P < 0.001), hepatorenal syndrome (4.4% vs. 3.8%; P < 0.001), spontaneous bacterial peritonitis (1.9% vs. 1.7%; P = 0.026), sepsis (11.1% vs. 9.5%; P < 0.001), and blood transfusion (12.9% vs. 8.7%; P < 0.001). Females had a similar in-hospital mortality rate (4.3%) compared to males (4.1%; P = 0.202; adjusted odds ratio (OR) 1.02, 95% CI (cardiac index) 0.89-1.15; P = 0.994). In the subset of patients ( N = 58 688), females had a higher 6-month readmission rate (48.9% vs. 44.9%; adjusted OR 1.12 (1.06-1.18); P < 0.001), mortality during readmission (4.4% vs. 3.2%; OR 1.23 (1.08-1.40); P < 0.01), and composite of mortality during index hospitalization or readmission (8.7% vs. 7.2%; OR 1.15 (1.04-1.27); P < 0.01). CONCLUSION Compared to their male counterparts, females with alcoholic hepatitis were generally younger but had higher rates of comorbidities, alcoholic hepatitis related complications, rehospitalizations and associated mortality. The greater risks of alcohol-associated liver dysfunction in females indicate the need for more aggressive management.
Collapse
Affiliation(s)
- Gayatri Pemmasani
- Division of Gastroenterology and Hepatology, SUNY Upstate Medical University, Syracuse, New York
| | - William J Tremaine
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesto
| | | | - Ganesh Aswath
- Division of Gastroenterology and Hepatology, SUNY Upstate Medical University, Syracuse, New York
| | - Bishnu Sapkota
- Division of Gastroenterology and Hepatology, SUNY Upstate Medical University, Syracuse, New York
| | - Raffi Karagozian
- Division of Gastroenterology and Hepatology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Savio John
- Division of Gastroenterology and Hepatology, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
11
|
Wang L, Song L, Ma J, Wang H, Li Y, Huang D. Alcohol induces apoptosis and autophagy in microglia BV-2 cells. Food Chem Toxicol 2023; 177:113849. [PMID: 37217066 DOI: 10.1016/j.fct.2023.113849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Alcohol (ethanol) has proven to be toxic to nearly all organs, with the brain being one of the principal targets. As one of the important components of the brain's blood-brain barrier (BBB) and central nervous system, the state of microglia may be associated with some symptoms of alcohol intoxication. In the present study, microglia BV-2 cells were exposed to various concentrations of alcohol for 3 or 12 h, imitating different stages of drunkenness after alcohol use, respectively. From the perspective of the autophagy-phagocytosis axis, our findings show that alcohol alters autophagy levels or promotes apoptosis in BV-2 cells. The current study adds to the understanding of the action mechanisms of alcohol neurotoxicity. We anticipate that this study will increase public awareness of alcohol's negative effects and contribute to the creation of novel alcoholism treatment approaches.
Collapse
Affiliation(s)
- Luchen Wang
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Lingmin Song
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Juan Ma
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Technology, International Institute of Food Innovation, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
12
|
Teschke R. Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations. Int J Mol Sci 2023; 24:ijms24076663. [PMID: 37047633 PMCID: PMC10095090 DOI: 10.3390/ijms24076663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Zhou Y, Hua J, Huang Z. Effects of beer, wine, and baijiu consumption on non-alcoholic fatty liver disease: Potential implications of the flavor compounds in the alcoholic beverages. Front Nutr 2023; 9:1022977. [PMID: 36687705 PMCID: PMC9852916 DOI: 10.3389/fnut.2022.1022977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease and its global incidence is estimated to be 24%. Beer, wine, and Chinese baijiu have been consumed worldwide including by the NAFLD population. A better understanding of the effects of these alcoholic beverages on NAFLD would potentially improve management of patients with NAFLD and reduce the risks for progression to fibrosis, cirrhosis, and hepatocellular carcinoma. There is evidence suggesting some positive effects, such as the antioxidative effects of bioactive flavor compounds in beer, wine, and baijiu. These effects could potentially counteract the oxidative stress caused by the metabolism of ethanol contained in the beverages. In the current review, the aim is to evaluate and discuss the current human-based and laboratory-based study evidence of effects on hepatic lipid metabolism and NAFLD from ingested ethanol, the polyphenols in beer and wine, and the bioactive flavor compounds in baijiu, and their potential mechanism. It is concluded that for the potential beneficial effects of wine and beer on NAFLD, inconsistence and contrasting data exist suggesting the need for further studies. There is insufficient baijiu specific human-based study for the effects on NAFLD. Although laboratory-based studies on baijiu showed the antioxidative effects of the bioactive flavor compounds on the liver, it remains elusive whether the antioxidative effect from the relatively low abundance of the bioactivate compounds could outweigh the oxidative stress and toxic effects from the ethanol component of the beverages.
Collapse
Affiliation(s)
- Yabin Zhou
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jin Hua
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Zhiguo Huang
- School of Biological Engineering, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,Liquor-Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering (SUSE), Zigong, Sichuan, China,*Correspondence: Zhiguo Huang,
| |
Collapse
|
14
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|
15
|
Duryee MJ, Aripova N, Hunter CD, Ruskamp RJ, Tessin MR, Works DR, Mikuls TR, Thiele GM. A novel reactive aldehyde species inhibitor prevents the deleterious effects of ethanol in an animal model of alcoholic liver disease. Int Immunopharmacol 2022; 113:109400. [DOI: 10.1016/j.intimp.2022.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
16
|
Zhao X, Zhou M, Deng Y, Guo C, Liao L, He L, Peng C, Li Y. Functional Teas from Penthorum chinense Pursh Alleviates Ethanol-Induced Hepatic Oxidative Stress and Autophagy Impairment in Zebrafish via Modulating the AMPK/p62/Nrf2/mTOR Signaling Axis. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:514-520. [PMID: 36103040 DOI: 10.1007/s11130-022-01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Penthorum chinense Pursh (PCP), a medicinal and edible plant, is widely used in many clinical liver diseases. Oxidative stress and autophagy impairment play crucial roles in the pathophysiology of alcoholic liver disease (ALD). Therefore, the aim of this study was to elucidate the mechanism of PCP in attenuating ethanol-induced liver injury. The liver-specific transgenic zebrafish larvae (lfabp: EGFP) at three days post-fertilization (3 dpf) were treated with different concentrations of PCP (100, 50 and 25 μg/mL) for 48 h, after soaked in a 350 mM ethanol for 32 h. Whole-mount oil red O, H&E staining and biochemical kits were used to detect fatty liver function and fat accumulation, western blot (WB) and immunofluorescence were used to determine proteins expression, and RT-qPCR was used to further verify the related gene expression. PCP restored zebrafish liver function. Additionally, PCP (as dose-dependent) blocked the expression of cytochrome P450 2E1 (CYP2E1), the production of intracellular reactive oxygen species (ROS) and alleviated liver fat accumulation and oxidative damage. PCP exerted its hepatoprotective function by downregulating the expression of kelch-like ECH-associated protein 1 (Keap1), up-regulating the expression of nucleus factor-E2-related factor 2 (Nrf2) (transferring to the nucleus), and attenuating systemic oxidative stress. Furthermore, PCP reduced the expression of sequestosome 1 (p62/SQSTM1, p62), Atg13, and Beclin 1, up-regulating autophagy signaling pathway. Taken together, the molecular evidence that PCP protected the ethanol-induced hepatic oxidative stress and autophagy impairment through activating AMPK/p62/Nrf2/mTOR signaling axis.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Mengting Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Ying Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Chaocheng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Li Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Linfeng He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan Province, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
17
|
Guo J, Chen Y, Yuan F, Peng L, Qiu C. Tangeretin Protects Mice from Alcohol-Induced Fatty Liver by Activating Mitophagy through the AMPK-ULK1 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11236-11244. [PMID: 36063077 DOI: 10.1021/acs.jafc.2c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alcoholic beverages are widely consumed all over the world, but continuous ethanol exposure leads to hepatic steatosis that, without proper treatment, will later develop into severe liver disorders. In this study, we investigated the potential protective effect of tangeretin, a flavonoid derived from citrus peel, against alcoholic fatty liver. The in vivo effects of tangeretin were analyzed by oral intake in a chronic-binge alcohol feeding C57BL/6j mouse model, while the underlying mechanism was explored by in vitro studies performed on ethanol-treated hepatic AML-12 cells. Ethanol feeding increased the serum alanine aminotransferase and aspartate aminotransferase levels, the liver weight, and the serum and liver triacylglycerol contents, whereas 20 and 40 mg/kg tangeretin treatment promoted a dose-dependent suppression of these effects. Interestingly, tangeretin prevented increases in the liver oxidative stress level and protected the hepatocyte mitochondria from ethanol-induced morphologic abnormalities. A mechanistic study showed that 20 μM tangeretin treatment activated mitophagy through an AMP-activated protein kinase (AMPK)-uncoordinated 51-like kinase 1 (Ulk1) pathway, thereby restoring mitochondria respiratory function and suppressing steatosis. By contrast, blocking the AMPK-Ulk1 pathway with compound C reversed the hepatoprotective effect of tangeretin. Overall, tangeretin activated mitophagy and protected against ethanol-induced hepatic steatosis through an AMPK-Ulk1-dependent mechanism.
Collapse
Affiliation(s)
- Jianjin Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Yuan
- Department of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100071, China
| | - Li Peng
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Chen Qiu
- Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
18
|
Microbiome-Based Metabolic Therapeutic Approaches in Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23158749. [PMID: 35955885 PMCID: PMC9368757 DOI: 10.3390/ijms23158749] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol consumption is a global healthcare problem. Chronic alcohol consumption generates a wide spectrum of hepatic lesions, the most characteristic of which are steatosis, hepatitis, fibrosis, and cirrhosis. Alcoholic liver diseases (ALD) refer to liver damage and metabolomic changes caused by excessive alcohol intake. ALD present several clinical stages of severity found in liver metabolisms. With increased alcohol consumption, the gut microbiome promotes a leaky gut, metabolic dysfunction, oxidative stress, liver inflammation, and hepatocellular injury. Much attention has focused on ALD, such as alcoholic fatty liver (AFL), alcoholic steatohepatitis (ASH), alcoholic cirrhosis (AC), hepatocellular carcinoma (HCC), a partnership that reflects the metabolomic significance. Here, we report on the global function of inflammation, inhibition, oxidative stress, and reactive oxygen species (ROS) mechanisms in the liver biology framework. In this tutorial review, we hypothetically revisit therapeutic gut microbiota-derived alcoholic oxidative stress, liver inflammation, inflammatory cytokines, and metabolic regulation. We summarize the perspective of microbial therapy of genes, gut microbes, and metabolic role in ALD. The end stage is liver transplantation or death. This review may inspire a summary of the gut microbial genes, critical inflammatory molecules, oxidative stress, and metabolic routes, which will offer future promising therapeutic compounds in ALD.
Collapse
|
19
|
Quercetin Protects Ethanol-Induced Hepatocyte Pyroptosis via Scavenging Mitochondrial ROS and Promoting PGC-1α-Regulated Mitochondrial Homeostasis in L02 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4591134. [PMID: 35879991 PMCID: PMC9308520 DOI: 10.1155/2022/4591134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023]
Abstract
Alcoholic liver disease (ALD) is a multifaceted process that involves excessive lipid, reactive oxygen species (ROS) production, unbalanced mitochondrial homeostasis, and ultimate cell death. Quercetin is a dietary phytochemical presented in various fruits and vegetables, which has anti-inflammatory and antioxidant effects. According to recent advances in pharmanutritional management, the effects of quercetin on various mitochondrial processes have attracted attention. In the study, we explored whether quercetin could attenuate ethanol-induced hepatocyte pyroptosis by maintaining mitochondrial homeostasis and studied its hepatoprotective effect and the underlying mechanism. We chose L02 cells to establish an in vitro model with ethanol-induced hepatocyte pyroptosis. Then, the cells at approximately 80% confluence were treated with quercetin (80, 40, and 20 μM). The cell viability (CCK-8) was used to investigate the effect of quercetin on ethanol-induced L02 cell proliferation. Relative assay kits were used to measure oxidative stress index (OSI = TOS/TAS), lipid peroxidation (LPO) release, and mitochondrial membrane potential (δΨm). The morphology of mitochondria was characterized by transmission electron microscopy- (TEM-) based analysis. Mitochondrial dynamics (Mito Tracker Green), mitROS (MitoSOX Red Mitochondrial Superoxide) production, and nuclear DNA (nDNA) damage (γH2AX) markers were detected by immunofluorescence. The mRNA levels of mitochondrial function (including mitochondrial DNA (mtDNA) transcription genes TWNK, MTCO1, and MFND) and pyroptosis-related genes were detected by RT-qPCR, and the protein levels of NLRP3, ASC, caspase1, cleaved-caspase1, IL-18, IL-1β, and GSDMD-N were detected by western blot. The results showed that quercetin treatment downregulated redox status, lipid droplets, and LPO release, restored damaged mitochondrial membrane potential, and repaired mtDNA damage, PGC-1α nuclear transfer, and mitochondrial dynamics. The gene and protein expressions of NLRP3, ASC, cleaved-caspase1, IL-18, IL-1β, and GSDMD-N were decreased, which effectively inhibited cell pyroptosis. Therefore, the results indicated that quercetin protected ethanol-induced hepatocyte pyroptosis via scavenging mitROS and promoting PGC-1α-mediated mitochondrial homeostasis in L02 cells.
Collapse
|
20
|
Sun X, Shi J, Kong L, Shen Q, Zeng X, Wu Z, Guo Y, Pan D. Recent insights into the hepatoprotective effects of lactic acid bacteria in alcoholic liver disease. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Neuman MG, Seitz HK, Teschke R, Malnick S, Johnson-Davis KL, Cohen LB, German A, Hohmann N, Moreira B, Moussa G, Opris M. Molecular, Viral and Clinical Features of Alcohol- and Non-Alcohol-Induced Liver Injury. Curr Issues Mol Biol 2022; 44:1294-1315. [PMID: 35723310 PMCID: PMC8947098 DOI: 10.3390/cimb44030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023] Open
Abstract
Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
- Correspondence:
| | - Helmut K. Seitz
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60323 Frankfurt, Germany;
| | - Stephen Malnick
- Department of Internal Medicine C. Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel; (S.M.); (A.G.)
| | - Kamisha L. Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Centre and Division of Toxicology, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84115, USA;
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Medicine, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M4N 3N5, Canada;
| | - Anit German
- Department of Internal Medicine C. Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel; (S.M.); (A.G.)
| | - Nicolas Hohmann
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - Bernhardo Moreira
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - George Moussa
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
- Family Medicine Clinic CAR, 010362 Bucharest, Romania
| |
Collapse
|
22
|
Chen J, Martin-Mateos R, Li J, Yin Z, Chen J, Lu X, Glaser KJ, Mounajjed T, Yashiro H, Siegelman J, Winkelmann CT, Wang J, Ehman RL, Shah VH, Yin M. Multiparametric magnetic resonance imaging/magnetic resonance elastography assesses progression and regression of steatosis, inflammation, and fibrosis in alcohol-associated liver disease. Alcohol Clin Exp Res 2021; 45:2103-2117. [PMID: 34486129 PMCID: PMC8602761 DOI: 10.1111/acer.14699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/25/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) and MRI-based elastography (MRE) are the most promising noninvasive techniques in assessing liver diseases. The purpose of this study was to evaluate an advanced multiparametric imaging method for staging disease and assessing treatment response in realistic preclinical alcohol-associated liver disease (ALD). METHODS We utilized four different preclinical mouse models in our study: Model 1-mice were fed a fast-food diet and fructose water for 48 weeks to induce nonalcoholic fatty liver disease; Model 2-mice were fed chronic-binge ethanol (EtOH) for 10 days or 8 weeks to induce liver steatosis/inflammation. Two groups of mice were treated with interleukin-22 at different time points to induce disease regression; Model 3-mice were administered CCl4 for 2 to 4 weeks to establish liver fibrosis followed by 2 or 4 weeks of recovery; and Model 4-mice were administered EtOH plus CCl4 for 12 weeks. Mouse liver imaging biomarkers including proton density fat fraction (PDFF), liver stiffness (LS), loss modulus (LM), and damping ratio (DR) were assessed. Liver and serum samples were obtained for histologic and biochemical analyses. Ordinal logistic regression and generalized linear regression analyses were used to model the severity of steatosis, inflammation, and fibrosis, and to assess the regression of these conditions. RESULTS Multiparametric models with combinations of biomarkers (LS, LM, DR, and PDFF) used noninvasively to predict the histologic severity and regression of steatosis, inflammation, and fibrosis were highly accurate (area under the curve > 0.84 for all). A three-parameter model that incorporates LS, DR, and ALT predicted histologic fibrosis progression (r = 0.84, p < 0.0001) and regression (r = 0.79, p < 0.0001) as measured by collagen content in livers. CONCLUSION This preclinical study provides evidence that multiparametric MRI/MRE can be used noninvasively to assess disease severity and monitor treatment response in ALD.
Collapse
Affiliation(s)
- Jingbiao Chen
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rosa Martin-Mateos
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Gastroenterology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Jiahui Li
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ziying Yin
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Chen
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, West China Hospital, Chengdu, China
| | - Xin Lu
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Hiroaki Yashiro
- Research and Development, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Jenifer Siegelman
- Research and Development, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | | | - Jin Wang
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Vijay H. Shah
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng Yin
- Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
24
|
A Study on Gentiana dahurica Fisch Ethanol Extract Alleviating Alcoholic Liver Disease in Mice: A Metabolomic Analysis of the Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5569538. [PMID: 34257684 PMCID: PMC8260312 DOI: 10.1155/2021/5569538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/05/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022]
Abstract
We clarified the hepatoprotective effect of Gentiana dahurica Fisch ethanol extract (GDEE) in our previous study, and we further revealed the mechanism with the help of metabolomics technology in this study. The livers from Control group, Alcohol group, and Alcohol + GDEE group were analyzed by metabolomics. The metabolites in the liver were separated by ultra-high-performance liquid chromatography (UHPLC) and were tentatively identified using mass spectrometry (MS)/MS analysis. Differential metabolites were defined with VIP > 1 and P < 0.05. Principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) were applied to analyze differences among these groups. The results showed that the groups could be clearly distinguished by PCA and OPLS-DA analysis. Alcohol and GDEE could change the overall profile of liver metabolites. Alterations in liver tissues of ALD mice induced by alcohol were mainly involved in the dipeptides, purine and pyrimidine metabolism and glucose and lipid metabolism, which could be partly affected by GDEE. This study revealed that the mechanism of GDEE in alleviating ALD had the characteristics of multitarget and multipathway.
Collapse
|
25
|
Farashbandi AL, Shariati M, Mokhtari M. Comparing the Protective Effects of Curcumin and Ursodeoxycholic Acid after Ethanol-Induced Hepatotoxicity in Rat Liver. Ethiop J Health Sci 2021; 31:673-682. [PMID: 34483625 PMCID: PMC8365490 DOI: 10.4314/ejhs.v31i3.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alcohol consumption can cause hepatitis and long-term cirrhosis of the liver. The aim of this study was to evaluate the protective effects of curcumin (CUR) and ursodeoxycholic acid (UDCA) alone and together in the prevention and treatment of liver damage caused by overuse of ethanol. METHODS Adult Wistar rats were divided into 8 groups of 5, including the control group and various combinations of ethanol, CUR and UDCA groups. Twenty-eight days after the oral treatment, serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) and Arginase I (ArgI) as well as serum levels of Albumin (Alb), total protein (TP) and Blood Urea Nitrogen (BUN) were measured, and liver tissue was evaluated histopathologically. RESULTS The solo administration of CUR, UDCA and CUR+UDCA had no effect on the blood parameters and liver tissue compared to the control group (p>0.05). The solo administration of CUR and UDCA in ethanol-treated rats significantly reduced ALT, AST, ALP, GGT, ArgI and BUN levels (p<0.05), while the solo administration increased Alb and TP levels compared to the ethanol group (p<0.05). In these groups, a significant decrease in cell necrosis and local inflammation of hepatocytes was observed, and the liver damage was mild. However, co-administration of ethanol, CUR and UDCA made significantly greater decrease in ALT, AST, ALP, GGT, ArgI and BUN levels (p>0.05), while the co-administration greatly increased Alb and TP levels compared to the ethanol group (p<0.05). Histopathologically, a decrease in structural changes in liver tissue and inflammation was observed, resulting in the improvement of liver tissue. CONCLUSION The solo administration of CUR and UDCA could reduce ethanol-induced liver damage in rats and improve liver's serum and blood parameters. However, the coadministration of CUR and UDCA has a greater efficacy.
Collapse
Affiliation(s)
| | - Mehrdad Shariati
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mokhtar Mokhtari
- Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
26
|
Teschke R, Uetrecht J. Mechanism of idiosyncratic drug induced liver injury (DILI): unresolved basic issues. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:730. [PMID: 33987428 PMCID: PMC8106057 DOI: 10.21037/atm-2020-ubih-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical features of idiosyncratic drug induced liver injury (DILI) are well described in cases that have been assessed for causality using the Roussel Uclaf Causality Assessment Method (RUCAM), but our understanding of the mechanistic steps leading to injury is fragmentary. The difficulties describing mechanistic events can be traced back to the lack of an animal model of experimental idiosyncratic DILI that can mimic the genetic requirements of human idiosyncratic DILI. However, immune tolerance plays a dominant role in the immune response of the liver, and impairment of immune tolerance with immune checkpoint inhibitors increases DILI in both humans and animals. This may provide one method to study the individual steps involved. In general. the human DILI liver is a secret keeper providing little insight into what occurs in the diseased organ. Sufficient evidence exists that most idiosyncratic cases are mediated by the adaptive immune system, which depends on stimulation of the innate immune system, but the triggering factors are unknown. It is attractive to hypothesize that the gut microbiome plays a role; however, it is very difficult to study. Similarly, exosomes are likely to play an important role in communication between hepatic cells and the immune system, but there is a lack of data on blood exosomes in affected patients. Reactive metabolites are likely to play an important role. This is supported by the current analysis, which revealed an association between metabolism by cytochrome P450 and drugs most commonly involved in causing idiosyncratic DILI with causality verified by RUCAM. Circumstantial evidence suggests that reactive oxygen species (ROS) generated by cytochrome P450 could be responsible for the initial steps of injury, but details are unknown. In conclusion, most of the mechanistic steps leading to idiosyncratic DILI remain unclear.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty of the Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, University of Toronto, ON, Canada
| |
Collapse
|
27
|
Kezer CA, Simonetto DA, Shah VH. Sex Differences in Alcohol Consumption and Alcohol-Associated Liver Disease. Mayo Clin Proc 2021; 96:1006-1016. [PMID: 33714602 DOI: 10.1016/j.mayocp.2020.08.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Alcohol-associated liver disease is becoming increasingly prevalent throughout the United States. Previously alcohol-associated liver disease was known to affect men more often than women; however, this gap between the sexes is narrowing. Studies show that women develop liver disease with lesser alcohol exposure and suffer worse disease as compared with men. This review article explores the increasing prevalence of alcohol-associated liver disease in women, reasons for changing patterns in alcohol consumption and liver disease development including obesity and bariatric surgery, proposed mechanisms of sex-specific differences in alcohol metabolism that may account for this discrepancy between men and women, and sex differences in treatment enrollment and response. Studies were identified by performing a literature search of PubMed and Google Scholar and through review of the references in retrieved articles. Search terms included alcohol-associated liver disease, alcoholic hepatitis, alcoholic cirrhosis, sex, gender, female, epidemiology, bariatric surgery, obesity, treatment. Due to the paucity of literature on some of the relevant subject matter and inclusion of landmark studies, no date range was selected. Studies were included if their methods were sufficiently robust and they made a comparison between the sexes that is clinically relevant. Understanding of the changing epidemiology and mechanisms of liver disease development unique to women are paramount in creating appropriate and effective interventions for women who represent a rapidly growing subset of patients with alcohol-associated liver disease.
Collapse
Affiliation(s)
| | | | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| |
Collapse
|
28
|
Le Daré B, Ferron PJ, Gicquel T. The Purinergic P2X7 Receptor-NLRP3 Inflammasome Pathway: A New Target in Alcoholic Liver Disease? Int J Mol Sci 2021; 22:2139. [PMID: 33670021 PMCID: PMC7926651 DOI: 10.3390/ijms22042139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization has estimated that approximately 3 million deaths are attributable to alcohol consumption each year. Alcohol consumption is notably associated with the development and/or progression of many non-communicable inflammatory diseases-particularly in the liver. Although these alcoholic liver diseases were initially thought to be caused by the toxicity of ethanol on hepatocytes, the latest research indicates Kupffer cells (the liver macrophages) are at the heart of this "inflammatory shift". Purinergic signaling (notably through P2X7 receptors and the NLRP3 inflammasome) by Kupffer cells appears to be a decisive factor in the pathophysiology of alcoholic liver disease. Hence, the modulation of purinergic signaling might represent a new means of treating alcoholic liver disease. Here, we review current knowledge on the pathophysiology of alcoholic liver diseases and therapeutic perspectives for targeting these inflammatory pathways.
Collapse
Affiliation(s)
- Brendan Le Daré
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| | - Pierre-Jean Ferron
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
| | - Thomas Gicquel
- NuMeCan Institute (Nutrition, Metabolisms and Cancer), INSERM, INRAE, CHU—University Rennes, PREVITOX Network, F-35000 Rennes, France; (B.L.D.); (P.-J.F.)
- Forensic and Toxicology Laboratory, Rennes University Hospital, 2 rue Henri Le Guilloux, F-35033 Rennes, France
| |
Collapse
|
29
|
Wen B, Zhang C, Zhou J, Zhang Z, Che Q, Cao H, Bai Y, Guo J, Su Z. Targeted treatment of alcoholic liver disease based on inflammatory signalling pathways. Pharmacol Ther 2020; 222:107752. [PMID: 33253739 DOI: 10.1016/j.pharmthera.2020.107752] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Targeted therapy is an emerging treatment strategy for alcoholic liver disease (ALD). Inflammation plays an important role in the occurrence and development of ALD, and is a key choice for its targeted treatment, and anti-inflammatory treatment has been considered beneficial for liver disease. Surprisingly, immune checkpoint inhibitors have become important therapeutic agents for hepatocellular carcinoma (HCC). Moreover, studies have shown that the combination of inflammatory molecule inhibitors and immune checkpoint inhibitors can exert better effects than either alone in mouse models of HCC. This review discusses the mechanism of hepatic ethanol metabolism and the conditions under which inflammation occurs. In addition, we focus on the potential molecular targets in inflammatory signalling pathways and summarize the potential targeted inhibitors and immune checkpoint inhibitors, providing a theoretical basis for the targeted treatment of ALD and the development of new combination therapy strategies for HCC.
Collapse
Affiliation(s)
- Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwen Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Mendes BG, Schnabl B. From intestinal dysbiosis to alcohol-associated liver disease. Clin Mol Hepatol 2020; 26:595-605. [PMID: 32911590 PMCID: PMC7641547 DOI: 10.3350/cmh.2020.0086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Alcohol-associated intestinal dysbiosis and bacterial overgrowth can lead to a dysregulation of tryptophan metabolism and lower production of indoles. Several of these indole derivatives are aryl hydrocarbon receptor ligands that, in turn, are involved in antimicrobial defense via induction of interleukin-22 (IL-22). IL-22 increases the expression of intestinal regenerating islet-derived 3 (Reg3) lectins, which maintain low bacterial colonization of the inner mucus layer and reduce bacterial translocation to the liver. Chronic alcohol consumption is associated with reduced intestinal expression of Reg3β and Reg3γ, increased numbers of mucosa-associated bacteria and bacterial translocation. Translocated microbial products and viable bacteria reach the liver and activate the innate immune system. Release of inflammatory molecules promotes inflammation, contributes to hepatocyte death and results in a fibrotic response. This review summarizes the mechanisms by which chronic alcohol intake changes the gut microbiota and contributes to alcohol-associated liver disease by changing microbial-derived metabolites.
Collapse
Affiliation(s)
- Beatriz Garcia Mendes
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, SC, Brazil.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Hsu MF, Koike S, Mello A, Nagy LE, Haj FG. Hepatic protein-tyrosine phosphatase 1B disruption and pharmacological inhibition attenuate ethanol-induced oxidative stress and ameliorate alcoholic liver disease in mice. Redox Biol 2020; 36:101658. [PMID: 32769011 PMCID: PMC7408361 DOI: 10.1016/j.redox.2020.101658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major health problem and a significant cause of liver-related death. Currently, the mainstay for ALD therapy is alcohol abstinence highlighting the need to develop pharmacotherapeutic approaches. Protein-tyrosine phosphatase 1B (PTP1B) is an established regulator of hepatic functions, but its role in ALD is mostly unexplored. In this study, we used mice with liver-specific PTP1B disruption as well as pharmacological inhibition to investigate the in vivo function of this phosphatase in ALD. We report upregulation of hepatic PTP1B in the chronic plus binge mouse model and, importantly, in liver biopsies of alcoholic hepatitis patients. Also, mice with hepatic PTP1B disruption attenuated ethanol-induced injury, inflammation, and steatosis compared with ethanol-fed control animals. Moreover, PTP1B deficiency was associated with decreased ethanol-induced oxidative stress in vivo and ex vivo. Further, pharmacological modulation of oxidative balance in hepatocytes identified diminished oxidative stress as a contributor to the salutary effects of PTP1B deficiency. Notably, PTP1B pharmacological inhibition elicited beneficial effects and mitigated hepatic injury, inflammation, and steatosis caused by ethanol feeding. In summary, these findings causally link hepatic PTP1B and ALD and define a potential therapeutic target for the management of this disease.
Collapse
Affiliation(s)
- Ming-Fo Hsu
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - Shinichiro Koike
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Aline Mello
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
32
|
Tian L, Fan F, Zheng S, Tong Q. Puerarin Exerts the Hepatoprotection from Chronic Alcohol-Induced Liver Injury via Inhibiting the Cyclooxygenase-2 and the 5-Lipoxygenase Pathway in Rats. Complement Med Res 2020; 28:104-113. [PMID: 32720917 DOI: 10.1159/000508686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Puerarin (PR) as one of the main ingredients of the root of the traditional herb Kudzu has been suggested to improve chronic alcohol-induced liver injury. We explore the specific mechanisms of PR on hepatocellular changes after administration of alcohol. METHODS Sprague-Dawley rats were treated with 55% alcohol for 12 weeks to induce a chronic alcoholic liver damage model. Then the rats in each group were administered by oral gavage with zileuton, celecoxib, and PR for 2 weeks, respectively. RESULTS In the PR group, the weight loss was markedly improved and the abnormal serum alanine aminotransferase and aspartate aminotransferase were significantly lowered after PR treatment when compared to the alcoholic liver injured model group. Pathological examination indicated that alcohol-induced hepatocellular injury was improved by the PR treatment. The 5-lipoxygenase (5-Lox) and cyclooxygenase-2 (Cox-2) at the protein level and the mRNA level were obviously downregulated accompanied with the PR treatment. Meanwhile, the peroxisome proliferator-activated receptor γ (PPAR-γ) at the protein and mRNA level was notably elevated and the tumor necrosis factor α at the protein and mRNA level was markedly decreased following the PR treatment. CONCLUSION The possible cytoprotective mechanisms of PR may be involved inhibition of the Cox-2 pathway and the 5-Lox pathway to suppress inflammatory response and regulate the protective factor PPAR-γ expression.
Collapse
Affiliation(s)
- Lugao Tian
- Institute of Digestive Disease, China Three Gorges University, Yichang, China.,Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China
| | - Fachao Fan
- Institute of Digestive Disease, China Three Gorges University, Yichang, China.,Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China
| | - Shihua Zheng
- Institute of Digestive Disease, China Three Gorges University, Yichang, China, .,Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China,
| | - Qiaoyun Tong
- Institute of Digestive Disease, China Three Gorges University, Yichang, China.,Department of Gastroenterology of Yichang Central People's Hospital, Yichang, China
| |
Collapse
|
33
|
Choi BR, Cho IJ, Jung SJ, Kim JK, Park SM, Lee DG, Ku SK, Park KM. Lemon balm and dandelion leaf extract synergistically alleviate ethanol-induced hepatotoxicity by enhancing antioxidant and anti-inflammatory activity. J Food Biochem 2020; 44:e13232. [PMID: 32497278 DOI: 10.1111/jfbc.13232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
We investigated the effect of a 2:1 (w/w) mixture of lemon balm and dandelion extracts (LD) on ethanol (EtOH)-mediated liver injury and explored the underlying mechanisms. Administration of LD synergistically reduced relative liver weight and decreased the levels of serum biomarkers of hepatic injury. Histopathological and biochemical analyses indicated that LD synergistically attenuated hepatic accumulation of triacylglycerides (TGs) and restored the levels of mRNAs related to fatty acid metabolism. In addition, LD significantly reduced EtOH-induced hepatic oxidative stress by attenuating the reduction in levels of nuclear factor E2-related factor 2 (Nrf2) mRNA and enhancing antioxidant activity. Moreover, LD decreased the EtOH-mediated increase in levels of hepatic tumor necrosis factor-α (TNF-α) mRNA. In vitro, LD significantly scavenged free radicals, increased cell viability against tert-butylhydroperoxide (tBHP), and transactivated Nrf2 target genes in HepG2 cells. Furthermore, LD decreased levels of pro-inflammatory mediators in lipopolysaccharide-stimulated Raw264.7 cells. Therefore, LD shows promise for preventing EtOH-mediated liver injury. PRACTICAL APPLICATIONS: There were no approved therapeutic agents for preventing and/or treating alcoholic liver diseases. In this study, a 2:1 (w/w) mixture of lemon balm and dandelion leaf extract (DL) synergistically ameliorated EtOH-induced hepatic injury by inhibiting lipid accumulation, oxidative stress, and inflammation. Our findings will enable the development of a novel food supplement for the prevention or treatment of alcohol-mediated liver injury.
Collapse
Affiliation(s)
- Beom-Rak Choi
- Department of Foodscience and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea.,Nutracore Co., Ltd, Suwon, Republic of Korea
| | - Il Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Su-Jin Jung
- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jae Kwang Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sang Mi Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Dae Geon Lee
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Ki-Moon Park
- Department of Foodscience and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
34
|
Yang M, Sun F, Zhou Y, He M, Yao P, Peng Y, Luo F, Liu F. Preventive effect of lemon seed flavonoids on carbon tetrachloride-induced liver injury in mice. RSC Adv 2020; 10:12800-12809. [PMID: 35492116 PMCID: PMC9051252 DOI: 10.1039/d0ra01415j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to determine the preventive effect of lemon seed flavonoids (LSF) on carbon tetrachloride-induced liver injury in mice. Liver injury was induced by injection with 2 mL kg-1 of carbon tetrachloride after administration of LSF by gavage. Liver index, serological parameters, and expression intensities of related mRNA and protein in the liver tissue were observed. The results indicated that LSF reduced liver weight and liver index, downregulated serum levels of AST, ALT, ALP, TG, TC, BUN, NO, and MDA, and upregulated levels of ALB, SOD, CAT, and GSH-Px in the mice with liver injury. It also downregulated serum cytokines, such as IL-6, IL-12, TNF-α, and IFN-γ in these mice. qPCR and western blot confirmed that LSF upregulated mRNA and protein expression of Mn-SOD, Cu/Zn-SOD, CAT, GSH-Px, and IκB-α, and downregulated expression of NF-κB-p65, iNOS, COX-2, TNF-α, IL-1β, and IL-6 in the liver tissue of mice with liver injury. The preventive effect on carbon tetrachloride-induced liver injury was attributed to (-)-epigallocatechin, caffeic acid, (-)-epicatechin, vitexin, quercetin, and hesperidin, which were active substances that were detected in LSF by HPLC. Moreover, the effect of LSF is similar to that of silymarin, but the synergistic effect of the five active substances working in concert acted to produce a more robust liver-protecting effect.
Collapse
Affiliation(s)
- Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yue Zhou
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Mei He
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fei Luo
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| | - Fu Liu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 Sichuan China
| |
Collapse
|
35
|
Neuman MG, Seitz HK, French SW, Malnick S, Tsukamoto H, Cohen LB, Hoffman P, Tabakoff B, Fasullo M, Nagy LE, Tuma PL, Schnabl B, Mueller S, Groebner JL, Barbara FA, Yue J, Nikko A, Alejandro M, Brittany T, Edward V, Harrall K, Saba L, Mihai O. Alcoholic-Hepatitis, Links to Brain and Microbiome: Mechanisms, Clinical and Experimental Research. Biomedicines 2020; 8:E63. [PMID: 32197424 PMCID: PMC7148515 DOI: 10.3390/biomedicines8030063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
The following review article presents clinical and experimental features of alcohol-induced liver disease (ALD). Basic aspects of alcohol metabolism leading to the development of liver hepatotoxicity are discussed. ALD includes fatty liver, acute alcoholic hepatitis with or without liver failure, alcoholic steatohepatitis (ASH) leading to fibrosis and cirrhosis, and hepatocellular cancer (HCC). ALD is fully attributable to alcohol consumption. However, only 10-20% of heavy drinkers (persons consuming more than 40 g of ethanol/day) develop clinical ALD. Moreover, there is a link between behaviour and environmental factors that determine the amount of alcohol misuse and their liver disease. The range of clinical presentation varies from reversible alcoholic hepatic steatosis to cirrhosis, hepatic failure, and hepatocellular carcinoma. We aimed to (1) describe the clinico-pathology of ALD, (2) examine the role of immune responses in the development of alcoholic hepatitis (ASH), (3) propose diagnostic markers of ASH, (4) analyze the experimental models of ALD, (5) study the role of alcohol in changing the microbiota, and (6) articulate how findings in the liver and/or intestine influence the brain (and/or vice versa) on ASH; (7) identify pathways in alcohol-induced organ damage and (8) to target new innovative experimental concepts modeling the experimental approaches. The present review includes evidence recognizing the key toxic role of alcohol in ALD severity. Cytochrome p450 CYP2E1 activation may change the severity of ASH. The microbiota is a key element in immune responses, being an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. Alcohol consumption changes the intestinal microbiota and influences liver steatosis and liver inflammation. Knowing how to exploit the microbiome to modulate the immune system might lead to a new form of personalized medicine in ALF and ASH.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada
| | - Helmut Karl Seitz
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Stephen Malnick
- Department Internal Medicine C, Kaplan Medical Centre and Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Heidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-5311, USA;
- Department of Veterans; Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Paula Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Michael Fasullo
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12205, USA;
| | - Laura E. Nagy
- Departments of Pathobiology and Gastroenterology, Center for Liver Disease Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Pamela L. Tuma
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Sebastian Mueller
- Department of Medicine, Centre of Alcohol Research, University of Heidelberg, Salem Medical Centre, 337374 Heidelberg, Germany; (H.K.S.); (S.M.)
| | - Jennifer L. Groebner
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; (P.L.T.); (J.L.G.)
| | - French A. Barbara
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Jia Yue
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Afifiyan Nikko
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Mendoza Alejandro
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Tillman Brittany
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Vitocruz Edward
- Department of Pathology, Harbor-UCLA Medical Center and Los Angeles BioMedical Institute, Torrance, CA Harbor-UCLA Medical Center, Torrance, CA 90509, USA; (S.W.F.); (F.A.B.); (J.Y.); (A.N.); (M.A.); (T.B.); (V.E.)
| | - Kylie Harrall
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Laura Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045-0511, USA; (P.H.); (B.T.); (K.H.); (L.S.)
| | - Opris Mihai
- In Vitro Drug Safety and Biotechnology, Toronto, ON M5G 1L5, Canada;
- Department Family Medicine Clinic CAR, 010164 Bucharest, Romania
| |
Collapse
|
36
|
Méndez-Sánchez N, Valencia-Rodriguez A, Vera-Barajas A, Abenavoli L, Scarpellini E, Ponciano-Rodriguez G, Wang DQH. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 32582865 PMCID: PMC7313221 DOI: 10.20517/2394-5079.2019.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, alcoholic liver disease (ALD) is one of the most prevalent chronic liver diseases worldwide, representing one of the main etiologies of cirrhosis and hepatocellular carcinoma (HCC). Although we do not know the exact mechanisms by which only a selected group of patients with ALD progress to the final stage of HCC, the role of the gut microbiota within the progression to HCC has been intensively studied in recent years. To date, we know that alcohol-induced gut dysbiosis is an important feature of ALD with important repercussions on the severity of this disease. In essence, an increased metabolism of ethanol in the gut induced by an excessive alcohol consumption promotes gut dysfunction and bacterial overgrowth, setting a leaky gut. This causes the translocation of bacteria, endotoxins, and ethanol metabolites across the enterohepatic circulation reaching the liver, where the recognition of the pathogen-associated molecular patterns via specific Toll-like receptors of liver cells will induce the activation of the nuclear factor kappa-B pathway, which releases pro-inflammatory cytokines and chemokines. In addition, the mitogenic activity of hepatocytes will be promoted and cellular apoptosis will be inhibited, resulting in the development of HCC. In this context, it is not surprising that microbiota-regulating drugs have proven effectiveness in prolonging the overall survival of patients with HCC, making attractive the implementation of these drugs as co-adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico.,Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia" Viale Europa, Catanzaro 88100, Italy
| | - Emidio Scarpellini
- Clinical Nutrition Unit, and Internal Medicine Unit, "Madonna del Soccorso" General Hospital, Via Luciano Manara 7, San Benedetto del Tronto (AP) 63074, Italy
| | - Guadalupe Ponciano-Rodriguez
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
37
|
Wan YM, Wu HM, Li YH, Xu ZY, Yang JH, Liu C, He YF, Wang MJ, Wu XN, Zhang Y. TSG-6 Inhibits Oxidative Stress and Induces M2 Polarization of Hepatic Macrophages in Mice With Alcoholic Hepatitis via Suppression of STAT3 Activation. Front Pharmacol 2020; 11:10. [PMID: 32116692 PMCID: PMC7010862 DOI: 10.3389/fphar.2020.00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)-α-stimulated protein 6 (TSG-6) is a secreted protein with diverse tissue protective and anti-inflammatory properties. We aimed to investigate its effective in treating mice with alcoholic hepatitis (AH) and the associated mechanisms. AH was induced in 8-10 week female C57BL/6N mice by chronic-binge ethanol feeding for 10 days. Intraperitoneal (i.p.) injection of recombinant mouse TSG-6 or saline were performed in mice on day 10. Blood samples and hepatic tissues were collected on day 11. Biochemistry, liver histology, flow cytometry, and cytokine measurements were conducted. Compared to the normal control mice, the AH mice had significantly increased liver/body weight ratio, serum alanine aminotransferase (ALT) and aspartate aminotransferases (AST), hepatic total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), hepatic macrophage infiltration, serum and hepatic interleukin (IL)-6, and tumor necrosis factor (TNF)-α, which were markedly reduced by i.p. injection of rmTSG-6. Compared to the normal control mice, the hepatic glutathione (GSH), accumulation of M2 macrophages, serum, and hepatic IL-10 and TSG-6 were prominently reduced in the AH mice, which were significantly enhanced after i.p. injection of rmTSG-6. Compared to the normal control mice, hepatic activation of signal transducer and activator of transcription 3 (STAT3) was significantly induced, which was markedly suppressed by rmTSG-6 treatment. TSG-6 were effective for the treatment of AH mice, which might be associated with its ability in inhibiting hepatic oxidative stress and inducing hepatic M2 macrophages polarization via suppressing STAT3 activation.
Collapse
Affiliation(s)
- Yue-Meng Wan
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Hua-Mei Wu
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu-Hua Li
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi-Yuan Xu
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jin-Hui Yang
- Gastroenterology Department, the 2 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chang Liu
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Yue-Feng He
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Men-Jie Wang
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Xi-Nan Wu
- Department of Occupational, Labor and Environmental Health, Public Health Institute of Kunming Medical University, Kunming, China
| | - Yuan Zhang
- The Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| |
Collapse
|
38
|
Qiu S, Zhang AH, Guan Y, Sun H, Zhang TL, Han Y, Yan GL, Wang XJ. Functional metabolomics using UPLC-Q/TOF-MS combined with ingenuity pathway analysis as a promising strategy for evaluating the efficacy and discovering amino acid metabolism as a potential therapeutic mechanism-related target for geniposide against alcoholic liver disease. RSC Adv 2020; 10:2677-2690. [PMID: 35496090 PMCID: PMC9048633 DOI: 10.1039/c9ra09305b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolomics has been used as a strategy to evaluate the efficacy of and potential targets for natural products.
Collapse
Affiliation(s)
- Shi Qiu
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Yu Guan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Tian-lei Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Ying Han
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| | - Xi-jun Wang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Metabolomics Laboratory
- Department of Pharmaceutical Analysis
| |
Collapse
|
39
|
Teschke R, Eickhoff A, Brown AC, Neuman MG, Schulze J. Diagnostic Biomarkers in Liver Injury by Drugs, Herbs, and Alcohol: Tricky Dilemma after EMA Correctly and Officially Retracted Letter of Support. Int J Mol Sci 2019; 21:ijms21010212. [PMID: 31892250 PMCID: PMC6981464 DOI: 10.3390/ijms21010212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Liver injuries caused by the use of exogenous compounds such as drugs, herbs, and alcohol are commonly well diagnosed using laboratory tests, toxin analyses, or eventually reactive intermediates generated during metabolic degradation of the respective chemical in the liver and subject to covalent binding by target proteins. Conditions are somewhat different for idiosyncratic drug induced liver injury (DILI), for which metabolic intermediates as diagnostic aids are rarely available. Although the diagnosis of idiosyncratic DILI can well be established using the validated, liver specific, structured, and quantitative RUCAM (Roussel Uclaf Causality Assessment Method), there is an ongoing search for new diagnostic biomarkers that could assist in and also confirm RUCAM-based DILI diagnoses. With respect to idiosyncratic DILI and following previous regulatory letters of recommendations, selected biomarkers reached the clinical focus, including microRNA-122, microRNA-192, cytokeratin analogues, glutamate dehydrogenase, total HMGB-1 (High Mobility Group Box), and hyperacetylated HMGB-1 proteins. However, the new parameters total HMGB-1, and even more so the acetylated HMGB-1, came under critical scientific fire after misconduct at one of the collaborating partner centers, leading the EMA to recommend no longer the exploratory hyperacetylated HMGB1 isoform biomarkers in clinical studies. The overall promising nature of the recommended biomarkers was considered by EMA as highly dependent on the outstanding results of the now incriminated biomarker hyperacetylated HMGB-1. The EMA therefore correctly decided to officially retract its Letter of Support affecting all biomarkers listed above. New biomarkers are now under heavy scrutiny that will require re-evaluations prior to newly adapted recommendations. With Integrin beta 3 (ITGB3), however, a new diagnostic biomarker may emerge, possibly being drug specific but tested in only 16 patients; due to substantial remaining uncertainties, final recommendations would be premature. In conclusion, most of the currently recommended new biomarkers have lost regulatory support due to scientific misconduct, requiring now innovative approaches and re-evaluation before they can be assimilated into clinical practice.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-63450 Hanau, Germany;
- Correspondence: ; Tel.: +49-6181-21859; Fax: +49-6181-2964211
| | - Axel Eickhoff
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-63450 Hanau, Germany;
| | - Amy C. Brown
- Department of Complementary and Integrative Medicine, University of Hawai’i at Manoa, Honolulu, HI 96813, USA;
| | - Manuela G. Neuman
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M2 R1 W6, Canada;
| | - Johannes Schulze
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, D-60590 Frankfurt/Main, Germany;
| |
Collapse
|
40
|
Role of autophagy in alcohol and drug-induced liver injury. Food Chem Toxicol 2019; 136:111075. [PMID: 31877367 DOI: 10.1016/j.fct.2019.111075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Alcohol-related liver disease (ALD) and drug-induced liver injury (DILI) are common causes of severe liver disease, and successful treatments are lacking. Autophagy plays a protective role in both ALD and DILI by selectively removing damaged mitochondria (mitophagy), lipid droplets (lipophagy), protein aggregates and adducts in hepatocytes. Autophagy also protects against ALD by degrading interferon regulatory factor 1 (IRF1) and damaged mitochondria in hepatic macrophages. Specifically, we will discuss selective autophagy for removal of damaged mitochondria and lipid droplets in hepatocytes and autophagy-mediated degradation of IRF1 in hepatic macrophages as protective mechanisms against alcohol-induced liver injury and steatosis. In addition, selective autophagy for removal of damaged mitochondria and protein adducts for protection against DILI is discussed in this review. Development of new therapeutics for ALD and DILI is greatly needed, and selective autophagy pathways may provide promising targets. Drug and alcohol effects on autophagy regulation as well as protective mechanisms of autophagy against DILI and ALD are highlighted in this review.
Collapse
|
41
|
Rehm J, Shield KD. Global Burden of Alcohol Use Disorders and Alcohol Liver Disease. Biomedicines 2019; 7:E99. [PMID: 31847084 PMCID: PMC6966598 DOI: 10.3390/biomedicines7040099] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Alcohol use is a major risk factor for burden of mortality and morbidity. Alcoholic liver disease (ALD) and alcohol use disorders (AUDs) are important disease outcomes caused by alcohol use. We will describe the global mortality and burden of disease in disability-adjusted life years for ALD and AUDs, based on data from the comparative risk assessment of the World Health Organization for 2016. AUDs have a limited impact on mortality in this assessment, since alcohol poisonings are almost the only disease category directly attributable to AUDs; most other alcohol-related deaths are indirect, and the cause which directly led to the death, such as liver cirrhosis, is the one recorded on the death certificate. Burden of disease for AUDs is thus mainly due to disability resulting from alcohol use. In contrast to AUDs, ALD is one of the major lethal outcomes of alcohol use, and burden of disease is mainly due to (premature) years of life lost. Many of the negative outcomes attributable to both AUDs and ALD are due to their interactions with other factors, most notably economic wealth. To avoid alcohol-attributable morbidity and mortality, measures should be taken to reduce the AUDs and ALD burden globally, especially among the poor.
Collapse
Affiliation(s)
- Jürgen Rehm
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
- Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON M5T 1P8, Canada
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5T 2S1, Canada
- Institute of Clinical Psychology and Psychotherapy & Center for Clinical Epidemiology and Longitudinal Studies, Technische Universität Dresden, Chemnitzer Str. 46, D-01187 Dresden, Germany
- Department of International Health Projects, Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8, b. 2, Moscow 119992, Russia
| | - Kevin D. Shield
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON M5T 1P8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON M5T 2S1, Canada
| |
Collapse
|
42
|
Teschke R, Xuan TD. How can green tea polyphenols affect drug metabolism and should we be concerned? Expert Opin Drug Metab Toxicol 2019; 15:989-991. [PMID: 31774338 DOI: 10.1080/17425255.2019.1697228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Teaching Hospital of the Medical Faculty of the Goethe University Frankfurt/Main, Germany
| | - Tran Dang Xuan
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
43
|
Isolation and Identification of Lactobacillus plantarum HFY05 from Natural Fermented Yak Yogurt and Its Effect on Alcoholic Liver Injury in Mice. Microorganisms 2019; 7:microorganisms7110530. [PMID: 31694208 PMCID: PMC6920879 DOI: 10.3390/microorganisms7110530] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Yak yogurt is a type of naturally fermented dairy product prepared by herdsmen in the Qinghai-Tibet Plateau, which is rich in microorganisms. In this study, a strain of Lactobacillus plantarum was isolated and identified from yak yogurt in Hongyuan, Sichuan Province and named Lactobacillus plantarum HFY05 (LP-HFY05). LP-HFY05 was compared with a common commercial strain of Lactobacillus delbrueckii subsp. bulgaricus (LDSB). LP-HFY05 showed better anti-artificial gastric acid and bile salt effects than LDSB in in vitro experiments, indicating its potential as a probiotic. In animal experiments, long-term alcohol gavage induced alcoholic liver injury. LP-HFY05 effectively reduced the liver index of mice with liver injury, downregulated the levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triglyceride, total cholesterol, blood urea nitrogen, nitric oxide, and MDA and upregulated the levels of albumin, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase in the serum of liver-injured mice. LP-HFY05 also reduced the levels of interleukin (IL)-6, IL-12, tumor necrosis factor-alpha, and interferon-gamma in the serum of liver-injured mice. The pathological observations showed that LP-HFY05 reduced the damage to liver cells caused by alcohol. Quantitative polymerase chain reaction and Western blot assays further showed that LP-HFY05 upregulated neuronal nitric oxide synthase, endothelial nitric oxide synthase, manganese-SOD, cuprozinc-SOD, CAT, and inhibitor of κB-α mRNA and protein expression and downregulated the expression of nuclear factor-κB-p65 and inducible nitric oxide synthase in the livers of liver-injured mice. A fecal analysis revealed that LP-HFY05 regulated the microbial content in the intestinal tract of mice with liver injury, increased the content of beneficial bacteria, including Bacteroides, Bifidobacterium, and Lactobacillus and reduced the content of harmful bacteria, including Firmicutes, Actinobacteria, Proteobacteria, and Enterobacteriaceae, thus, regulating intestinal microorganisms to protect against liver injury. The effect of LP-HFY05 on liver-injured mice was better than that of LDSB, and the effect was similar to that of silymarin. LP-HFY05 is a high-quality microbial strain with a liver protective effect on experimental mice with alcoholic liver injury.
Collapse
|
44
|
White Peony (Fermented Camellia sinensis) Polyphenols Help Prevent Alcoholic Liver Injury via Antioxidation. Antioxidants (Basel) 2019; 8:antiox8110524. [PMID: 31683564 PMCID: PMC6912415 DOI: 10.3390/antiox8110524] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
White peony is a type of white tea (Camellia sinensis) rich in polyphenols. In this study, polyphenols were extracted from white peony. In vitro experiments showed that white peony polyphenols (WPPs) possess strong free radical scavenging capabilities toward 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Long-term alcohol gavage was used to induce alcoholic liver injury in mice, and relevant indices of liver injury were examined. WPPs effectively reduced the liver indices of mice with liver injury. The serum levels of aspartate aminotransferase (ATS), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglycerides (TG), total cholesterol (TC), blood urea nitrogen (BUN), nitric oxide (NO), and malondialdehyde (MDA) were downregulated, while those of albumin (ALB), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were upregulated. WPPs also reduced the serum levels of interluekin-6 (IL-6), interluekin-12 (IL-12), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) in mice with liver injury. Pathology results showed that WPPs reduced alcohol-induced liver cell damage. Quantitative polymerase chain reaction (qPCR) and western blot results revealed that WPPs upregulated the mRNA and protein expressions of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese superoxide dismutase (Mn-SOD), cupro–zinc superoxide dismutase (Cu/Zn-SOD), and CAT and downregulated iNOS expression in the liver of mice with liver injury. WPPs protected against alcoholic liver injury, and this effect was equivalent to that of silymarin. High-performance liquid chromatography revealed that WPPs mainly contained the polyphenols gallic acid, catechinic acid, and hyperoside, which are critical for exerting preventive effects against alcoholic liver injury. Thus, WPPs are high-quality natural products with liver protective effects.
Collapse
|