1
|
Niemczyk W, Żurek J, Niemczyk S, Kępa M, Zięba N, Misiołek M, Wiench R. Antibiotic-Loaded Platelet-Rich Fibrin (AL-PRF) as a New Carrier for Antimicrobials: A Systematic Review of In Vitro Studies. Int J Mol Sci 2025; 26:2140. [PMID: 40076763 PMCID: PMC11899807 DOI: 10.3390/ijms26052140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Platelet-rich fibrin (PRF) has emerged as a promising scaffold for drug delivery, particularly in the context of antimicrobial therapies. This systematic review evaluates the incorporation of antibiotics into PRF to determine its efficacy as a localized antimicrobial delivery system compared to plain PRF without antibiotics. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, including 13 in vitro studies with a moderate risk of bias. Antibiotics were incorporated into PRF using different methodologies, including systemic administration before blood collection, addition to blood before centrifugation, and injection into formed PRF matrices. Outcomes were analyzed regarding antibacterial efficacy, structural integrity of PRF, and release kinetics. Antibiotic-enhanced PRF demonstrated significant antibacterial activity against various bacterial strains. The efficacy of the enhanced PRF was dependent on the type of antibiotic, its concentration, and incorporation method. Encapsulation approaches facilitated a sustained antibiotic release, while higher antibiotic concentrations occasionally disrupted PRF integrity. Systemic administration of antibiotics before blood collection enriches PRF effectively, producing significant inhibition zones. The antibacterial effects of PRF outperformed alternative carriers, such as collagen sponges. Antibiotic-loaded PRF is a potent tool for localized antimicrobial delivery, with promising applications in clinical settings. Further research is needed to standardize preparation protocols and explore the impact of different antibiotic delivery methods on PRF's regenerative properties.
Collapse
Affiliation(s)
- Wojciech Niemczyk
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland
| | - Jacek Żurek
- Specialist Medical Practice, PolneWzgórze 11 Street, 32-300 Olkusz, Poland
| | - Stanisław Niemczyk
- Municipal Hospital No. 4 in Gliwice, Zygmunta Starego 20, 44-100 Gliwice, Poland
| | - Małgorzata Kępa
- Department of Microbiology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of 7 Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Natalia Zięba
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C. Skłodowskiej Street, 41-800 Zabrze, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C. Skłodowskiej Street, 41-800 Zabrze, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Pl. Traugutta 2, 41-800 Zabrze, Poland
| |
Collapse
|
2
|
Bovari-Biri J, Miskei JA, Kover Z, Steinerbrunner-Nagy A, Kardos K, Maroti P, Pongracz JE. Advancements in Bone Replacement Techniques-Potential Uses After Maxillary and Mandibular Resections Due to Medication-Related Osteonecrosis of the Jaw (MRONJ). Cells 2025; 14:145. [PMID: 39851573 PMCID: PMC11763601 DOI: 10.3390/cells14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Maxillofacial bone defects can have a profound impact on both facial function and aesthetics. While various biomaterial scaffolds have shown promise in addressing these challenges, regenerating bone in this region remains complex due to its irregular shape, intricate structure, and differing cellular origins compared to other bones in the human body. Moreover, the significant and variable mechanical loads placed on the maxillofacial bones add further complexity, especially in cases of difficult-to-treat medical conditions. This review provides a brief overview of medication-related osteonecrosis of the jaw (MRONJ), highlighting the medication-induced adverse reactions and the associated clinical challenges in treating this condition. The purpose of this manuscript is to emphasize the role of biotechnology and tissue engineering technologies in therapy. By using scaffold materials and biofactors in combination with autologous cells, innovative solutions are explored for the repair of damaged facial bones. The ongoing search for effective scaffolds that can address these challenges and improve in vitro bone preparation for subsequent regeneration in the maxillofacial region remains critical. The primary purpose of this review is to spotlight current research trends and novel approaches in this area.
Collapse
Affiliation(s)
- Judit Bovari-Biri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| | - Judith A Miskei
- Department of Maxillo-Facial Surgery, Clinical Centre, The Medical School, University of Pecs, 7624 Pecs, Hungary; (J.A.M.); (Z.K.)
| | - Zsanett Kover
- Department of Maxillo-Facial Surgery, Clinical Centre, The Medical School, University of Pecs, 7624 Pecs, Hungary; (J.A.M.); (Z.K.)
| | - Alexandra Steinerbrunner-Nagy
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| | - Kinga Kardos
- 3D Printing and Visualization Centre, University of Pecs, 7624 Pecs, Hungary; (K.K.); (P.M.)
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Peter Maroti
- 3D Printing and Visualization Centre, University of Pecs, 7624 Pecs, Hungary; (K.K.); (P.M.)
- Medical Skills Education and Innovation Centre, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary; (J.B.-B.); (A.S.-N.)
| |
Collapse
|
3
|
De Caro V, Tranchida G, La Mantia C, Megna B, Angellotti G, Di Prima G. Hybrid Nanocomposite Mini-Tablet to Be Applied into the Post-Extraction Socket: Matching the Potentialities of Resveratrol-Loaded Lipid Nanoparticles and Hydroxyapatite to Promote Alveolar Wound Healing. Pharmaceutics 2025; 17:112. [PMID: 39861759 PMCID: PMC11769172 DOI: 10.3390/pharmaceutics17010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction. Methods: The mLNP-RSV dispersion was mixed with seven different polymers in various mLNP/polymer ratios. Following freeze-drying, the powders were redispersed, and the resulting dispersions were tested by DLS experiments. Then, the best two nanocomposites underwent extensive characterization by SEM, XRD, FTIR, Raman spectroscopy, and thermal analysis as well as in vitro partitioning studies aimed at verifying their ability to yield the mLNP-RSV from the hydrophilic matrix to a lipophilic tissue. The characterizations led to identify the best nanocomposite, which was further combined with HXA to obtain hybrid nanocomposites, further evaluated as pharmaceutical powders or in form of mini-tablets. Results: PEG-based nanocomposites emerged as optimal and, following HXA insertion, the resulting powders revealed adequate bulk properties, making them useful as a pharmaceutical intermediate to produce ≈59 mm3 mini-tablets, compliant with the post-extraction socket. Moreover, they were proven ex vivo to be able to promote RSV and GA accumulation into the buccal tissue over time. Conclusions: The here-proposed mini-tablet offers an innovative therapeutic approach for alveolar wound healing promotion as they led to a standardized dose administration, while being handy and stable in terms of physical solid identity as long as it takes to suture the wound.
Collapse
Affiliation(s)
- Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.D.C.); (C.L.M.)
| | - Giada Tranchida
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.T.); (B.M.)
| | - Cecilia La Mantia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.D.C.); (C.L.M.)
| | - Bartolomeo Megna
- Dipartimento di Ingegneria, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (G.T.); (B.M.)
| | - Giuseppe Angellotti
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche (ISMN-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (V.D.C.); (C.L.M.)
| |
Collapse
|
4
|
Sarfi S, Azaryan E, Hanafi-Bojd MY, Emadian Razavi F, Naseri M. Green synthesis of nanohydroxyapatite with Elaeagnus angustifolia L. extract as a metronidazole nanocarrier for in vitro pulpitis model treatment. Sci Rep 2024; 14:14702. [PMID: 38926433 PMCID: PMC11208562 DOI: 10.1038/s41598-024-65582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study is to introduce a dental capping agent for the treatment of pulp inflammation (pulpitis). Nanohydroxyapatite with Elaeagnus angustifolia L. extract (nHAEA) loaded with metronidazole (nHAEA@MTZ) was synthesized and evaluated using a lipopolysaccharide (LPS) in vitro model of pulpitis. nHAEA was synthesized through sol-gel method and analyzed using Scanning Electron Microscopy, Transmission Electron Microscopy, and Brunauer Emmett Teller. Inflammation in human dental pulp stem cells (HDPSCs) induced by LPS. A scratch test assessed cell migration, RT PCR measured cytokines levels, and Alizarin red staining quantified odontogenesis. The nHAEA nanorods were 17-23 nm wide and 93-146 nm length, with an average pore diameter of 27/312 nm, and a surface area of 210.89 m2/g. MTZ loading content with controlled release, suggesting suitability for therapeutic applications. nHAEA@MTZ did not affect the odontogenic abilities of HDPSCs more than nHAEA. However, it was observed that nHAEA@MTZ demonstrated a more pronounced anti-inflammatory effect. HDPSCs treated with nanoparticles exhibited improved migration compared to other groups. These findings demonstrated that nHAEA@MTZ could be an effective material for pulp capping and may be more effective than nHAEA in reducing inflammation and activating HDPSCs to enhance pulp repair after pulp damage.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
5
|
Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infect Dis 2024; 10:779-807. [PMID: 38300991 DOI: 10.1021/acsinfecdis.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are the two surgical techniques generally used for periodontitis disease treatment. These techniques are based on a barrier membrane to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics, or prosthetic restoration. Numerous studies have highlighted biocompatibility, space-creation, cell-blocking, bioactivity, and proper handling as essential characteristics of a membrane's performance. Given that bacterial infection is the primary cause of periodontitis, we strongly believe that addressing the antimicrobial properties of these membranes is of utmost importance. Indeed, the absence of effective inhibition of periodontal pathogens has been recognized as a primary factor contributing to the failure of GTR/GBR membranes. Therefore, we suggest considering antimicrobial properties as one of the key factors in the design of GTR/GBR membranes. Antibiotics are potent medications frequently administered systemically to combat microbes and mitigate bacterial infections. Nevertheless, the excessive use of antibiotics has resulted in a surge in bacterial resistance. To overcome this challenge, alternative antibacterial substances have been developed. In this review, we explore the utilization of alternative substances with antimicrobial properties for topical application in membranes. The use of antibacterial nanoparticles, phytochemical compounds, and antimicrobial peptides in this context was investigated. By carefully selecting and integrating antimicrobial agents into GTR/GBR membranes, we can significantly enhance their effectiveness in combating periodontitis. These antibacterial substances not only act as barriers against pathogenic bacteria but also promote the process of periodontal healing.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Hamid Reza Ghaderi Jafarbeigloo
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, University of Medical Sciences, Fasa 7461686688, Iran
- Student Research Center committee, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Hooman Khorshidi
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615878, Iran
| |
Collapse
|
6
|
Huang X, Lou Y, Duan Y, Liu H, Tian J, Shen Y, Wei X. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances. Bioact Mater 2024; 33:129-156. [PMID: 38024227 PMCID: PMC10665588 DOI: 10.1016/j.bioactmat.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Maxillofacial bone defects caused by congenital malformations, trauma, tumors, and inflammation can severely affect functions and aesthetics of maxillofacial region. Despite certain successful clinical applications of biomaterial scaffolds, ideal bone regeneration remains a challenge in maxillofacial region due to its irregular shape, complex structure, and unique biological functions. Scaffolds that address multiple needs of maxillofacial bone regeneration are under development to optimize bone regeneration capacity, costs, operational convenience. etc. In this review, we first highlight the special considerations of bone regeneration in maxillofacial region and provide an overview of the biomaterial scaffolds for maxillofacial bone regeneration under clinical examination and their efficacy, which provide basis and directions for future scaffold design. Latest advances of these scaffolds are then discussed, as well as future perspectives and challenges. Deepening our understanding of these scaffolds will help foster better innovations to improve the outcome of maxillofacial bone tissue engineering.
Collapse
Affiliation(s)
- Xiangya Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yaxin Lou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
7
|
Belfiore E, Di Prima G, Angellotti G, Panzarella V, De Caro V. Plant-Derived Polyphenols to Prevent and Treat Oral Mucositis Induced by Chemo- and Radiotherapy in Head and Neck Cancers Management. Cancers (Basel) 2024; 16:260. [PMID: 38254751 PMCID: PMC10813700 DOI: 10.3390/cancers16020260] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Oral Mucositis (OM) is the most common side effect due to chemotherapy and radiotherapy, which are the conventional treatment options for head and neck cancers. OM is a severe inflammatory condition characterized by multifactorial etiopathogenesis. It further negatively affects patients' quality of life by severe impairment of normal oral functions. Consequently, it is mandatory to identify new effective therapeutic approaches to both prevent and treat OM while also avoiding any recurrence. Polyphenols recently attracted the interest of the scientific community due to their low toxicity and wide range of biological activities making them ideal candidates for several applications in the odontostomatological field, particularly against OM. This review collects the in vivo studies and the clinical trials conducted over the past 13 years evaluating the preventive and curative effects of several polyphenolic compounds towards chemo- and radiotherapy-induced OM, both when administered alone or as a plant-extracted phytocomplex. The literature fully confirms the usefulness of these molecules, thus opening the possibility of their clinical application. However, polyphenol limitations (e.g., unfavourable physicochemical properties and susceptibility to degradation) have emerged. Consequently, the interest of the scientific community should be focused on developing innovative delivery systems able to stabilize polyphenols, thus facilitating topical administration and maximizing their efficacy.
Collapse
Affiliation(s)
- Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Giuseppe Angellotti
- Institute of Nanostructured Materials, National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
8
|
Naeimi Darestani M, Asl Roosta H, Mosaddad SA, Yaghoubee S. The effect of leukocyte- and platelet-rich fibrin on the bone loss and primary stability of implants placed in posterior maxilla: a randomized clinical trial. Int J Implant Dent 2023; 9:23. [PMID: 37555894 PMCID: PMC10412516 DOI: 10.1186/s40729-023-00487-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE In this study, we investigated the effects of leukocyte- and platelet-rich fibrin (L-PRF) on implant stability and alterations in the marginal bone surrounding posterior maxillary implants. METHODS This randomized clinical trial was conducted to compare the variable of L-PRF placement around maxillary implants. Resonance frequency analysis (RFA) was used to evaluate the implant stability immediately after surgery and at 1, 2, 4, 6, 8, and 12 weeks after surgery (t0 to t6, respectively). In addition, the amount of marginal bone changes around the implant at t6 was compared with the baseline using periapical radiography. RESULTS The RFA outcomes were statistically significant within each group (P < 0.001, Eta2 = 0.322); however, in none of the follow-ups and immediately after the surgery, there was a significant difference between the two groups in terms of the implant stability quotient (ISQ) scores (P > 0.05). At t0, the test and control groups' respective mean levels of marginal bone loss around the implants were 0.4836 mm and 0.7343 mm, significantly different from the corresponding values at t6. On the other hand, marginal bone loss around the implant was not significantly different between the two groups in t0 and t6 (P = 0.532). CONCLUSIONS L-PRF did not improve the RFA outcomes of implants three months after implant placement, and changes in the ISQ values over time were the same in both groups. In addition, L-PRF had no superior effect on the marginal bone loss around the implants. TRIAL REGISTRATION NUMBER The research was registered in the Iranian Registry of Clinical Trials on 22 December 2020 (No: IRCT20200624047906N1), available at http://www.irct.ir.
Collapse
Affiliation(s)
| | - Hoori Asl Roosta
- Periodontics Department, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Siamak Yaghoubee
- Periodontics Department, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Contardi M, Fadda M, Isa V, Louis YD, Madaschi A, Vencato S, Montalbetti E, Bertolacci L, Ceseracciu L, Seveso D, Lavorano S, Galli P, Athanassiou A, Montano S. Biodegradable Zein-Based Biocomposite Films for Underwater Delivery of Curcumin Reduce Thermal Stress Effects in Corals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37376819 PMCID: PMC10360034 DOI: 10.1021/acsami.3c01166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.
Collapse
Affiliation(s)
- Marco Contardi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Valerio Isa
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Yohan D Louis
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Andrea Madaschi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Sara Vencato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Laura Bertolacci
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Genova 16128, Italy
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
- Dubai Business School, University of Dubai, Dubai 14143, United Arab Emirates
| | | | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| |
Collapse
|
10
|
Angellotti G, Di Prima G, D'Agostino F, Peri E, Tricoli MR, Belfiore E, Allegra M, Cancemi P, De Caro V. Multicomponent Antibiofilm Lipid Nanoparticles as Novel Platform to Ameliorate Resveratrol Properties: Preliminary Outcomes on Fibroblast Proliferation and Migration. Int J Mol Sci 2023; 24:ijms24098382. [PMID: 37176088 PMCID: PMC10179555 DOI: 10.3390/ijms24098382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The well-being of skin and mucous membranes is fundamental for the homeostasis of the body and thus it is imperative to treat any lesion quickly and correctly. In this view, polyphenols might assist and enhance a successful wound healing process by reducing the inflammatory cascade and the production of free radicals. However, they suffer from disadvantageous physico-chemical properties, leading to restricted clinical use. In this work, a complex mixture of PEGylated lipid, Glyceryl monoester, 18-β-Glycyrrhetinic Acid and Menthol was designed to entrap Resveratrol (RSV) as the active ingredient and further produce lipid nanoparticles (LNPs) by homogenization followed by high-frequency sonication. The nanosystem was properly characterized in terms of particle size (DLS, SEM), zeta potential, drug loading, antioxidant power (DPPH), release behaviour, cytocompatibility, wound healing and antibiofilm properties. The optimized lipid mixture was homogeneous, melted at 57-61 °C and encapsulated amorphous RSV (4.56 ± 0.04% w/w). The RSV-loaded LNPs were almost monodispersed (PDI: 0.267 ± 0.010), with nanometric size (162.86 ± 3.12 nm), scavenger properties and suitable DR% and LE% values (96.82 ± 1.34% and 95.17 ± 0.25%, respectively). The release studies were performed to simulate the wound conditions: 1-octanol to mimic the lipophilic domains of biological tissues (where the First Order kinetic was observed) and citrate buffer pH 5.5 according to the inflammatory wound exudate (where the Korsmeyer-Peppas kinetic was followed). The biological and microbiological evaluations highlighted fibroblast proliferation and migration effects as well as antibiofilm properties at extremely low doses (LNPs: 22 μg/mL, corresponding to RSV 5 µM). Thus, the proposed multicomponent LNPs could represent a valuable RSV delivery platform for wound healing purposes.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Fabio D'Agostino
- Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment, National Research Council (IAS-CNR), Campobello di Mazara, 91021 Trapani, Italy
| | - Emanuela Peri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Maria Rita Tricoli
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D'Alessandro, Section of Microbiology, University of Palermo, 90127 Palermo, Italy
| | - Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
11
|
Green Extraction of Polyphenols from Waste Bentonite to Produce Functional Antioxidant Excipients for Cosmetic and Pharmaceutical Purposes: A Waste-to-Market Approach. Antioxidants (Basel) 2022; 11:antiox11122493. [PMID: 36552701 PMCID: PMC9774313 DOI: 10.3390/antiox11122493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In an ever-growing perspective of circular economy, the development of conscious, sustainable and environmental-friendly strategies to recycle the waste products is the key point. The scope of this work was to validate the waste bentonite from the grape processing industries as a precious matrix to extract polyphenols by applying a waste-to-market approach aimed at producing novel functional excipients. The waste bentonite was recovered after the fining process and opportunely pre-treated. Subsequently, both the freeze dried and the so-called "wet" bentonites were subjected to maceration. PEG200 and Propylene Glycol were selected as solvents due to their ability to dissolve polyphenols and their wide use in the cosmetic/pharmaceutical field. The extracts were evaluated in terms of yield, density, pH after water-dilution, total phenolic (Folin-Ciocalteu) and protein (Bradford) contents, antioxidant power (DPPH), amount of some representative polyphenols (HPLC-DAD), cytocompatibility and stability. Both solvents validated the bentonite as a valuable source of polyphenols and led to colored fluids characterized by an acidic pH after water-dilution. The best extract was obtained from the wet bentonite with PEG200 and highlighted the highest phenolic content and consequently the strongest antioxidant activity. Additionally, it displayed proliferative properties and resulted almost stable over time. Hence, it might be directly used as polyphenols-enriched functional novel raw material for cosmetic and pharmaceutics purposes.
Collapse
|
12
|
Angellotti G, Di Prima G, Scarpaci AG, D’Agostino F, Campisi G, De Caro V. Spray-Dried Cytisine-Loaded Matrices: Development of Transbuccal Sustained-Release Tablets as a Promising Tool in Smoking Cessation Therapy. Pharmaceutics 2022; 14:1583. [PMID: 36015209 PMCID: PMC9416034 DOI: 10.3390/pharmaceutics14081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Cytisine (CYT) has emerged as a promising molecule to treat nicotine addiction, since it acts as a partial agonist of nicotinic acetylcholine receptors. However, its unfavorable pharmacokinetic properties lead to multiple administrations per day, reducing the patient's compliance and increasing the side effects. To overcome these drawbacks, CYT buccal administration is here proposed. Firstly, CYT stability in the buccal environment was assessed and its intrinsic ability to permeate/penetrate the tissue was determined by applying CYT solutions at increasing concentrations. Furthermore, a spray-drying method was selected and optimized as it is an eco-friendly, easily scalable and effective technique to obtain uniform and reproducible CYT-loaded (5% w/w) pharmaceutical powders, which were directly compressed, thus obtaining different buccal delivery systems (BDSs). The obtained BDSs were homogeneous and reproducible and embedded CYT in its amorphous form. The mechanism of CYT release was evaluated in vitro and found to be mainly driven by a Fickian diffusion phenomenon. Predominantly, the ex vivo permeation assays highlighted the ability of the BDSs to enhance CYT permeation, also producing high drug fluxes through the mucosa. Speculative mathematical evaluations based on the already-known CYT pharmacokinetic parameters showed that CYT-loaded BDSs could potentially be sufficient to obtain a therapeutic effect, thus making the reported formulations suitable candidates for further in vivo trials.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (A.G.S.); (V.D.C.)
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (A.G.S.); (V.D.C.)
| | - Amalia Giulia Scarpaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (A.G.S.); (V.D.C.)
| | - Fabio D’Agostino
- Istituto per lo Studio degli Impatti Antropici e Sostenibilità dell’Ambiente Marino, Consiglio Nazionale delle Ricerche (IAS—CNR), Campobello di Mazara, 91021 Trapani, Italy;
| | - Giuseppina Campisi
- Dipartimento di Riabilitazione, Fragilità e Continuità delle Cure, Unità di Medicina Orale, Policlinico Universitario Palermo, 90127 Palermo, Italy;
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (A.G.S.); (V.D.C.)
| |
Collapse
|
13
|
Calderon-Jacinto R, Matricardi P, Gueguen V, Pavon-Djavid G, Pauthe E, Rodriguez-Ruiz V. Dual Nanostructured Lipid Carriers/Hydrogel System for Delivery of Curcumin for Topical Skin Applications. Biomolecules 2022; 12:biom12060780. [PMID: 35740905 PMCID: PMC9221280 DOI: 10.3390/biom12060780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
This work focuses on the development and evaluation of a dual nanostructured lipid carrier (NLC)/Carbopol®-based hydrogel system as a potential transporter for the topical delivery of curcumin to the skin. Two populations of different sized negatively charged NLCs (P1, 70–90 nm and P2, 300–350 nm) were prepared and characterized by means of dynamic light scattering. NLCs presented an ovoid platelet shape confirmed by transmission electron microscopy techniques. Curcumin NLC entrapment efficiency and release profiles were assessed by HPLC (high pressure liquid chromatography) and spectrophotometric methods. Preservation and enhancement of curcumin (CUR) antioxidant activity in NLCs (up to 7-fold) was established and cell viability assays on fibroblasts and keratinocytes indicated that CUR-NLCs are non-cytotoxic for concentrations up to 10 μM and exhibited a moderate anti-migration/proliferation effect (20% gap reduction). CUR-NLCs were then embedded in a Carbopol®-based hydrogel without disturbing the mechanical properties of the gel. Penetration studies on Franz diffusion cells over 24 h in CUR-NLCs and CUR-NLCs/gels demonstrated an accumulation of CUR in Strat-M® membranes of 22% and 5%, respectively. All presented data support the use of this new dual CUR-NLC/hydrogel system as a promising candidate for adjuvant treatment in topical dermal applications.
Collapse
Affiliation(s)
- Rosa Calderon-Jacinto
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Emmanuel Pauthe
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Violeta Rodriguez-Ruiz
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
- Correspondence: ; Tel.: +33-01-3425-2830
| |
Collapse
|
14
|
Toledano-Osorio M, Vallecillo C, Vallecillo-Rivas M, Manzano-Moreno FJ, Osorio R. Antibiotic-Loaded Polymeric Barrier Membranes for Guided Bone/Tissue Regeneration: A Mini-Review. Polymers (Basel) 2022; 14:polym14040840. [PMID: 35215754 PMCID: PMC8963018 DOI: 10.3390/polym14040840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Polymeric membranes are frequently used for bone regeneration in oral and periodontal surgery. Polymers provide adequate mechanical properties (i.e., Young’s modulus) to support oral function and also pose some porosity with interconnectivity to permit for cell proliferation and migration. Bacterial contamination of the membrane is an event that may lead to infection at the bone site, hindering the clinical outcomes of the regeneration procedure. Therefore, polymeric membranes have been proposed as carriers for local antibiotic therapy. A literature search was performed for papers, including peer-reviewed publications. Among the different membranes, collagen is the most employed biomaterial. Collagen membranes and expanded polytetrafluoroethylene loaded with tetracyclines, and polycaprolactone with metronidazole are the combinations that have been assayed the most. Antibiotic liberation is produced in two phases. A first burst release is sometimes followed by a sustained liberation lasting from 7 to 28 days. All tested combinations of membranes and antibiotics provoke an antibacterial effect, but most of the time, they were measured against single bacteria cultures and usually non-specific pathogenic bacteria were employed, limiting the clinical relevance of the attained results. The majority of the studies on animal models state a beneficial effect of these antibiotic functionalized membranes, but human clinical assays are scarce and controversial.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Cristina Vallecillo
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Marta Vallecillo-Rivas
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| | - Francisco-Javier Manzano-Moreno
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
- Biomedical Group (BIO277), Department of Stomatology, Facultad de Odontología, University of Granada, 18071 Granada, Spain
- Instituto Investigación Biosanitaria ibs.GRANADA, University of Granada, C/Doctor Azpitarte 4, Planta, 18012 Granada, Spain
- Correspondence:
| | - Raquel Osorio
- Faculty of Dentistry, Colegio Máximo de Cartuja s/n, University of Granada, 18071 Granada, Spain; (M.T.-O.); (C.V.); (M.V.-R.); (R.O.)
| |
Collapse
|
15
|
Barbeck M, Alkildani S, Jung O. Editorial of the Special Issue: “Soft and Hard Tissue Regeneration”. Biomedicines 2022; 10:biomedicines10020356. [PMID: 35203565 PMCID: PMC8962288 DOI: 10.3390/biomedicines10020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mike Barbeck
- Department of Ceramic Materials, Institute for Materials Science and Technologies, Technical University of Berlin, 10587 Berlin, Germany;
| | | | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)-176-81022467
| |
Collapse
|
16
|
Angellotti G, Presentato A, Murgia D, Di Prima G, D’Agostino F, Scarpaci AG, D’Oca MC, Alduina R, Campisi G, De Caro V. Lipid Nanocarriers-Loaded Nanocomposite as a Suitable Platform to Release Antibacterial and Antioxidant Agents for Immediate Dental Implant Placement Restorative Treatment. Pharmaceutics 2021; 13:2072. [PMID: 34959353 PMCID: PMC8706998 DOI: 10.3390/pharmaceutics13122072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Immediate implant placement is a single-stage restorative approach for missing teeth widely used to overcome the ridge remodeling process occurring after dental extractions. The success of this procedure relies on opportune osseointegration in the surrounding tissues. To support this process, a multifunctional nanocomposite, to be applied in the fresh post-extraction socket, was here designed, prepared, and characterized. This formulation consists of quercetin (QRC)-loaded nanostructured lipid carriers (NLCs) entrapped in a chitosan-based solid matrix containing ciprofloxacin (CPX). QRC-NLCs were prepared by homogenization followed by high-frequency sonication, and thereafter this dispersion was trapped in a chitosan-based CPX-loaded gel, obtaining the nanocomposite powder (BioQ-CPX) by lyophilization. BioQ-CPX displayed desirable properties such as high porosity (94.1 ± 0.5%), drug amounts (2.1% QRC and 3.5% CPX). and low swelling index (100%). Moreover, the mechanism of drug release from BioQ-CPX and their ability to be accumulated in the target tissue were in vitro and ex vivo elucidated, also by applying mathematical models. When trapped into the nanocomposite, QRC stressed under UV light exposure (50 W) was shown to maintain its antioxidant power, and CPX and QRC under natural light were stable over nine months. Finally, both the measured antioxidant power and the antimicrobial and antibiofilm properties on Staphylococcus aureus demonstrated that BioQ-CPX could be a promising platform to support the single-stage dental restorative treatment.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche (DICHIRONS), Università degli Studi di Palermo, 90127 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Denise Murgia
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche (DICHIRONS), Università degli Studi di Palermo, 90127 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Fabio D’Agostino
- Istituto per lo Studio degli Impatti Antropici e Sostenibilità dell’Ambiente Marino, Consiglio Nazionale delle Ricerche (IAS-CNR), Campobello di Mazara, 91021 Trapani, Italy;
| | - Amalia Giulia Scarpaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Maria Cristina D’Oca
- Dipartimento di Fisica e Chimica, Università degli Studi Palermo, 90128 Palermo, Italy;
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Giuseppina Campisi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche (DICHIRONS), Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| |
Collapse
|
17
|
Di Prima G, Angellotti G, Scarpaci AG, Murgia D, D’agostino F, Campisi G, De Caro V. Improvement of Resveratrol Permeation through Sublingual Mucosa: Chemical Permeation Enhancers versus Spray Drying Technique to Obtain Fast-Disintegrating Sublingual Mini-Tablets. Pharmaceutics 2021; 13:1370. [PMID: 34575446 PMCID: PMC8470294 DOI: 10.3390/pharmaceutics13091370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol (RSV) is a natural polyphenol with several interesting broad-spectrum pharmacological properties. However, it is characterized by poor oral bioavailability, extensive first-pass effect metabolism and low stability. Indeed, RSV could benefit from the advantage of the sublingual route of administration. In this view, RSV attitudes to crossing the porcine sublingual mucosa were evaluated and promoted both by six different chemical permeation enhancers (CPEs) as well as by preparing four innovative fast-disintegrating sublingual mini-tablets by spray drying followed by direct compression. Since RSV by itself exhibits a low permeation aptitude, this could be significantly enhanced by the use of CPEs as well as by embedding RSV in a spray-dried powder to be compressed in order to prepare fast-disintegrating mini-tablets. The most promising observed CPEs (menthol, lysine and urea) were then inserted into the most promising spray-dried excipients' compositions (RSV-B and RSV-C), thus preparing CPE-loaded mini-tablets. However, this procedure leads to unsatisfactory results which preclude the possibility of merging the two proposed approaches. Finally, the best spray-dried composition (RSV-B) was further evaluated by SEM, FTIR, XRD and disintegration as well as dissolution behavior to prove its effectiveness as a sublingual fast-disintegrating formulation.
Collapse
Affiliation(s)
- Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| | - Giuseppe Angellotti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Amalia Giulia Scarpaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| | - Denise Murgia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| | - Fabio D’agostino
- Istituto per lo Studio degli Impatti Antropici e Sostenibilità dell’Ambiente Marino, Consiglio Nazionale delle Ricerche (IAS—CNR), Campobello di Mazara, 91021 Trapani, Italy;
| | - Giuseppina Campisi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.A.); (A.G.S.); (D.M.); (V.D.C.)
| |
Collapse
|
18
|
Mirzaeei S, Mansurian M, Asare-Addo K, Nokhodchi A. Metronidazole- and Amoxicillin-Loaded PLGA and PCL Nanofibers as Potential Drug Delivery Systems for the Treatment of Periodontitis: In Vitro and In Vivo Evaluations. Biomedicines 2021; 9:biomedicines9080975. [PMID: 34440179 PMCID: PMC8395018 DOI: 10.3390/biomedicines9080975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to prepare poly (D-L) lactide-co-glycolide (PLGA) and poly ε-caprolactone (PCL) nanofibers containing metronidazole and amoxicillin using an electrospinning process as intrapocket sustained-release drug delivery systems for the treatment of periodontal diseases. Scanning electron microscopy showed that the drug containing PLGA and PCL nanofibers produced from the electrospinning process was uniform and bead-free in morphology. The obtained nanofibers had a strong structure and resisted external tension according to the tensiometry results. The cytotoxicity results indicated acceptable cell viability (>80%). Quantification by high-performance liquid chromatography showed almost complete in vitro drug release between 7 and 9 days, whereas 14 days were required for complete drug release in vivo. No significant signs of irritation or inflammatory reaction were detected after three weeks of subcutaneous implantation of nanofibers in the animal models, thus indicating suitable compatibility. The results therefore suggest that the designed nanofibers can be used as potential commercial formulations in the treatment of periodontitis as controlled-release intrapocket drug delivery systems that can increase patient compliance. This is due to their ability to reduce the frequency of administration from three times daily in a systemic manner to once weekly as local delivery.
Collapse
Affiliation(s)
- Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (S.M.); (A.N.); Tel.: +98-8334266780 (S.M.); +44-1273872811 (A.N.)
| | - Mahla Mansurian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK
- Correspondence: (S.M.); (A.N.); Tel.: +98-8334266780 (S.M.); +44-1273872811 (A.N.)
| |
Collapse
|
19
|
Di Prima G, Campisi G, De Caro V. Amorphous Ropinirole-Loaded Mucoadhesive Buccal Film: A Potential Patient-Friendly Tool to Improve Drug Pharmacokinetic Profile and Effectiveness. J Pers Med 2020; 10:242. [PMID: 33255761 PMCID: PMC7711624 DOI: 10.3390/jpm10040242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Nowadays the therapeutic strategies to manage Parkinson's Disease are merely symptomatic and consist of administering L-DOPA and/or dopamine receptor agonists. Among these, Ropinirole (ROP) is a widely orally-administered molecule, although it is extensively susceptible to hepatic metabolism. Since literature reports the buccal mucosa as a potentially useful route to ROP administration, the development of novel, effective, and comfortable oromucosal formulations should prove desirable in order to both enhance the therapeutic efficacy of the drug and allow a personalized therapeutic strategy able to meet the patient's needs. The results of the proposed ROP film as a new dosage form show that it is flexible; uniform; and characterized by suitable surface pH; good mucoadhesiveness; low swelling degree; and fast, complete drug release. Moreover, after ex vivo evaluation on a film having an area of 0.282 cm2 and dose of 2.29 mg, the results of drug flux through the buccal mucosa are closely comparable to the amount of ROP that reaches the bloodstream at the steady-state condition after ROP-PR 4 mg oral administration, calculated according to the literature (0.237 mg/cm2·h-1 vs. 0.243 mg/h, respectively). Moreover, drug flux and ROP dose could be accurately modulated time-by-time depending on the patient's need, by varying the administered disk area. In addition, the proposed ROP film displays no lag time, producing an immediate drug input in the bloodstream, which could result in a prompt therapeutic response. These findings make ROP film a potentially comfortable and patient-friendly formulation, and a promising candidate for further clinical trials.
Collapse
Affiliation(s)
- Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy;
| | - Giuseppina Campisi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche, Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy;
| |
Collapse
|