1
|
Iswarya R, Krishnadas S, Dharmalingam K, Gowri Priya C. Human trabecular meshwork stem cell-derived small extracellular vesicles enhance trabecular meshwork cell survival and proliferation. Exp Eye Res 2025; 253:110281. [PMID: 39961413 DOI: 10.1016/j.exer.2025.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Glaucoma is an optic neuropathy, one of the leading causes of irreversible blindness worldwide. Previous studies in animal models have shown that transplantation of trabecular meshwork stem cells (TMSCs-adult tissue-resident stem cells of TM) promotes TM regeneration and restores intraocular pressure through paracrine signaling. One of the major paracrine signal mediators is the extracellular vesicles. Given the advantages of sEV over cell-based therapies, the current work aims to investigate the potential of TMSC-derived small extracellular vesicles (sEV) in promoting TM cell survival and proliferation using in vitro experiments. TM cells were cultured in TM media and stem cell growth media (SCGM). Phenotypic and functional (sphere formation) characterization of cultured cells revealed that the SCGM maintained stemness with greater functional efficacy. sEV from TM cell (TM media) and TMSC (SCGM) conditioned media were isolated using the ultracentrifugation method. Characterization of sEV demonstrated that the sEV were within the size range of 30-200 nm and poly-dispersive spherical in shape. The TM and TMSC sEV express common exosomal marker syntenin, TM specific exosomal markers-emilin and neuropilin. To check the uptake specificity, the labelled sEV were incubated with different cell types. The varying degrees of uptake of the labelled sEV by TM cells, HLEB3 and 3T3 cell lines implied that TM and TMSC sEV might have varied surface components. The regenerative efficacy of the sEV was assessed in vitro by scratch wound assay, immunostaining for proliferation marker Ki67, and 5'-Bromo-2'-deoxyuridine incorporation assay. The TMSC sEV exhibited better wound healing efficacy by inducing TM cell proliferation. Furthermore, evaluation of the antioxidant potential depicted that the TMSC sEV enhanced TM cell viability under chronic oxidative stress by significantly reducing the intracellular reactive oxygen species. Taken together, our study demonstrated for the first time that the TMSC sEV enhanced TM cell proliferation as well as migration in vitro and attenuated oxidative stress-induced cell death by reducing intracellular reactive oxygen species. Further studies in animal models will pave the way for the potential application of TMSC sEV in glaucoma treatment.
Collapse
Affiliation(s)
- Radhakrishnan Iswarya
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India; Department of Biotechnology, Aravind Medical Research Foundation, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Subbaiah Krishnadas
- Glaucoma Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Kuppamuthu Dharmalingam
- Department of Biotechnology, Aravind Medical Research Foundation, Alagappa University, Karaikudi, Tamil Nadu, India; Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Chidambaranathan Gowri Priya
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India; Department of Biotechnology, Aravind Medical Research Foundation, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
2
|
Calderón-Peláez MA, Castellanos JE, Velandia-Romero ML. A protocol for loading Calcein-AM into extracellular vesicles from mammalian cells for clear visualization with a fluorescence microscope coupled to a deconvolution system. PLoS One 2025; 20:e0317689. [PMID: 39854328 PMCID: PMC11761115 DOI: 10.1371/journal.pone.0317689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound structures produced and released into the extracellular space by all types of cells. Due to their characteristics, EVs play crucial roles in cellular communication and signaling, holding an immense potential as biomarkers and molecular transporters. Various methods have been developed to label and characterize EVs, however, visualizing EVs remains a process that requires highly specialized and expensive equipment, which is not always available in all the laboratories. In this study, we adapted a protocol originally designed for EVs analysis by flow cytometry using Calcein-AM, and convert it into a useful and effective tool for visualizing EVs by epifluorescence microscopy coupled with a deconvolution system. This approach can be very useful for basic EVs analyses, enabling researchers to verify their distribution and internalization across cells. Such insights can guide decisions on whether to advance to more detailed analysis using confocal microscopy or to perform additional assays.
Collapse
Affiliation(s)
| | - Jaime E. Castellanos
- Virology Group, Vice-chancellor of Research, Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
3
|
Shi X, Zhang L, Wu S, Zhang C, Mamtilahun M, Li Y, Zhang Z, Zuo C, Cui F, Li W, Yang G, Tang Y. A simple polydopamine-based platform for engineering extracellular vesicles with brain-targeting peptide and imaging probes to improve stroke outcome. J Extracell Vesicles 2025; 14:e70031. [PMID: 39783851 PMCID: PMC11714163 DOI: 10.1002/jev2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Extracellular vesicles (EVs) have shown great potential for treating various diseases. Translating EVs-based therapy from bench to bedside remains challenging due to inefficient delivery of EVs to the injured area and lack of techniques to visualize the entire targeting process. Here we developed a dopamine surface functionalization platform that facilitates easy and simultaneous conjugation of targeting peptide and multi-mode imaging probes to the surface of EVs. Utilizing this platform we concurrently modified M2 microglia-derived EVs (M2-EVs) with neuronal targeting peptide rabies virus glycoprotein peptide 29 (RVG29) and multi-modal imaging tracers, resulting in the targeted delivery of M2-EVs to stroke mice brain and enabled the dynamic visualization of the targeting process from whole-body to cellular levels. We determined that intra-arterial injection achieved the highest efficiency of targeted delivery of engineered EVs to the stroke mice brain, improved therapeutic efficacy by reducing neuronal apoptosis. Mechanistically, EVs miRNA array revealed that a number of anti-apoptosis related miRNAs were significantly up-regulated, including miR-221-3p and miR-423-3p, both exerted anti-apoptotic effects through p38/ERK signalling pathways in stroke. Overall, this platform provides a facile and powerful tool for multifunctional engineering of EVs for multiscale therapeutic evaluation and enhancement of EV-based therapy, with valuable prospects for clinical translation.
Collapse
Affiliation(s)
- Xiaojing Shi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Lu Zhang
- Department of Nuclear MedicineChanghai Hospital Affiliated to Naval Medical UniversityShanghaiChina
| | - Shengju Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Chunfu Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Muyassar Mamtilahun
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yongfang Li
- Department of Rehabilitation MedicineRuijin Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Changjing Zuo
- Department of Nuclear MedicineChanghai Hospital Affiliated to Naval Medical UniversityShanghaiChina
| | - Fengzhen Cui
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Wanlu Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Guo‐Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
4
|
Albaladejo-García V, Morán L, Santos-Coquillat A, González MI, Ye H, Vázquez Ogando E, Vaquero J, Cubero FJ, Desco M, Salinas B. Curcumin encapsulated in milk small extracellular vesicles as a nanotherapeutic alternative in experimental chronic liver disease. Biomed Pharmacother 2024; 173:116381. [PMID: 38452655 DOI: 10.1016/j.biopha.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Curcumin is a natural molecule widely tested in preclinical and clinical studies due to its antioxidant and anti-inflammatory activity. Nevertheless, its high hydrophobicity and low bioavailability limit in vivo applications. To overcome curcumin´s drawbacks, small extracellular vesicles (sEVs) have emerged as potential drug delivery systems due to their non-immunogenicity, nanometric size and amphiphilic composition. This work presents curcumin cargo into milk sEV structure and further in vitro and in vivo evaluation as a therapeutic nanoplatform. The encapsulation of curcumin into sEV was performed by two methodologies under physiological conditions: a passive incorporation and active cargo employing saponin. Loaded sEVs (sEVCurPas and sEVCurAc) were fully characterized by physicochemical techniques, confirming that neither methodology affects the morphology or size of the nanoparticles (sEV: 113.3±5.1 nm, sEVCurPas: 127.0±4.5 nm and sEVCurAc: 98.5±3.6 nm). Through the active approach with saponin (sEVCurAc), a three-fold higher cargo was obtained (433.5 µg/mL) in comparison with the passive approach (129.1 µg/mL). These sEVCurAc were further evaluated in vitro by metabolic activity assay (MTT), confocal microscopy, and flow cytometry, showing a higher cytotoxic effect in the tumoral cells RAW264.7 and HepG2 than in primary hepatocytes, specially at high doses of sEVCurAc (4%, 15% and 30% of viability). In vivo evaluation in an experimental model of liver fibrosis confirmed sEVCurAc therapeutic effects, leading to a significant decrease of serum markers of liver damage (ALT) (557 U/L to 338 U/L with sEVCurAc therapy) and a tendency towards decreased liver fibrogenesis and extracellular matrix (ECM) deposition.
Collapse
Affiliation(s)
- Virginia Albaladejo-García
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - Laura Morán
- Departamento de Inmunología, Oftalmología y ENT, Facultad de Medicina de la Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ana Santos-Coquillat
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - María I González
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Hui Ye
- Departamento de Inmunología, Oftalmología y ENT, Facultad de Medicina de la Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Elena Vázquez Ogando
- HepatoGastro Lab, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier Vaquero
- HepatoGastro Lab, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Francisco Javier Cubero
- Departamento de Inmunología, Oftalmología y ENT, Facultad de Medicina de la Universidad Complutense de Madrid, Madrid 28040, Spain; HepatoGastro Lab, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid 28911, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| | - Beatriz Salinas
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain; Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid 28911, Spain; CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Boudna M, Campos AD, Vychytilova-Faltejskova P, Machackova T, Slaby O, Souckova K. Strategies for labelling of exogenous and endogenous extracellular vesicles and their application for in vitro and in vivo functional studies. Cell Commun Signal 2024; 22:171. [PMID: 38461237 PMCID: PMC10924393 DOI: 10.1186/s12964-024-01548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
This review presents a comprehensive overview of labelling strategies for endogenous and exogenous extracellular vesicles, that can be utilised both in vitro and in vivo. It covers a broad spectrum of approaches, including fluorescent and bioluminescent labelling, and provides an analysis of their applications, strengths, and limitations. Furthermore, this article presents techniques that use radioactive tracers and contrast agents with the ability to track EVs both spatially and temporally. Emphasis is also placed on endogenous labelling mechanisms, represented by Cre-lox and CRISPR-Cas systems, which are powerful and flexible tools for real-time EV monitoring or tracking their fate in target cells. By summarizing the latest developments across these diverse labelling techniques, this review provides researchers with a reference to select the most appropriate labelling method for their EV based research.
Collapse
Affiliation(s)
- Marie Boudna
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Andres Delgado Campos
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | | | - Tana Machackova
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Kamila Souckova
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Shi Y, Wang X, Zhang S, Yin H, Fan H, Tang Y, Yang N. Research progress in in vivo tracing technology for extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:684-697. [PMID: 39697802 PMCID: PMC11648465 DOI: 10.20517/evcna.2023.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2024]
Abstract
Cells have the capability to discharge extracellular vesicles (EVs) into a range of bodily fluids. Extracellular vesicles (EVs) encapsulate biological molecules such as proteins and nucleic acids, playing a role in facilitating cell-cell communication. They actively engage in a myriad of physiological and pathological processes. In vivo tracing of EVs in organisms significantly contributes to elucidating the biological mechanisms of EV-based therapy. The development of molecular imaging technology makes it possible to trace EVs in vivo. Experiments frequently employ a range of molecular imaging techniques, encompassing bioluminescence imaging, fluorescence imaging, magnetic resonance imaging, single photon emission computed tomography, positron emission tomography, photoacoustic imaging, and multimodal imaging. These methods have their own advantages and disadvantages. In this review, typical applications of in vivo tracing of EVs are reviewed.
Collapse
Affiliation(s)
- Yanhua Shi
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang 261053, Shandong, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang 261053, Shandong, China
- Authors contributed equally
| | - Xianghui Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200030, Shanghai, China
- Authors contributed equally
| | - Shifang Zhang
- School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, Shandong, China
| | - Hao Yin
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Huaju Fan
- School of Psychology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200030, Shanghai, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang 261053, Shandong, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang 261053, Shandong, China
| |
Collapse
|
7
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Cheng Z, Shang J, Wang H, Yu L, Yuan Z, Zhang Y, Du Y, Tian J. Molecular imaging-guided extracellular vesicle-based drug delivery for precise cancer management: Current status and future perspectives. J Control Release 2023; 362:97-120. [PMID: 37625599 DOI: 10.1016/j.jconrel.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
Extracellular vesicles (EVs), the mediators of intercellular communication, have attracted the attention of researchers for the important roles they play in cancer treatment. Compared with other inorganic nano-materials, EVs possess the advantages of higher biocompatibility, better physiochemical stability, easier surface modification, and excellent biosafety. They can be used as an advanced drug delivery system with an improved therapeutic index for various therapeutic agents. Engineered EV-based imaging and therapeutic agents (engineered EVs) have emerged as useful tools in targeted cancer diagnosis and therapy. Non-invasive tracing of engineered EVs contributes to a better evaluation of their functions in cancer progression, in vivo dynamic biodistribution, therapeutic response, and drug-loading efficiency. Recent advances in real-time molecular imaging (MI), and innovative EV labeling strategies have led to the development of novel tools that can evaluate the pharmacokinetics of engineered EVs in cancer management, which may accelerate further clinical translation of novel EV-based drug delivery platforms. Herein, we review the latest advances in EVs, their characteristics, and current examples of EV-based targeted drug delivery for cancer. Then, we discuss the prominent applications of MI for tracing both natural and engineered EVs. Finally, we discuss the current challenges and considerations of EVs in targeted cancer treatment and the limitations of different MI modalities. In the coming decades, EV-based therapeutic applications for cancer with improved drug loading and targeting abilities will be developed, and better anti-cancer effects of drug delivery nanoplatform will be achieved.
Collapse
Affiliation(s)
- Zhongquan Cheng
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jihuan Shang
- School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Huarong Wang
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China
| | - Leyi Yu
- Beijing Haidian Hospital, Beijing 100080, China
| | - Zhu Yuan
- Department of General Surgery, Capital Medical University, Beijing Friendship Hospital, Beijing 100050, China.
| | - Yinlong Zhang
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100080, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, China; Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
9
|
Tamrin SH, Phelps J, Nezhad AS, Sen A. Critical considerations in determining the surface charge of small extracellular vesicles. J Extracell Vesicles 2023; 12:e12353. [PMID: 37632212 PMCID: PMC10457570 DOI: 10.1002/jev2.12353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Small extracellular vesicles (EVs) have emerged as a focal point of EV research due to their significant role in a wide range of physiological and pathological processes within living systems. However, uncertainties about the nature of these vesicles have added considerable complexity to the already difficult task of developing EV-based diagnostics and therapeutics. Whereas small EVs have been shown to be negatively charged, their surface charge has not yet been properly quantified. This gap in knowledge has made it challenging to fully understand the nature of these particles and the way they interact with one another, and with other biological structures like cells. Most published studies have evaluated EV charge by focusing on zeta potential calculated using classical theoretical approaches. However, these approaches tend to underestimate zeta potential at the nanoscale. Moreover, zeta potential alone cannot provide a complete picture of the electrical properties of small EVs since it ignores the effect of ions that bind tightly to the surface of these particles. The absence of validated methods to accurately estimate the actual surface charge (electrical valence) and determine the zeta potential of EVs is a significant knowledge gap, as it limits the development of effective label-free methods for EV isolation and detection. In this study, for the first time, we show how the electrical charge of small EVs can be more accurately determined by accounting for the impact of tightly bound ions. This was accomplished by measuring the electrophoretic mobility of EVs, and then analytically correlating the measured values to their charge in the form of zeta potential and electrical valence. In contrast to the currently used theoretical expressions, the employed analytical method in this study enabled a more accurate estimation of EV surface charge, which will facilitate the development of EV-based diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Jolene Phelps
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Amir Sanati Nezhad
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biomedical Engineering, Schulich School of EngineeringUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
10
|
Franzoni G, Mecocci S, De Ciucis CG, Mura L, Dell’Anno F, Zinellu S, Fruscione F, De Paolis L, Carta T, Anfossi AG, Dei Guidici S, Chiaradia E, Pascucci L, Oggiano A, Cappelli K, Razzuoli E. Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro. Front Immunol 2023; 14:1209898. [PMID: 37469517 PMCID: PMC10352104 DOI: 10.3389/fimmu.2023.1209898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages. Methods In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays. Results These particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected. Discussion Overall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Filippo Dell’Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Tania Carta
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio G. Anfossi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Silvia Dei Guidici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| |
Collapse
|
11
|
Timofeeva AM, Paramonik AP, Sedykh SS, Nevinsky GA. Milk Exosomes: Next-Generation Agents for Delivery of Anticancer Drugs and Therapeutic Nucleic Acids. Int J Mol Sci 2023; 24:10194. [PMID: 37373342 DOI: 10.3390/ijms241210194] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Exosomes are nanovesicles 40-120 nm in diameter secreted by almost all cell types and providing humoral intercellular interactions. Given the natural origin and high biocompatibility, the potential for loading various anticancer molecules and therapeutic nucleic acids inside, and the surface modification possibility for targeted delivery, exosomes are considered to be a promising means of delivery to cell cultures and experimental animal organisms. Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities. Milk exosomes are highly resistant to the harsh conditions of the gastrointestinal tract. In vitro studies have demonstrated that milk exosomes have an affinity to epithelial cells, are digested by cells by endocytosis mechanism, and can be used for oral delivery. With milk exosome membranes containing hydrophilic and hydrophobic components, exosomes can be loaded with hydrophilic and lipophilic drugs. This review covers a number of scalable protocols for isolating and purifying exosomes from human, cow, and horse milk. Additionally, it considers passive and active methods for drug loading into exosomes, as well as methods for modifying and functionalizing the surface of milk exosomes with specific molecules for more efficient and specific delivery to target cells. In addition, the review considers various approaches to visualize exosomes and determine cellular localization and bio-distribution of loaded drug molecules in tissues. In conclusion, we outline new challenges for studying milk exosomes, a new generation of targeted delivery agents.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anastasia P Paramonik
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey S Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Liu Q, Huang J, Xia J, Liang Y, Li G. Tracking tools of extracellular vesicles for biomedical research. Front Bioeng Biotechnol 2022; 10:943712. [PMID: 36466335 PMCID: PMC9716315 DOI: 10.3389/fbioe.2022.943712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/03/2022] [Indexed: 08/02/2023] Open
Abstract
Imaging of extracellular vesicles (EVs) will facilitate a better understanding of their biological functions and their potential as therapeutics and drug delivery vehicles. In order to clarify EV-mediated cellular communication in vitro and to track the bio-distribution of EV in vivo, various strategies have been developed to label and image EVs. In this review, we summarized recent advances in the tracking of EVs, demonstrating the methods for labeling and imaging of EVs, in which the labeling methods include direct and indirect labeling and the imaging modalities include fluorescent imaging, bioluminescent imaging, nuclear imaging, and nanoparticle-assisted imaging. These techniques help us better understand the mechanism of uptake, the bio-distribution, and the function of EVs. More importantly, we can evaluate the pharmacokinetic properties of EVs, which will help promote their further clinical application.
Collapse
Affiliation(s)
- Qisong Liu
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Orthopaedic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, China
| | - Jianghong Huang
- Department of Orthopedics, Shenzhen Second People’s Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, China
- Tsinghua University Shenzhen International Graduate School, Shenzhen, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Guangheng Li
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Department of Orthopaedic Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, China
| |
Collapse
|
13
|
Santos-Coquillat A, Herreros-Pérez D, Samaniego R, González MI, Cussó L, Desco M, Salinas B. Dual-labeled nanoparticles based on small extracellular vesicles for tumor detection. Biol Direct 2022; 17:31. [DOI: 10.1186/s13062-022-00345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Small extracellular vesicles (sEVs) are emerging natural nanoplatforms in cancer diagnosis and therapy, through the incorporation of signal components or drugs in their structure. However, for their translation into the clinical field, there is still a lack of tools that enable a deeper understanding of their in vivo pharmacokinetics or their interactions with the cells of the tumor microenvironment. In this study, we have designed a dual-sEV probe based on radioactive and fluorescent labeling of goat milk sEVs.
Results
The imaging nanoprobe was tested in vitro and in vivo in a model of glioblastoma. In vitro assessment of the uptake of the dual probe in different cell populations (RAW 264.7, U87, and HeLa) by optical and nuclear techniques (gamma counter, confocal imaging, and flow cytometry) revealed the highest uptake in inflammatory cells (RAW 264.7), followed by glioblastoma U87 cells. In vivo evaluation of the pharmacokinetic properties of nanoparticles confirmed a blood circulation time of ~ 8 h and primarily hepatobiliary elimination. The diagnostic capability of the dual nanoprobe was confirmed in vivo in a glioblastoma xenograft model, which showed intense in vivo uptake of the SEV-based probe in tumor tissue. Histological assessment by confocal imaging enabled quantification of tumor populations and confirmed uptake in tumor cells and tumor-associated macrophages, followed by cancer-associated fibroblasts and endothelial cells.
Conclusions
We have developed a chemical approach for dual radioactive and fluorescent labeling of sEVs. This methodology enables in vivo and in vitro study of these vesicles after exogenous administration. The dual nanoprobe would be a promising technology for cancer diagnosis and a powerful tool for studying the biological behavior of these nanosystems for use in drug delivery.
Graphical Abstract
Collapse
|
14
|
Solé JG. Optical Nanoparticles for Biomedicine. Biomedicines 2022; 10:biomedicines10081892. [PMID: 36009439 PMCID: PMC9405649 DOI: 10.3390/biomedicines10081892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- José García Solé
- Nano-Big Group, Department of Materials Science, Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
15
|
Santos-Coquillat A, González MI, Clemente-Moragón A, González-Arjona M, Albaladejo-García V, Peinado H, Muñoz J, Ximénez Embún P, Ibañez B, Oliver E, Desco M, Salinas B. Goat Milk Exosomes As Natural Nanoparticles for Detecting Inflammatory Processes By Optical Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105421. [PMID: 34854563 DOI: 10.1002/smll.202105421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Exosomes are cell-derived nanovesicles with a proven intercellular signaling role in inflammation processes and immune response. Due to their natural origin and liposome-like structure, these nanometer-scale vesicles have emerged as novel platforms for therapy and diagnosis. In this work, goat milk exosomes are isolated and fully characterized in terms of their physicochemical properties, proteomics, and biochemical profile in healthy mice, and used to detect inflammatory processes by optical imaging. For the in vitro and in vivo experiments, the exosomes are covalently labeled with the commercial fluorophores sulfo-Cyanine 5 and BODIPY-FL to create nanoprobes. In vitro studies using confocal imaging, flow cytometry, and colorimetric assays confirm the internalization of the nanoprobes as well their lack of cytotoxicity in macrophage populations RAW 264.7. Optical imaging in the mouse peritoneal region confirms the in vivo ability of one of the nanoprobes to localize inflammatory processes. In vivo imaging shows exosome uptake in the inflamed peritoneal region, and flow-cytometric analysis of peritonitis exudates confirms the uptake by macrophage and neutrophil populations. These results support the promising use of goat milk exosomes as natural probes in the detection of inflammatory processes.
Collapse
Affiliation(s)
- Ana Santos-Coquillat
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28007, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - María Isabel González
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28007, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Agustín Clemente-Moragón
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
| | - Mario González-Arjona
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28007, Spain
| | - Virginia Albaladejo-García
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28007, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Javier Muñoz
- Proteomics Core Unit, ProteoRED-ISCIII, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Pilar Ximénez Embún
- Proteomics Core Unit, ProteoRED-ISCIII, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Borja Ibañez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Diaz University Hospital, Madrid, 28015, Spain
| | - Eduardo Oliver
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades CardioVasculares (CIBERCV), Madrid, 28029, Spain
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28007, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, 28911, Spain
| | - Beatriz Salinas
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28007, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, 28911, Spain
| |
Collapse
|
16
|
Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-Free Isolation of Exosomes Using Microfluidic Technologies. ACS NANO 2021; 15:17047-17079. [PMID: 34723478 DOI: 10.1021/acsnano.1c03469] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exosomes are cell-derived structures packaged with lipids, proteins, and nucleic acids. They exist in diverse bodily fluids and are involved in physiological and pathological processes. Although their potential for clinical application as diagnostic and therapeutic tools has been revealed, a huge bottleneck impeding the development of applications in the rapidly burgeoning field of exosome research is an inability to efficiently isolate pure exosomes from other unwanted components present in bodily fluids. To date, several approaches have been proposed and investigated for exosome separation, with the leading candidate being microfluidic technology due to its relative simplicity, cost-effectiveness, precise and fast processing at the microscale, and amenability to automation. Notably, avoiding the need for exosome labeling represents a significant advance in terms of process simplicity, time, and cost as well as protecting the biological activities of exosomes. Despite the exciting progress in microfluidic strategies for exosome isolation and the countless benefits of label-free approaches for clinical applications, current microfluidic platforms for isolation of exosomes are still facing a series of problems and challenges that prevent their use for clinical sample processing. This review focuses on the recent microfluidic platforms developed for label-free isolation of exosomes including those based on sieving, deterministic lateral displacement, field flow, and pinched flow fractionation as well as viscoelastic, acoustic, inertial, electrical, and centrifugal forces. Further, we discuss advantages and disadvantages of these strategies with highlights of current challenges and outlook of label-free microfluidics toward the clinical utility of exosomes.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
17
|
Ong SL, Blenkiron C, Haines S, Acevedo-Fani A, Leite JAS, Zempleni J, Anderson RC, McCann MJ. Ruminant Milk-Derived Extracellular Vesicles: A Nutritional and Therapeutic Opportunity? Nutrients 2021; 13:2505. [PMID: 34444665 PMCID: PMC8398904 DOI: 10.3390/nu13082505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Milk has been shown to contain a specific fraction of extracellular particles that are reported to resist digestion and are purposefully packaged with lipids, proteins, and nucleic acids to exert specific biological effects. These findings suggest that these particles may have a role in the quality of infant nutrition, particularly in the early phase of life when many of the foundations of an infant's potential for health and overall wellness are established. However, much of the current research focuses on human or cow milk only, and there is a knowledge gap in how milk from other species, which may be more commonly consumed in different regions, could also have these reported biological effects. Our review provides a summary of the studies into the extracellular particle fraction of milk from a wider range of ruminants and pseudo-ruminants, focusing on how this fraction is isolated and characterised, the stability and uptake of the fraction, and the reported biological effects of these fractions in a range of model systems. As the individual composition of milk from different species is known to differ, we propose that the extracellular particle fraction of milk from non-traditional and minority species may also have important and distinct biological properties that warrant further study.
Collapse
Affiliation(s)
- Siew Ling Ong
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1051, New Zealand;
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1051, New Zealand
| | - Stephen Haines
- Beyond Food Innovation Centre of Excellence, AgResearch Ltd., Lincoln 7674, New Zealand;
| | - Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Juliana A. S. Leite
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Rachel C. Anderson
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Mark J. McCann
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| |
Collapse
|
18
|
Gupta R, Luo X, Lin Z, Tian Y, Ajit SK. Uptake of Fluorescent Labeled Small Extracellular Vesicles In Vitro and in Spinal Cord. J Vis Exp 2021:10.3791/62537. [PMID: 34096919 PMCID: PMC10460254 DOI: 10.3791/62537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Small extracellular vesicles (sEVs) are 50-150 nm vesicles secreted by all cells and present in bodily fluids. sEVs transfer biomolecules such as RNA, proteins, and lipids from donor to acceptor cells, making them key signaling mediators between cells. In the central nervous system (CNS), sEVs can mediate intercellular signaling, including neuroimmune interactions. sEV functions can be studied by tracking the uptake of labeled sEVs in recipient cells both in vitro and in vivo. This paper describes the labeling of sEVs from the conditioned media of RAW 264.7 macrophage cells using a PKH membrane dye. It shows the uptake of different concentrations of labeled sEVs at multiple time points by Neuro-2a cells and primary astrocytes in vitro. Also shown is the uptake of sEVs delivered intrathecally in mouse spinal cord neurons, astrocytes, and microglia visualized by confocal microscopy. The representative results demonstrate time-dependent variation in the uptake of sEVs by different cells, which can help confirm successful sEVs delivery into the spinal cord.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine
| | - Seena K Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine;
| |
Collapse
|