1
|
Centonze D, Di Sapio A, Brescia Morra V, Colombo E, Inglese M, Paolicelli D, Salvetti M, Furlan R. Steps toward the implementation of neurofilaments in multiple sclerosis: patient profiles to be prioritized in clinical practice. Front Neurol 2025; 16:1571605. [PMID: 40224313 PMCID: PMC11987710 DOI: 10.3389/fneur.2025.1571605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system disease characterized by neurodegeneration and inflammation. Neurofilament light chain (NfL), a protein released during axonal injury, has gained recognition as a potential biomarker for monitoring MS progression and treatment response. Evidence indicates that blood NfL (bNfL) offers a minimally invasive, cost-effective tool for tracking neuroaxonal damage. Regular bNfL assessments can identify subclinical disease activity, guide treatment intensification, and support individualized care. However, bNfL level evaluation is currently not optimized in Italian clinical practice. This work examines the utility of bNfL monitoring in clinical practice, focusing on optimizing its use within specific patient profiles, especially in resource-limited settings. bNfL testing, particularly in targeted MS patient profiles, including stable patients exhibiting subclinical signs of disease activity, such as fatigue, and patients off-treatment, represents a promising adjunct for personalized disease management. Its integration into clinical practice, alongside MRI and clinical assessments, can enhance decision-making and improve care efficiency, especially in settings with limited MRI resources. Further research is needed to standardize testing protocols and establish disease-specific cutoffs.
Collapse
Affiliation(s)
- Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessia Di Sapio
- Department of Neurology, Multiple Sclerosis Regional Referral Centre (CReSM), University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Elena Colombo
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Damiano Paolicelli
- Department of Translational Biomedicines and Neurosciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Salvetti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Roberto Furlan
- Vita e Salute San Raffaele University, Milan, Italy
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Samadzadeh S, Sleator RD. The role of Neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in MS and AQP4-NMOSD: Advancing clinical applications. eNeurologicalSci 2025; 38:100550. [PMID: 39866832 PMCID: PMC11762903 DOI: 10.1016/j.ensci.2025.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025] Open
Abstract
Fluid biomarkers such as Glial Fibrillary Acidic Protein (GFAP) and Neurofilament Light (NfL) play important roles in the diagnosis, monitoring, and evaluation of therapeutic responses in conditions such as Multiple Sclerosis (MS) and Aquaporin-4 Neuromyelitis Optica Spectrum Disorder (AQP4-NMOSD). These biomarkers offer key insights into the underlying pathophysiological mechanisms of these diseases, enabling effective follow-up and personalized treatment approaches, which are essential for improving patient outcomes. Herein, we synthesize the structural attributes, functional roles, and clinical significance of GFAP and NfL in the context of MS and AQP4-NMOSD. We explore the critical implications of these biomarkers in disease manifestation and progression, emphasizing the necessity to develop standardized methodologies and multicentric studies to confirm their clinical applicability.
Collapse
Affiliation(s)
- Sara Samadzadeh
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- The Center for Neurological Research, Department of Neurology Slagelse Hospitals, Slagelse, Denmark
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, Ireland
| |
Collapse
|
3
|
Ayrignac X, Aouinti S, Vincent T, Carra-Dallière C, Charif M, Duflos C, Hirtz C, Dos Santos A, Menjot de Champfleur N, Labauge P, Lehmann S. Serum NfL and GFAP are weak predictors of long-term multiple sclerosis prognosis: A 6-year follow-up. Mult Scler Relat Disord 2024; 89:105747. [PMID: 39053395 DOI: 10.1016/j.msard.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising biomarkers that might be associated with clinical and radiological markers of multiple sclerosis (MS) severity. However, it is not known whether they can accurately identify patients at risk of disability progression in the medium and long term. OBJECTIVES We wanted to determine the association between sNfL and sGFAP, Expanded Disability Status Scale score changes, and conversion to secondary progressive MS (SPMS) in a cohort of 133 patients with relapsing remitting MS. METHODS Blood samples were collected at inclusion to measure SNfL and sGFAP by single molecule array and their prognostic value was assessed using a linear mixed model. RESULTS In this cohort, 37 patients (27.8 % of 133) experienced disability progression and 12 patients (9.0 %) converted to SPMS during the follow-up (mean follow-up duration: 6.4 years). Only sNfL (p = 0.03) was associated with conversion to SPMS, and neither SNfL nor sGFAP was associated with disability progression. CONCLUSION Serum NfL and GFAP do not seem to accurately predict MS outcome in the long term. More studies are needed to determine how serum biomarkers, associated with other clinical and MRI biomarkers, might be used to improve MS prognostication.
Collapse
Affiliation(s)
- Xavier Ayrignac
- University of Montpellier, INM, INSERM, MS referral center & reference center for adult-onset leukodystrophies, CHU Montpellier, Montpellier, France.
| | - Safa Aouinti
- Clinical Research and Epidemiology Unit, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Thierry Vincent
- University of Montpellier, INM, INSERM, CHU Montpellier, Department of Immunology, CHU Montpellier, Montpellier, France
| | - Clarisse Carra-Dallière
- University of Montpellier, INM, INSERM, MS referral center & reference center for adult-onset leukodystrophies, CHU Montpellier, Montpellier, France
| | - Mahmoud Charif
- University of Montpellier, INM, INSERM, MS referral center & reference center for adult-onset leukodystrophies, CHU Montpellier, Montpellier, France
| | - Claire Duflos
- Clinical Research and Epidemiology Unit, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - Christophe Hirtz
- University of Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | | | - Nicolas Menjot de Champfleur
- University of Montpellier, INSERM, CHU Montpellier, CNRS, Department of Neuroradiology, CHU Montpellier, Montpellier, France
| | - Pierre Labauge
- University of Montpellier, INM, INSERM, MS referral center & reference center for adult-onset leukodystrophies, CHU Montpellier, Montpellier, France
| | - Sylvain Lehmann
- University of Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
4
|
Johnsson M, Stenberg YT, Farman HH, Blennow K, Zetterberg H, Malmeström C, Sandgren S, Rosenstein I, Lycke J, Axelsson M, Novakova L. Serum neurofilament light for detecting disease activity in individual patients in multiple sclerosis: A 48-week prospective single-center study. Mult Scler 2024; 30:664-673. [PMID: 38481083 PMCID: PMC11071597 DOI: 10.1177/13524585241237388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Serum neurofilament light (sNfL) reflects neuroaxonal damage and is now used as an outcome in treatment trials of relapsing-remitting multiple sclerosis (RRMS). However, the diagnostic properties of sNfL for monitoring disease activity in individual patients warrant further investigations. METHOD Patients with suspected relapse and/or contrast-enhancing lesions (CELs) were consecutively included and performed magnetic resonance imaging (MRI) of the brain at baseline and weeks 28 and 48. Serum was obtained at baseline and 2, 4, 8, 16, 24, and 48 weeks. Neurofilament light concentration was measured using Single molecule array technology. RESULTS We included 44 patients, 40 with RRMS and 4 with clinically isolated syndrome. The median sNfL level peaked at 2 weeks post-baseline (14.6 ng/L, interquartile range (IQR); 9.3-31.6) and reached nadir at 48 weeks (9.1 ng/L, IQR; 5.5-15.0), equivalent to the median sNfL of controls (9.1 ng/L, IQR; 7.4-12). A baseline Z-score of more than 1.1 (area under the curve; 0.78, p < 0.0001) had a sensitivity of 81% and specificity of 70% to detect disease activity. CONCLUSION One out of five patients with relapse and/or CELs did not change significantly in post-baseline sNfL levels. The utility of repeated sNfL measurements to monitor disease activity is complementary rather than a substitute for clinical and MRI measures.
Collapse
Affiliation(s)
- M Johnsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - YT Stenberg
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - HH Farman
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - K Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - H Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - C Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
- Laboratory for Clinical Immunology, Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Sandgren
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - I Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - J Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - M Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| | - L Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital and Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
5
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
7
|
Abstract
This review aimed to elucidate protein biomarkers in body fluids, such as blood and cerebrospinal fluid (CSF), to identify those that may be used for early diagnosis of multiple sclerosis (MS), prediction of disease activity, and monitoring of treatment response among MS patients. The potential biomarkers elucidated in this review include neurofilament proteins (NFs), glial fibrillary acidic protein (GFAP), leptin, brain-derived neurotrophic factor (BDNF), chitinase-3-like protein 1 (CHI3L1), C-X-C motif chemokine 13 (CXCL13), and osteopontin (OPN), with each biomarker playing a different role in MS. GFAP, leptin, and CHI3L1 levels were increased in MS patient groups compared to the control group. NFs are the most studied proteins in the MS field, and significant correlations with disease activity, future progression, and treatment outcomes are evident. GFAP CSF level shows a different pattern by MS subtype. Increased concentration of CHI3L1 in the blood/CSF of clinically isolated syndrome (CIS) is an independent predictive factor of conversion to definite MS. BDNF may be affected by chronic progression of MS. CHI3L1 has potential as a biomarker for early diagnosis of MS and prediction of disability progression, while CXCL13 has potential as a biomarker of prognosis of CIS and reflects MS disease activity. OPN was an indicator of disease severity. A periodic detailed patient evaluation should be performed for MS patients, and broadly and easily accessible biomarkers with higher sensitivity and specificity in clinical settings should be identified.
Collapse
Affiliation(s)
- Jun-Soon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Abu-Rumeileh S, Abdelhak A, Foschi M, D'Anna L, Russo M, Steinacker P, Kuhle J, Tumani H, Blennow K, Otto M. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases. Brain 2023; 146:421-437. [PMID: 36083979 PMCID: PMC9494370 DOI: 10.1093/brain/awac328] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The advancing validation and exploitation of CSF and blood neurofilament light chain protein as a biomarker of neuroaxonal damage has deeply changed the current diagnostic and prognostic approach to neurological diseases. Further, recent studies have provided evidence of potential new applications of this biomarker also in non-primary neurological diseases. In the present review we summarize the state of the art, future perspectives, but also limitations, of neurofilament light chain protein as a CSF and blood biomarker in several medical fields, including intensive care medicine, surgery, internal medicine and psychiatry. In particular, neurofilament light chain protein is associated with the degree of neurological impairment and outcome in patients admitted to intensive care units or in the perioperative phase and it seems to be highly interconnected with cardiovascular risk factors. Beyond that, interesting diagnostic and prognostic insights have been provided by the investigation of neurofilament light chain protein in psychiatric disorders as well as in the current coronavirus disease-19 pandemic and in normal ageing. Altogether, current data outline a multifaceted applicability of CSF and blood neurofilament light chain protein ranging from the critical clinical setting to the development of precision medicine models suggesting a strict interplay between the nervous system pathophysiology and the health-illness continuum.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Matteo Foschi
- Department of Neuroscience, Neurology Unit – S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
9
|
Floro S, Carandini T, Pietroboni AM, De Riz MA, Scarpini E, Galimberti D. Role of Chitinase 3-like 1 as a Biomarker in Multiple Sclerosis: A Systematic Review and Meta-analysis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/4/e1164. [PMID: 35534236 PMCID: PMC9128043 DOI: 10.1212/nxi.0000000000001164] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/17/2022] [Indexed: 04/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is an autoimmune disease confined in the CNS, and its course is frequently subtle and variable. Therefore, predictive biomarkers are needed. In this scenario, we conducted a systematic review and meta-analysis to evaluate the reliability of chitinase 3-like 1 as a biomarker of MS. METHODS Research through the main scientific databases (PubMed, Scopus, Web of Science, and Cochrane Library) published from January 2010 to December 2020 was performed using the following keywords: "chitinase 3-like 1 and multiple sclerosis" and "YKL40 and multiple sclerosis." Articles were selected according to the 2020 updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines by 2 authors independently, and data were extracted; 20 of the 90 studies screened were included in the meta-analysis. The main efficacy measure was represented by the standardized mean difference of CSF and blood CHI3L1 levels; Review Manager version 5.4 and R software applications were used for analysis. RESULTS Higher levels of CHI3L1 were found in CSF of 673 patients with MS compared with 336 healthy controls (size-weighted mean difference [SMD] 50.88; 95% CI = 44.98-56.79; p < 0.00001) and in 461 patients with MS than 283 patients with clinically isolated syndrome (CIS) (SMD 28.18; 95% CI = 23.59-32.76; p < 0.00001). Mean CSF CHI3L1 levels were significantly higher in 561 converting than 445 nonconverting CIS (SMD 30.6; 95% CI = 28.31-32.93; p < 0.00001). CSF CHI3L1 levels were significantly higher in patients with primary progressive MS (PPMS) than in patients with relapsing-remitting MS (RRMS) (SMD 43.15; 95% CI = 24.41-61.90; p < 0.00001) and in patients with secondary progressive MS (SMD 41.86 with 95% CI = 32.39-51.33; p < 0.00001). CSF CHI3L1 levels in 407 patients with MS during remission phase of disease were significantly higher than those in 395 patients with MS with acute relapse (SMD 10.48; 95% CI = 08.51-12.44; p < 0.00001). The performances of CHI3L1 in blood for differentiating patients with MS from healthy controls were not significant (SMD 0.48; 95% CI = -1.18 to 2.14; p: 0.57). DISCUSSION CSF levels of CHI3L1 have a strong correlation with the MS pathologic course, in particular with the mechanism of progression of the disease; it helps to distinguish the PPMS from the RRMS. The potential role of CHI3L1 in serum needs to be further studied in the future.
Collapse
Affiliation(s)
- Stefano Floro
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Tiziana Carandini
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Anna Margherita Pietroboni
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Milena Alessandra De Riz
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Elio Scarpini
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| | - Daniela Galimberti
- From the Fondazione IRCCS Ca' Granda (S.F., T.C., A.M.P., M.A.D.R., E.S., D.G.), Ospedale Policlinico; and University of Milan (S.F., E.S., D.G.), Milan, Italy
| |
Collapse
|
10
|
Abdelhak A, Cordano C, Boscardin WJ, Caverzasi E, Kuhle J, Chan B, Gelfand JM, Yiu HH, Oertel FC, Beaudry-Richard A, Condor Montes S, Oksenberg JR, Lario Lago A, Boxer A, Rojas-Martinez JC, Elahi FM, Chan JR, Green AJ. Plasma neurofilament light chain levels suggest neuroaxonal stability following therapeutic remyelination in people with multiple sclerosis. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-329221. [PMID: 35710320 PMCID: PMC9984688 DOI: 10.1136/jnnp-2022-329221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/23/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Chronic demyelination is a major contributor to axonal vulnerability in multiple sclerosis (MS). Therefore, remyelination could provide a potent neuroprotective strategy. The ReBUILD trial was the first study showing evidence for successful remyelination following treatment with clemastine in people with MS (pwMS) with no evidence of disease activity or progression (NEDAP). Whether remyelination was associated with neuroprotection remains unexplored. METHODS Plasma neurofilament light chain (NfL) levels were measured from ReBUILD trial's participants. Mixed linear effect models were fit for individual patients, epoch and longitudinal measurements to compare NfL concentrations between samples collected during the active and placebo treatment period. RESULTS NfL concentrations were 9.6% lower in samples collected during the active treatment with clemastine (n=53, geometric mean=6.33 pg/mL) compared to samples collected during treatment with placebo (n=73, 7.00 pg/mL) (B=-0.035 [-0.068 to -0.001], p=0.041). Applying age- and body mass index-standardised NfL Z-scores and percentiles revealed similar results (0.04 vs 0.35, and 27.5 vs 33.3, p=0.023 and 0.042, respectively). Higher NfL concentrations were associated with more delayed P100 latencies (B=1.33 [0.26 to 2.41], p=0.015). In addition, improvement of P100 latencies between visits was associated with a trend for lower NfL values (B=0.003 [-0.0004 to 0.007], p=0.081). Based on a Cohen's d of 0.248, a future 1:1 parallel-arm placebo-controlled study using a remyelinating agent with comparable effect as clemastine would need 202 subjects per group to achieve 80% power. CONCLUSIONS In pwMS, treatment with the remyelinating agent clemastine was associated with a reduction of blood NfL, suggesting that neuroprotection is achievable and measurable with therapeutic remyelination. TRIAL REGISTRATION NUMBER NCT02040298.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - W John Boscardin
- Departments of Medicine and Epidemiology & Biostatistics, University of California at San Francisco, San Francisco, California, USA
| | - Eduardo Caverzasi
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Jens Kuhle
- Multiple Sclerosis Centre, Neurology, Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Brandon Chan
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Jeffrey M Gelfand
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Hao H Yiu
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Frederike C Oertel
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Alexandra Beaudry-Richard
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Shivany Condor Montes
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Argentina Lario Lago
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Adam Boxer
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Julio C Rojas-Martinez
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Fanny M Elahi
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Jonah R Chan
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Ari J Green
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco (UCSF), San Francisco, California, USA
| |
Collapse
|
11
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
12
|
Neuroprotective Effect of Glatiramer Acetate on Neurofilament Light Chain Leakage and Glutamate Excess in an Animal Model of Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms222413419. [PMID: 34948217 PMCID: PMC8707261 DOI: 10.3390/ijms222413419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Axonal and neuronal pathologies are a central constituent of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), induced by the myelin oligodendrocyte glycoprotein (MOG) 35–55 peptide. In this study, we investigated neurodegenerative manifestations in chronic MOG 35–55 induced EAE and the effect of glatiramer acetate (GA) treatment on these manifestations. We report that the neuronal loss seen in this model is not attributed to apoptotic neuronal cell death. In EAE-affected mice, axonal damage prevails from the early disease phase, as revealed by analysis of neurofilament light (NFL) leakage into the sera along the disease duration, as well as by immunohistological examination. Elevation of interstitial glutamate concentrations measured in the cerebrospinal fluid (CSF) implies that glutamate excess plays a role in the damage processes inflicted by this disease. GA applied as a therapeutic regimen to mice with apparent clinical symptoms significantly reduces the pathological manifestations, namely apoptotic cell death, NFL leakage, histological tissue damage, and glutamate excess, thus corroborating the neuroprotective consequences of this treatment.
Collapse
|
13
|
Yeo T, Probert F, Sealey M, Saldana L, Geraldes R, Höeckner S, Schiffer E, Claridge TDW, Leppert D, DeLuca G, Kuhle J, Palace J, Anthony DC. Objective biomarkers for clinical relapse in multiple sclerosis: a metabolomics approach. Brain Commun 2021; 3:fcab240. [PMID: 34755110 PMCID: PMC8568847 DOI: 10.1093/braincomms/fcab240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022] Open
Abstract
Accurate determination of relapses in multiple sclerosis is important for diagnosis, classification of clinical course and therapeutic decision making. The identification of biofluid markers for multiple sclerosis relapses would add to our current diagnostic armamentarium and increase our understanding of the biology underlying the clinical expression of inflammation in multiple sclerosis. However, there is presently no biofluid marker capable of objectively determining multiple sclerosis relapses although some, in particular neurofilament-light chain, have shown promise. In this study, we sought to determine if metabolic perturbations are present during multiple sclerosis relapses, and, if so, identify candidate metabolite biomarkers and evaluate their discriminatory abilities at both group and individual levels, in comparison with neurofilament-light chain. High-resolution global and targeted 1H nuclear magnetic resonance metabolomics as well as neurofilament-light chain measurements were performed on the serum in four groups of relapsing-remitting multiple sclerosis patients, stratified by time since relapse onset: (i) in relapse (R); (ii) last relapse (LR) ≥ 1 month (M) to < 6 M ago; (iii) LR ≥ 6 M to < 24 M ago; and (iv) LR ≥ 24 M ago. Two hundred and one relapsing-remitting multiple sclerosis patients were recruited: R (n = 38), LR 1–6 M (n = 28), LR 6–24 M (n = 34), LR ≥ 24 M (n = 101). Using supervised multivariate analysis, we found that the global metabolomics profile of R patients was significantly perturbed compared to LR ≥ 24 M patients. Identified discriminatory metabolites were then quantified using targeted metabolomics. Lysine and asparagine (higher in R), as well as, isoleucine and leucine (lower in R), were shortlisted as potential metabolite biomarkers. ANOVA of these metabolites revealed significant differences across the four patient groups, with a clear trend with time since relapse onset. Multivariable receiver operating characteristics analysis of these four metabolites in discriminating R versus LR ≥ 24 M showed an area under the curve of 0.758, while the area under the curve for serum neurofilament-light chain was 0.575. Within individual patients with paired relapse–remission samples, all four metabolites were significantly different in relapse versus remission, with the direction of change consistent with that observed at group level, while neurofilament-light chain was not discriminatory. The perturbations in the identified metabolites point towards energy deficiency and immune activation in multiple sclerosis relapses, and the measurement of these metabolites, either singly or in combination, are useful as biomarkers to differentiate relapse from remission at both group and individual levels.
Collapse
Affiliation(s)
- Tianrong Yeo
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.,Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Fay Probert
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Megan Sealey
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Luisa Saldana
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Ruth Geraldes
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - David Leppert
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel CH-4031, Switzerland
| | - Gabriele DeLuca
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel CH-4031, Switzerland
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
14
|
Rivera VM. Editorial of Special Issue "Multiple Sclerosis: Diagnosis and Treatment II". Biomedicines 2021; 9:biomedicines9111605. [PMID: 34829833 PMCID: PMC8615709 DOI: 10.3390/biomedicines9111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
The special issue on Multiple Sclerosis: Diagnosis and Treatment II, reflects advances and discoveries in the molecular and cellular mechanisms of disease, and novel laboratory techniques providing more sensitivity to diagnostic techninques and the understanding of neuroinflammation. Mitochondrial-mediated apoptosis in isolated peripheral blood mononuclear cells and the role of reactive oxygen species are studied as indicators of activity of MS. In these cells, downregulation of circular and linera RNAs are reported as markers of highly active disease in MS. Progress and importance of Neurofilaments determinations in early diagnosis and as a marker of disease activity, and the analysis of the complex mechanisms and therapeutic potential of Sphingosine-1-phosphate receptor modulator are discussed. Epidemiologic observations from a highly diversified area of the world provide more insights into this important aspect of MS; discussions on the clinical challenges posed by spinal cord involvement in demyelinatind disorders and the latest aspects of pediatric onset MS, complement this fine collection of scientific papers.
Collapse
Affiliation(s)
- Victor M Rivera
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
15
|
García-Foncillas J, Argente J, Bujanda L, Cardona V, Casanova B, Fernández-Montes A, Horcajadas JA, Iñiguez A, Ortiz A, Pablos JL, Pérez Gómez MV. Milestones of Precision Medicine: An Innovative, Multidisciplinary Overview. Mol Diagn Ther 2021; 25:563-576. [PMID: 34331269 DOI: 10.1007/s40291-021-00544-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2021] [Indexed: 12/11/2022]
Abstract
Although the concept of precision medicine, in which healthcare is tailored to the molecular and clinical characteristics of each individual, is not new, its implementation in clinical practice has been heterogenous. In some medical specialties, precision medicine has gone from being just a promise to a reality that achieves better patient outcomes. This is a fact if we consider, for example, the great advances made in the genetic diagnosis and subsequent treatment of countless hereditary diseases, such as cystic fibrosis, which have improved the life expectancy of many of the affected children. In the field of oncology, the development of targeted therapies has prolonged the survival of patients with breast, lung, colorectal, melanoma, and hematological malignancies. In other disciplines, clinical milestones are perhaps less well known, but no less important. The current challenge is to expand and generalize the use of technologies that are central to precision medicine, such as massively parallel sequencing, to improve the management (prevention and treatment) of complex conditions such as cardiovascular, kidney, or autoimmune diseases. This process requires investment in specialized expertise, multidisciplinary collaboration, and the nationwide organization of genetic laboratories for diagnosis of specific diseases.
Collapse
Affiliation(s)
- Jesús García-Foncillas
- Department of Oncology, Oncohealth Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain.
- Medical Oncology Department, University Hospital Fundación Jiménez Díaz-Universidad Autonoma de Madrid, Madrid, Spain.
| | - Jesús Argente
- Department of Endocrinology, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Instituto de Salud Carlos III, IMDEA Institute, Hospital Infantil Universitario Niño Jesús, Spanish PUBERE Registry, CIBER of Obesity and Nutrition (CIBEROBN), Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Victoria Cardona
- Allergy Section, Department of Internal Medicine, Hospital Vall d'Hebron, Barcelona, Spain
- ARADyAL Research Network, Barcelona, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Fernández-Montes
- Medical Oncology, Complejo Hospitalario Universitario de Ourense, Ourense, Spain
| | | | - Andrés Iñiguez
- Department of Cardiology, Hospital Álvaro Cunqueiro-Complejo Hospitalario Universitario, Vigo, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
- Servicio de Reumatología, Hospital 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
16
|
Thebault S, Booth RA, Rush CA, MacLean H, Freedman MS. Serum Neurofilament Light Chain Measurement in MS: Hurdles to Clinical Translation. Front Neurosci 2021; 15:654942. [PMID: 33841093 PMCID: PMC8027110 DOI: 10.3389/fnins.2021.654942] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
Measurement of serum neurofilament light chain concentration (sNfL) promises to become a convenient, cost effective and meaningful adjunct for multiple sclerosis (MS) prognostication as well as monitoring disease activity in response to treatment. Despite the remarkable progress and an ever-increasing literature supporting the potential role of sNfL in MS over the last 5 years, a number of hurdles remain before this test can be integrated into routine clinical practice. In this review we highlight these hurdles, broadly classified by concerns relating to clinical validity and analytical validity. After setting out an aspirational roadmap as to how many of these issues can be overcome, we conclude by sharing our vision of the current and future role of sNfL assays in MS clinical practice.
Collapse
Affiliation(s)
- Simon Thebault
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Ronald A Booth
- Department of Pathology and Laboratory Medicine, The Eastern Ontario Regional Laboratory Association, The Ottawa Hospital, Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Carolina A Rush
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Heather MacLean
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| | - Mark S Freedman
- Department of Medicine, The Ottawa Hospital Research Institute, The University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) is a clinically heterogeneous disease, which complicates expectant management as well as treatment decisions. This review provides an overview of both well established and emerging predictors of disability worsening, including clinical factors, imaging factors, biomarkers and treatment strategies. RECENT FINDINGS In addition to well known clinical predictors (age, male sex, clinical presentation, relapse behaviour), smoking, obesity, vascular and psychiatric comorbidities are associated with subsequent disability worsening in persons with MS. A number of imaging features are predictive of disability worsening and are present to varying degrees in relapsing and progressive forms of MS. These include brain volumes, spinal cord atrophy, lesion volumes and optical coherence tomography features. Cerebrospinal and more recently blood biomarkers including neurofilament light show promise as more easily attainable biomarkers of future disability accumulation. Importantly, recent observational studies suggest that initiation of early-intensive therapy, as opposed to escalation based on breakthrough disease, is associated with decreased accumulation of disability overall, although randomized controlled trials investigating this question are underway. SUMMARY Understanding risk factors associated with disability progression can help to both counsel patients and enhance the clinician's availability to provide evidence-based treatment recommendations.
Collapse
|
18
|
Thebault S, Bose G, Booth R, Freedman MS. Serum neurofilament light in MS: The first true blood-based biomarker? Mult Scler 2021; 28:1491-1497. [PMID: 33565908 PMCID: PMC9315170 DOI: 10.1177/1352458521993066] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A simple blood-derived biomarker is desirable in the routine management
of multiple sclerosis (MS) patients and serum neurofilament light
chain (sNfL) is the most promising candidate. Although its utility was
first shown in cerebrospinal fluid (CSF), technological advancements
have enabled reliable detection in serum and less frequently plasma,
obviating the need for repeated lumbar punctures. In this review,
after defining the knowledge gap in MS management that many hope sNfL
could fill, we summarize salient studies demonstrating associations of
sNfL levels with outcomes of interest. We group these outcomes into
inflammatory activity, progression, treatment response, and
prediction/prognosis. Where possible we focus on data from real-world
perspective observational cohorts. While acknowledging the limitations
of sNfL and highlighting key areas for ongoing work, we conclude with
our opinion of the role for sNfL as an objective, convenient, and
cost-effective adjunct to clinical assessment. Paving the way for
other promising biomarkers both blood-derived and otherwise, sNfL is
an incremental step toward precision medicine for MS patients.
Collapse
Affiliation(s)
- Simon Thebault
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gauruv Bose
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ronald Booth
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada/The University of Ottawa, Ottawa, ON, Canada
| | - Mark S Freedman
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|