1
|
Sharma S, Gone GB, Roychowdhury P, Kim HS, Chung SJ, Kuppusamy G, De A. Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme. J Drug Target 2025; 33:458-472. [PMID: 39556529 DOI: 10.1080/1061186x.2024.2431676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.
Collapse
Affiliation(s)
- Swati Sharma
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Parikshit Roychowdhury
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Jeon Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gowthmarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Anindita De
- Department of Pharmaceutics, School of Pharmacy, JSS University, Noida, Uttar Pradesh, India
- Department of Pharmacy, Ajou University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Modi SK, Mohapatra P, Bhatt P, Singh A, Parmar AS, Roy A, Joshi V, Singh MS. Targeting tumor microenvironment with photodynamic nanomedicine. Med Res Rev 2025; 45:66-96. [PMID: 39152568 DOI: 10.1002/med.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Photodynamic therapy (PDT) is approved for the treatment of certain cancers and precancer lesions. While early Photosensitizers (PS) have found their way to the clinic, research in the last two decades has led to the development of third-generation PS, including photodynamic nanomedicine for improved tumor delivery and minimal systemic or phototoxicity. In terms of nanoparticle design for PDT, we are witnessing a shift from passive to active delivery for improved outcomes with reduced PS dosage. Tumor microenvironment (TME) comprises of a complex and dynamic landscape with myriad potential targets for photodynamic nanocarriers that are surface-modified with ligands. Herein, we review ways to improvise PDT by actively targeting nanoparticles (NPs) to intracellular organelles such as mitochondria or lysosomes and so forth, overcoming the limitations caused by PDT-induced hypoxia, disrupting the blood vascular networks in tumor tissues-vascular targeted PDT (VTP) and targeting immune cells for photoimmunotherapy. We propose that a synergistic outlook will help to address challenges such as deep-seated tumors, metastasis, or relapse and would lead to robust PDT response in patients.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, London, UK
| | - Pragyan Mohapatra
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Priya Bhatt
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Aishleen Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Avanish Singh Parmar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani Campus, Pilani, Rajasthan, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Manu Smriti Singh
- Center for Life Sciences, Mahindra University, Hyderabad, Telangana, India
- Interdisciplinary Center for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Gupta M, Sahu A, Mukherjee T, Mohanty S, Das P, Nayak N, Kumari S, Singh RP, Pattnaik A. Divulging the potency of naturally derived photosensitizers in green PDT: an inclusive review Of mechanisms, advantages, and future prospects. Photochem Photobiol Sci 2025; 24:191-214. [PMID: 39654006 DOI: 10.1007/s43630-024-00669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Photodynamic Therapy (PDT) offers a minimally invasive approach for treating various health conditions, employing a photosensitizer (PS) and specific light. Recent enhancements make PDT outpatient-friendly and less discomforting. Effectiveness hinges on selecting the appropriate PS. This article delves into natural and synthetic PSs, emphasizing the rising interest in natural alternatives for their safety. It explores their mechanisms, characteristics, and applications, offering insights into their potential contributions to advancing PDT. This extensive review delves into the preclinical and clinical landscape of natural PSs for PDT, shedding light on their diverse applications and promising outcomes. Compounds like curcumin, piperine, riboflavin, psoralen, hypericin, and others show significant potential in preclinical in vitro studies across various cell lines. In vivo, these photosensitizers prove effective against skin tumors, carcinomas, and sarcomas, inducing apoptosis, autophagy, and ROS generation for therapeutic efficacy. The review underscores the critical role of proper dosing and monitoring in balancing therapeutic benefits and risks. It highlights the advantages and limitations of natural PSs, emphasizing their specific targeting, bioavailability, and limited side effects. The future of PDT holds promising breakthroughs, taking from some evidence like Bergamot oil in nanostructured lipid carriers for dermatological conditions. Second-generation photosensitizer Tookad shows potential in prostate cancer treatment, while Tripterygium wilfordii Hook. F. emerges as an antimicrobial PDT source etc. Thus, environmental concerns in PDT prompt a shift to plant extracts for PS purification. The evidence-supported focus on natural PSs establishes this article as a key resource for advancing natural compounds in PDT and their therapeutic applications.
Collapse
Affiliation(s)
- Muskan Gupta
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Anwesha Sahu
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Tuhin Mukherjee
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Satyajit Mohanty
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyamjeet Das
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Nikita Nayak
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Shivangi Kumari
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ravi Pratap Singh
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ashok Pattnaik
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
4
|
Ta MD, Kim Y, Shin H, Truong VG, Kang HW. Quantitative investigations on light emission profiles for interstitial laser treatment. BIOMEDICAL OPTICS EXPRESS 2024; 15:6877-6892. [PMID: 39679393 PMCID: PMC11640558 DOI: 10.1364/boe.540470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
Interstitial laser treatment (ILT) using a diffusing applicator (DA) has been employed to treat tumors. However, the treatment efficacy and safety of the emission profiles from DAs have been poorly explored. This study investigated the effect of the emission profiles from DAs on prostate tumor treatment. Dual-peak and proximal-/distal-end peak profiles using 980 nm laser at 5 W for 60 s were tested to compare the extent of thermal coagulation in soft tissue numerically and experimentally. The numerical simulation predicted the temperature development in the tissue. Ex vivo porcine liver and in vivo rat models were used to compare the performance of the profiles. The dual-peak profile yielded a coagulation extent that was almost equivalent to that of the flat-top profile (in simulation) and 1.3 times larger than those of the other profiles in both ex vivo and in vivo. The dual-peak profile predictably entailed uniform coagulation within the irradiated region. Further in vivo studies using different tumor sizes will be evaluated to warrant the efficacy and safety of the dual-peak profile for the ILT of prostate tumors.
Collapse
Affiliation(s)
- Minh Duc Ta
- Industry 4.0 Convergence Bionics Engineering and Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
| | - Yeongeun Kim
- Industry 4.0 Convergence Bionics Engineering and Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering and Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
| | | | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering and Marine-integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
- TeCure, Inc., Busan, Republic of Korea
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
- Marine-integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Correia P, Araújo P, Marto J, Ribeiro H, Mateus N, de Freitas V, Oliveira J, Fernandes I. Exploring the potential of 7,4'-di(diethylamino)flavylium as a novel photosensitizer for topical photodynamic therapy of skin cancer. Sci Rep 2024; 14:29535. [PMID: 39604502 PMCID: PMC11603071 DOI: 10.1038/s41598-024-80860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic approach that has shown promising results in recent years, particularly in the dermatological clinical treatment of several pathologies, including neoplastic skin diseases. In light of the recent discovery of the photosensitizing properties of a water-soluble group of amino-based flavylium dyes, research efforts have led to the development of a novel synthetic dye with two diethylamino moieties in its structure, 7,4'-di(diethylamino)flavylium (7,4'diN(Et)2). This dye was tested as a potential photosensitizer for PDT of skin cancer. A single light dose of 22.5 J/cm2 efficiently killed SCC-25 (squamous cell carcinoma) and A375 (melanoma) cells, reducing cellular viability by more than 80% in the presence of the flavylium at 0.75 µM. Meanwhile, the negligible cellular toxicity of the dye in the absence of light stimulus points out a wide and safe therapeutic window. Interestingly, significant light-induced toxicity effects were still observed after washing out the compound before cell irradiation. Moreover, out of the three prototype flavylium-loaded hydrogels, each one based on a different polymer (Carbomer, Caesalpinia Spinosa Gum and Hydroxypropyl methyl cellulose), carbomer-based formulation stood out for its substantial absorbance and fluorescence increment and enhanced1O2 photogeneration activity compared to the flavylium in aqueous solution. The findings of this study provide valuable insights concerning the potential of this flavylium dye as a candidate for photodynamic therapy of skin cancer and strongly support the need for further testing in more advanced biological settings to fully assess its efficacy and safety.
Collapse
Affiliation(s)
- Patrícia Correia
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Paula Araújo
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto S/N, 1649-003, Lisboa, Portugal
| | - Helena Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto S/N, 1649-003, Lisboa, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Joana Oliveira
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Iva Fernandes
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Liu Y, Xue Y, Tang J, Zhang P, Liu C, Wu D, Liu J. Porphyrin-Camptothecin (CPT) Grafted Polyoxazoline Amphiphiles for Tumor Photodynamic-Chemotherapy Combination Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64617-64627. [PMID: 39547789 DOI: 10.1021/acsami.4c17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Porphyrin-based photosensitizers are extensively utilized in the realm of photodynamic therapy, capitalizing on their advantageous optical, chemical, and electronic properties. Nonetheless, their application is often constrained by their pronounced hydrophobicity. Structures with a high load capacity and excellent biocompatibility are preferred options to circumvent this obstacle. Herein, we constructed a novel porphyrin-camptothecin (CPT) polymer, which is composed of amphiphilic oxazoline segments, and the drug monomers containing disulfide bonds are modified on the hydrophobic chain of polyoxazoline. The polyoxazoline-porphyrin-CPT (OPC) polymer can self-assemble into nanoparticles in the aqueous phase, possesses excellent stability, and generates abundant singlet oxygen (1O2) under laser irradiation. Additionally, the OPC nanoparticles exhibit satisfactory biocompatibility and high light toxicity against 4T1 cells. In the microenvironment of the tumor, drugs were released from the OPC nanoparticles owing to the high concentration of GSH, causing direct damage to the tumor cell, achieving the combination of photo-chemotherapy. The findings of this research indicate that polyoxazoline porphyrin demonstrates adaptability as a nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| |
Collapse
|
7
|
Pinho S, Coelho JMP, Gaspar MM, Reis CP. Advances in localized prostate cancer: A special focus on photothermal therapy. Eur J Pharmacol 2024; 983:176982. [PMID: 39260812 DOI: 10.1016/j.ejphar.2024.176982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) is a high prevalence disease, per 10000 habitants, that tends to increase with age. This pathology is difficult to detect at an early stage due to the absence of symptoms, hence the importance of monitoring signs for early detection. This disease can be detected by various methods, including plasmatic levels of prostate-specific antigen (PSA) and rectal touch, with biopsy being necessary to confirm the diagnosis. Patients affected by prostate cancer can have localized or advanced disease. There are conventional approaches that have been used as a reference in localized cancer, such as active surveillance, surgery, or radiotherapy. However, the adverse effects might vary and, sometimes, they can be permanent. An overview about the innovative therapeutic approaches to improve outcomes in terms of both tumor remission and side effects for localized PCa is presented. In case of emerging light-based treatment strategies, they aimed at ablating tumor tissue by inducing an external light are non-invasive, localized and, considerably, they are able to reduce lesions in peripheral tissues. One is photodynamic therapy (PDT) and it involves the photooxidation of molecules culminating in the formation of reactive oxygen species (ROS), inducing cell death. On the other hand, photothermal therapy (PTT) is based on inducing hyperthermia in cancer cells by irradiating them with beams of light at a specific wavelength. To improve the heat generated, gold nanoparticles (AuNPs) have those desirable characteristics that have drawn attention to PTT. Various studies point to AuNPs as efficient nanomaterials in PTT for the treatment of tumors, including prostate cancer. This review includes the most representative advances in this research field, dated from 1998 to 2023. It is noticed that several advances have been made and the way to find the effective treatment without impacting adverse side effects is shorter.
Collapse
Affiliation(s)
- Sara Pinho
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, IMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
8
|
Qian Y, Li C, Gao J, Wang S, Wu X, Wei L, Zha M, Shi Y, Kang T, Li K. Autologous exosomes loaded with a rationally designed photosensitizer for enhanced photodynamic therapy. Chem Commun (Camb) 2024; 60:10180-10183. [PMID: 39190479 DOI: 10.1039/d4cc02168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We present generalizing statistical surrogate models to select an optimized photosensitizer, TPP, which is subsequently loaded into autologous exosomes by ultrasonic mixing to achieve tumor targeting with enhanced therapeutic efficacy by photodynamic therapy (PDT). This work contributes to the exploration of PDT enhancement strategies, and provides new prospects for using autologous exosomes as a delivery system.
Collapse
Affiliation(s)
- Yuhan Qian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chong Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ji Gao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shuxian Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xue Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Luyao Wei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Menglei Zha
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuxin Shi
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Tianyi Kang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Rajendran AT, Vadakkepushpakath AN. Natural Food Components as Biocompatible Carriers: A Novel Approach to Glioblastoma Drug Delivery. Foods 2024; 13:2812. [PMID: 39272576 PMCID: PMC11394703 DOI: 10.3390/foods13172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Efficient drug delivery methods are crucial in modern pharmacotherapy to enhance treatment efficacy, minimize adverse effects, and improve patient compliance. Particularly in the context of glioblastoma treatment, there has been a recent surge in interest in using natural dietary components as innovative carriers for drug delivery. These food-derived carriers, known for their safety, biocompatibility, and multifunctional properties, offer significant potential in overcoming the limitations of conventional drug delivery systems. This article thoroughly overviews numerous natural dietary components, such as polysaccharides, proteins, and lipids, used as drug carriers. Their mechanisms of action, applications in different drug delivery systems, and specific benefits in targeting glioblastoma are examined. Additionally, the safety, biocompatibility, and regulatory considerations of employing food components in drug formulations are discussed, highlighting their viability and future prospects in the pharmaceutical field.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
10
|
Caturano A, Nilo R, Nilo D, Russo V, Santonastaso E, Galiero R, Rinaldi L, Monda M, Sardu C, Marfella R, Sasso FC. Advances in Nanomedicine for Precision Insulin Delivery. Pharmaceuticals (Basel) 2024; 17:945. [PMID: 39065795 PMCID: PMC11279564 DOI: 10.3390/ph17070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus, which comprises a group of metabolic disorders affecting carbohydrate metabolism, is characterized by improper glucose utilization and excessive production, leading to hyperglycemia. The global prevalence of diabetes is rising, with projections indicating it will affect 783.2 million people by 2045. Insulin treatment is crucial, especially for type 1 diabetes, due to the lack of β-cell function. Intensive insulin therapy, involving multiple daily injections or continuous subcutaneous insulin infusion, has proven effective in reducing microvascular complications but poses a higher risk of severe hypoglycemia. Recent advancements in insulin formulations and delivery methods, such as ultra-rapid-acting analogs and inhaled insulin, offer potential benefits in terms of reducing hypoglycemia and improving glycemic control. However, the traditional subcutaneous injection method has drawbacks, including patient compliance issues and associated complications. Nanomedicine presents innovative solutions to these challenges, offering promising avenues for overcoming current drug limitations, enhancing cellular uptake, and improving pharmacokinetics and pharmacodynamics. Various nanocarriers, including liposomes, chitosan, and PLGA, provide protection against enzymatic degradation, improving drug stability and controlled release. These nanocarriers offer unique advantages, ranging from enhanced bioavailability and sustained release to specific targeting capabilities. While oral insulin delivery is being explored for better patient adherence and cost-effectiveness, other nanomedicine-based methods also show promise in improving delivery efficiency and patient outcomes. Safety concerns, including potential toxicity and immunogenicity issues, must be addressed, with the FDA providing guidance for the safe development of nanotechnology-based products. Future directions in nanomedicine will focus on creating next-generation nanocarriers with precise targeting, real-time monitoring, and stimuli-responsive features to optimize diabetes treatment outcomes and patient safety. This review delves into the current state of nanomedicine for insulin delivery, examining various types of nanocarriers and their mechanisms of action, and discussing the challenges and future directions in developing safe and effective nanomedicine-based therapies for diabetes management.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Roberto Nilo
- Data Collection G-STeP Research Core Facility, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
11
|
Guo W, Song X, Liu J, Liu W, Chu X, Lei Z. Quantum Dots as a Potential Multifunctional Material for the Enhancement of Clinical Diagnosis Strategies and Cancer Treatments. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1088. [PMID: 38998693 PMCID: PMC11243735 DOI: 10.3390/nano14131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Quantum dots (QDs) represent a class of nanoscale wide bandgap semiconductors, and are primarily composed of metals, lipids, or polymers. Their unique electronic and optical properties, which stem from their wide bandgap characteristics, offer significant advantages for early cancer detection and treatment. Metal QDs have already demonstrated therapeutic potential in early tumor imaging and therapy. However, biological toxicity has led to the development of various non-functionalized QDs, such as carbon QDs (CQDs), graphene QDs (GQDs), black phosphorus QDs (BPQDs) and perovskite quantum dots (PQDs). To meet the diverse needs of clinical cancer treatment, functionalized QDs with an array of modifications (lipid, protein, organic, and inorganic) have been further developed. These advancements combine the unique material properties of QDs with the targeted capabilities of biological therapy to effectively kill tumors through photodynamic therapy, chemotherapy, immunotherapy, and other means. In addition to tumor-specific therapy, the fluorescence quantum yield of QDs has gradually increased with technological progress, enabling their significant application in both in vivo and in vitro imaging. This review delves into the role of QDs in the development and improvement of clinical cancer treatments, emphasizing their wide bandgap semiconductor properties.
Collapse
Affiliation(s)
- Wenqi Guo
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Xueru Song
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Jiaqi Liu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Wanyi Liu
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| | - Zengjie Lei
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China
| |
Collapse
|
12
|
Quadrado RFN, Silvestri S, de Souza JF, Iglesias BA, Fajardo AR. Advances in porphyrins and chlorins associated with polysaccharides and polysaccharides-based materials for biomedical and pharmaceutical applications. Carbohydr Polym 2024; 334:122017. [PMID: 38553216 DOI: 10.1016/j.carbpol.2024.122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Over the last decade, the convergence of advanced materials and innovative applications has fostered notable scientific progress within the biomedical and pharmaceutical fields. Porphyrins and their derivatives, distinguished by an extended conjugated π-electron system, have a relevant role in propelling these advancements, especially in drug delivery systems, photodynamic therapy, wound healing, and (bio)sensing. However, despite their promise, the practical clinical application of these macrocycles is hindered by their inherent challenges of low solubility and instability under physiological conditions. To address this limitation, researchers have exploited the synergistic association of porphyrins and chlorins with polysaccharides by engineering conjugated systems and composite/hybrid materials. This review compiles the principal advances in this growing research field, elucidating fundamental principles and critically examining the applications of such materials within biomedical and pharmaceutical contexts. Additionally, the review addresses the eventual challenges and outlines future perspectives for this poignant research field. It is expected that this review will serve as a comprehensive guide for students and researchers dedicated to exploring state-of-the-art materials for contemporary medicine and pharmaceutical applications.
Collapse
Affiliation(s)
- Rafael F N Quadrado
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Siara Silvestri
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil; Laboratório de Engenharia de Meio Ambiente (LEMA), Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Jaqueline F de Souza
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria (UFSM), Campus Camobi, 97105-900, Santa Maria, RS, Brazil.
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
13
|
Vélez-Peña E, Jiménez VA, Manzo-Merino J, Alderete JB, Campos CH. Chlorin e6-Conjugated Mesoporous Titania Nanorods as Potential Nanoplatform for Photo-Chemotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:933. [PMID: 38869558 PMCID: PMC11173822 DOI: 10.3390/nano14110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Photodynamic therapy (PDT) has developed as an efficient strategy for cancer treatment. PDT involves the production of reactive oxygen species (ROS) by light irradiation after activating a photosensitizer (PS) in the presence of O2. PS-coupled nanomaterials offer additional advantages, as they can merge the effects of PDT with conventional enabling-combined photo-chemotherapeutics effects. In this work, mesoporous titania nanorods were surface-immobilized with Chlorin e6 (Ce6) conjugated through 3-(aminopropyl)-trimethoxysilane as a coupling agent. The mesoporous nanorods act as nano vehicles for doxorubicin delivery, and the Ce6 provides a visible light-responsive production of ROS to induce PDT. The nanomaterials were characterized by XRD, DRS, FTIR, TGA, N2 adsorption-desorption isotherms at 77 K, and TEM. The obtained materials were tested for their singlet oxygen and hydroxyl radical generation capacity using fluorescence assays. In vitro cell viability experiments with HeLa cells showed that the prepared materials are not cytotoxic in the dark, and that they exhibit photodynamic activity when irradiated with LED light (150 W m-2). Drug-loading experiments with doxorubicin (DOX) as a model chemotherapeutic drug showed that the nanostructures efficiently encapsulated DOX. The DOX-nanomaterial formulations show chemo-cytotoxic effects on Hela cells. Combined photo-chemotoxicity experiments show enhanced effects on HeLa cell viability, indicating that the conjugated nanorods are promising for use in combined therapy driven by LED light irradiation.
Collapse
Affiliation(s)
- Estefanía Vélez-Peña
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile;
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile;
| | - Joaquín Manzo-Merino
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Joel B. Alderete
- Instituto de Química de Recursos Naturales (IQRN), Universidad de Talca, Avenida Lircay S/N, Casilla 747, Talca 3341717, Chile
| | - Cristian H. Campos
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile;
| |
Collapse
|
14
|
Mesquita B, Singh A, Prats Masdeu C, Lokhorst N, Hebels ER, van Steenbergen M, Mastrobattista E, Heger M, van Nostrum CF, Oliveira S. Nanobody-mediated targeting of zinc phthalocyanine with polymer micelles as nanocarriers. Int J Pharm 2024; 655:124004. [PMID: 38492899 DOI: 10.1016/j.ijpharm.2024.124004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Photodynamic therapy (PDT) is a suitable alternative to currently employed cancer treatments. However, the hydrophobicity of most photosensitizers (e.g., zinc phthalocyanine (ZnPC)) leads to their aggregation in blood. Moreover, non-specific accumulation in skin and low clearance rate of ZnPC leads to long-lasting skin photosensitization, forcing patients with a short life expectancy to remain indoors. Consequently, the clinical implementation of these photosensitizers is limited. Here, benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) micelles encapsulating ZnPC (ZnPC-M) were investigated to increase the solubility of ZnPC and its specificity towards cancers cells. Asymmetric flow field-flow fractionation was used to characterize micelles with different ZnPC-to-polymer ratios and their stability in human plasma. The ZnPC-M with the lowest payload (0.2 and 0.4% ZnPC w/w) were the most stable in plasma, exhibiting minimal ZnPC transfer to lipoproteins, and induced the highest phototoxicity in three cancer cell lines. Nanobodies (Nbs) with binding specificity towards hepatocyte growth factor receptor (MET) or epidermal growth factor receptor (EGFR) were conjugated to ZnPC-M to facilitate cell targeting and internalization. MET- and EGFR-targeting micelles enhanced the association and the phototoxicity in cells expressing the target receptor. Altogether, these results indicate that ZnPC-M decorated with Nbs targeting overexpressed proteins on cancer cells may provide a better alternative to currently approved formulations.
Collapse
Affiliation(s)
- Bárbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arunika Singh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cèlia Prats Masdeu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nienke Lokhorst
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Erik R Hebels
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mies van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University, College of Medicine, Jiaxing, Zhejiang, PR China; Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Pinho S, Ferreira-Gonçalves T, Lopes J, Amaral MN, Viana AS, Coelho JMP, Gaspar MM, Reis CP. A Step Forward for the Treatment of Localized Prostate Cancer Using Gold Nanoparticles Combined with Laser Irradiation. Int J Mol Sci 2024; 25:4488. [PMID: 38674073 PMCID: PMC11050317 DOI: 10.3390/ijms25084488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Prostate cancer (PCA) is the second most common cancer diagnosis in men and the fifth leading cause of death worldwide. The conventional treatments available are beneficial to only a few patients and, in those, some present adverse side effects that eventually affect the quality of life of most patients. Thus, there is an urgent need for effective, less invasive and targeted specific treatments for PCA. Photothermal therapy (PTT) is a minimally invasive therapy that provides a localized effect for tumour cell ablation by activating photothermal agents (PTA) that mediate the conversion of the light beam's energy into heat at the site. As tumours are unable to easily dissipate heat, they become more susceptible to temperature increases. In the PTT field, gold nanoparticles (AuNPs) have been attracting interest as PTA. The aim of this study was to formulate AuNPs capable of remaining retained in the tumour and subsequently generating heat at the tumour site. AuNPs were synthesized and characterized in terms of size, polydispersity index (PdI), zeta potential (ZP), morphology and the surface plasmon resonance (SPR). The safety of AuNPs and their efficacy were assessed using in vitro models. A preliminary in vivo safety assessment of AuNPs with a mean size lower than 200 nm was confirmed. The morphology was spherical-like and the SPR band showed good absorbance at the laser wavelength. Without laser, AuNPs proved to be safe both in vitro (>70% viability) and in vivo. In addition, with laser irradiation, they proved to be relatively effective in PCA cells. Overall, the formulation appears to be promising for use in PTT.
Collapse
Affiliation(s)
- Sara Pinho
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (S.P.); (T.F.-G.); (J.L.); (M.N.A.)
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (S.P.); (T.F.-G.); (J.L.); (M.N.A.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Joana Lopes
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (S.P.); (T.F.-G.); (J.L.); (M.N.A.)
| | - Mariana Neves Amaral
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (S.P.); (T.F.-G.); (J.L.); (M.N.A.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Ana S. Viana
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (S.P.); (T.F.-G.); (J.L.); (M.N.A.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (S.P.); (T.F.-G.); (J.L.); (M.N.A.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
16
|
Seo M, Lee KJ, Seo B, Lee JH, Lee JH, Shin DW, Park J. Analysis of Self-Assembled Low- and High-Molecular-Weight Poly-L-Lysine-Ce6 Conjugate-Based Nanoparticles. Biomolecules 2024; 14:431. [PMID: 38672448 PMCID: PMC11048146 DOI: 10.3390/biom14040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
In cancer therapy, photodynamic therapy (PDT) has attracted significant attention due to its high potential for tumor-selective treatment. However, PDT agents often exhibit poor physicochemical properties, including solubility, necessitating the development of nanoformulations. In this study, we developed two cationic peptide-based self-assembled nanomaterials by using a PDT agent, chlorin e6 (Ce6). To manufacture biocompatible nanoparticles based on peptides, we used the cationic poly-L-lysine peptide, which is rich in primary amines. We prepared low- and high-molecular-weight poly-L-lysine, and then evaluated the formation and performance of nanoparticles after chemical conjugation with Ce6. The results showed that both molecules formed self-assembled nanoparticles by themselves in saline. Interestingly, the high-molecular-weight poly-L-lysine and Ce6 conjugates (HPLCe6) exhibited better self-assembly and PDT performance than low-molecular-weight poly-L-lysine and Ce6 conjugates (LPLCe6). Moreover, the HPLCe6 conjugates showed superior cellular uptake and exhibited stronger cytotoxicity in cell toxicity experiments. Therefore, it is functionally beneficial to use high-molecular-weight poly-L-lysine in the manufacturing of poly-L-lysine-based self-assembling biocompatible PDT nanoconjugates.
Collapse
Affiliation(s)
- Minho Seo
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Kyeong-Ju Lee
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Bison Seo
- College of Biomedical and Health Science (RIBHS), Konkuk University, Chungju 27478, Republic of Korea
| | - Jun-Hyuck Lee
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Jae-Hyeon Lee
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Wook Shin
- College of Biomedical and Health Science (RIBHS), Konkuk University, Chungju 27478, Republic of Korea
| | - Jooho Park
- BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
- College of Biomedical and Health Science (RIBHS), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
17
|
Shakhova M, Elagin V, Plekhanov A, Khilov A, Kurakina D, Kamensky V, Kirillin M. Post-Operational Photodynamic Therapy of the Tumor Bed: Comparative Analysis for Cold Knife and Laser Scalpel Resection. Biomedicines 2024; 12:291. [PMID: 38397893 PMCID: PMC11154242 DOI: 10.3390/biomedicines12020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
In this paper, we report on a study regarding the efficiency of the post-operational phototherapy of the tumor bed after resection with both a cold knife and a laser scalpel in laboratory mice with CT-26 tumors. Post-operational processing included photodynamic therapy (PDT) with a topically applied chlorin-based photosensitizer (PS), performed at wavelengths of 405 or 660 nm, with a total dose of 150 J/cm2. The selected design of the tumor model yielded zero recurrence in the laser scalpel group and 92% recurrence in the cold knife group without post-processing, confirming the efficiency of the laser scalpel in oncology against the cold knife. The application of PDT after the cold knife resection decreased the recurrence rate to 70% and 42% for the 405 nm and 660 nm procedures, respectively. On the other hand, the application of PDT after the laser scalpel resection induced recurrence rates of 18% and 30%, respectively, for the considered PDT performance wavelengths. The control of the penetration of PS into the tumor bed by fluorescence confocal microscopy indicated the deeper penetration of PS in the case of the cold knife, which presumably provided deeper PDT action, while the low-dose light exposure of deeper tissues without PS, presumably, stimulated tumor recurrence, which was also confirmed by the differences in the recurrence rate in the 405 and 660 nm groups. Irradiation-only light exposures, in all cases, demonstrated higher recurrence rates compared to the corresponding PDT cases. Thus, the PDT processing of the tumor bed after resection could only be recommended for the cold knife treatment and not for the laser scalpel resection, where it could induce tumor recurrence.
Collapse
Affiliation(s)
- Maria Shakhova
- Department of Ear, Nose and Throat Diseases, FSBEI HE «Privolzhsky Research Medical University» MOH Russia, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603005, Russia;
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, FSBEI HE «Privolzhsky Research Medical University» MOH Russia, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603005, Russia; (A.P.); (V.K.)
| | - Anton Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, FSBEI HE «Privolzhsky Research Medical University» MOH Russia, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603005, Russia; (A.P.); (V.K.)
| | - Aleksandr Khilov
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603155, Russia; (A.K.); (D.K.); (M.K.)
| | - Daria Kurakina
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603155, Russia; (A.K.); (D.K.); (M.K.)
| | - Vladislav Kamensky
- Institute of Experimental Oncology and Biomedical Technologies, FSBEI HE «Privolzhsky Research Medical University» MOH Russia, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603005, Russia; (A.P.); (V.K.)
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603155, Russia; (A.K.); (D.K.); (M.K.)
| | - Mikhail Kirillin
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603155, Russia; (A.K.); (D.K.); (M.K.)
| |
Collapse
|
18
|
Ferreira-Gonçalves T, Nunes D, Fortunato E, Martins R, de Almeida AP, Carvalho L, Ferreira D, Catarino J, Faísca P, Ferreira HA, Gaspar MM, Coelho JMP, Reis CP. Rational approach to design gold nanoparticles for photothermal therapy: the effect of gold salt on physicochemical, optical and biological properties. Int J Pharm 2024; 650:123659. [PMID: 38042383 DOI: 10.1016/j.ijpharm.2023.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Among the unique characteristics associated to gold nanoparticles (AuNPs) in biomedicine, their ability to convert light energy into heat opens ventures for improved cancer therapeutic options, such as photothermal therapy (PTT). PTT relies on the local hyperthermia of tumor cells upon irradiation with light beams, and the association of AuNPs with radiation within the near infrared (NIR) range constitutes an advantageous strategy to potentially improve PTT efficacy. Herein, it was explored the effect of the gold salt on the AuNPs' physicochemical and optical properties. Mostly spherical-like negatively charged AuNPs with variable sizes and absorbance spectra were obtained. In addition, photothermal features were assessed using in vitro phantom models. The best formulation showed the ability to increase their temperature in aqueous solution up to 19 °C when irradiated with a NIR laser for 20 min. Moreover, scanning transmission electron microscopy confirmed the rearrangement of the gold atoms in a face-centered cubic structure, which further allowed to calculate the photothermal conversion efficiency upon combination of theoretical and experimental data. AuNPs also showed local retention after being locally administered in in vivo models. These last results obtained by computerized tomography allow to consider these AuNPs as promising elements for a PTT system. Moreover, AuNPs showed high potential for PTT by resulting in in vitro cancer cells' viability reductions superior to 70 % once combine with 5 min of NIR irradiation.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Daniela Nunes
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, 2829-516 Caparica, Portugal.
| | - Elvira Fortunato
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, 2829-516 Caparica, Portugal.
| | - Rodrigo Martins
- Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, i3N/CENIMAT, 2829-516 Caparica, Portugal.
| | - António P de Almeida
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477 Lisboa, Portugal.
| | - Lina Carvalho
- Central Testing Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7002-594 Valverde, Évora, Portugal.
| | - José Catarino
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Pedro Faísca
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - João M P Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
19
|
Alvarez N, Sevilla A. Current Advances in Photodynamic Therapy (PDT) and the Future Potential of PDT-Combinatorial Cancer Therapies. Int J Mol Sci 2024; 25:1023. [PMID: 38256096 PMCID: PMC10815790 DOI: 10.3390/ijms25021023] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Photodynamic therapy (PDT) is a two-stage treatment that implies the use of light energy, oxygen, and light-activated compounds (photosensitizers) to elicit cancerous and precancerous cell death after light activation (phototoxicity). The biophysical, bioengineering aspects and its combinations with other strategies are highlighted in this review, both conceptually and as they are currently applied clinically. We further explore the recent advancements of PDT with the use of nanotechnology, including quantum dots as innovative photosensitizers or energy donors as well as the combination of PDT with radiotherapy and immunotherapy as future promising cancer treatments. Finally, we emphasize the potential significance of organoids as physiologically relevant models for PDT.
Collapse
Affiliation(s)
- Niuska Alvarez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Ana Sevilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine, University of Barcelona (IBUB), 08036 Barcelona, Spain
| |
Collapse
|
20
|
Ng XY, Fong KW, Kiew LV, Chung PY, Liew YK, Delsuc N, Zulkefeli M, Low ML. Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy. J Inorg Biochem 2024; 250:112425. [PMID: 37977020 DOI: 10.1016/j.jinorgbio.2023.112425] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Photodynamic therapy (PDT) has recently emerged as a potential valuable alternative to treat microbial infections. In PDT, singlet oxygen is generated in the presence of photosensitisers and oxygen under light irradiation of a specific wavelength, causing cytotoxic damage to bacteria. This review highlights different generations of photosensitisers and the common characteristics of ideal photosensitisers. It also focuses on the emergence of ruthenium and more specifically on Ru(II) polypyridyl complexes as metal-based photosensitisers used in antimicrobial photodynamic therapy (aPDT). Their photochemical and photophysical properties as well as structures are discussed while relating them to their phototoxicity. The use of Ru(II) complexes with recent advancements such as nanoformulations, combinatory therapy and photothermal therapy to improve on previous shortcomings of the complexes are outlined. Future perspectives of these complexes used in two-photon PDT, photoacoustic imaging and sonotherapy are also discussed. This review covers the literature published from 2017 to 2023.
Collapse
Affiliation(s)
- Xiao Ying Ng
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Kar Wai Fong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan, Republic of China
| | - Pooi Yin Chung
- Department of Microbiology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Yun Khoon Liew
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieur, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Mohd Zulkefeli
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | - May Lee Low
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Domena JB, Ferreira BCLB, Cilingir EK, Zhou Y, Chen J, Johnson QR, Chauhan BPS, Bartoli M, Tagliaferro A, Vanni S, Graham RM, Leblanc RM. Advancing glioblastoma imaging: Exploring the potential of organic fluorophore-based red emissive carbon dots. J Colloid Interface Sci 2023; 650:1619-1637. [PMID: 37494859 DOI: 10.1016/j.jcis.2023.07.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Over time, the interest in developing stable photosensitizers (PS) which both absorb and emit light in the red region (650 and 950 nm) has gained noticeable interest. Recently, carbon dots (CDs) have become the material of focus to act as a PS due to their high extinction coefficient, low cytotoxicity, and both high photo and thermal stability. In this work, a Federal and Drug Association (FDA) approved Near Infra-Red (NIR) organic fluorophore used for photo-imaging, indocyanine green (ICG), has been explored as a precursor to develop water-soluble red emissive CDs which possess red emission at 697 nm. Furthermore, our material was found to yield favorable red-imaging capabilities of glioblastoma stem-like cells (GSCs) meanwhile boasting low toxicity. Additionally with post modifications, our CDs have been found to have selectivity towards tumors over healthy tissue as well as crossing the blood-brain barrier (BBB) in zebrafish models.
Collapse
Affiliation(s)
- Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Emel K Cilingir
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Qiaxian R Johnson
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Rd, Wayne, NJ 07470, USA
| | - Bhanu P S Chauhan
- Department of Chemistry, William Paterson University of New Jersey, 300 Pompton Rd, Wayne, NJ 07470, USA
| | - M Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - A Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Steven Vanni
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; HCA Florida University Hospital, 3476 S University Dr, Davie, FL 33328, USA; Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Regina M Graham
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136, USA; Dr. Kiran C. Patel College of Allopathic Medicine, Ft. Lauderdale, FL 33328, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
22
|
Jiang Y, Zhou Z, Liu C, Wang L, Li C. Bacterial outer membrane vesicles as drug delivery carrier for photodynamic anticancer therapy. Front Chem 2023; 11:1284292. [PMID: 37915541 PMCID: PMC10616255 DOI: 10.3389/fchem.2023.1284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
Photodynamic Therapy (PDT) is an effective tumor treatment strategy that not only induces photocytotoxicity to kill tumor cells directly but also activates the immune system in the body to generate tumor-specific immunity, preventing cancer metastasis and recurrence. However, some limitations of PDT limit the therapeutic efficacy in deep tumors. Previous studies have used different types of nanoparticles (NPs) as drug carriers of photosensitizers (PSs) to overcome the shortcomings of PDT and improve therapeutic efficacy. Among them, bacterial outer membrane vesicles (OMVs) have natural advantages as carriers for PS delivery. In addition to the targeted delivery of PSs into tumor cells, their unique immunogenicity helps them to serve as immune adjuvants to enhance the PDT-induced immune effect, providing new ideas for photodynamic anticancer therapy. Therefore, in this review, we will introduce the biogenesis and anticancer functions of OMVs and the research on them as drug delivery carriers in PDT. Finally, we also discuss the challenges and prospects of OMVs as a versatile drug delivery carrier for photodynamic anticancer therapy.
Collapse
Affiliation(s)
- Yuan Jiang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - ZunZhen Zhou
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chongzhi Liu
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Limei Wang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chun Li
- Department of Rehabilitation Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
23
|
Bunin DA, Martynov AG, Gvozdev DA, Gorbunova YG. Phthalocyanine aggregates in the photodynamic therapy: dogmas, controversies, and future prospects. Biophys Rev 2023; 15:983-998. [PMID: 37975002 PMCID: PMC10643719 DOI: 10.1007/s12551-023-01129-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
Photodynamic therapy (PDT), a rapidly developing method for the treatment of cancer and bacterial diseases, is based on the photosensitization of oxygen to generate reactive oxygen species (ROS) that destroy specific biological targets. Among the various photosensitizers, phthalocyanines (Pc) have attracted particular attention due to their excellent photophysical properties, most of which meet the therapeutic requirements. The statement that aggregation of Pc-based photosensitizers is undesirable because it suppresses ROS generation has become commonplace in PDT. In this review, we have collected and discussed a number of works whose results refute this well-established axiom and show that aggregated forms of phthalocyanines can still exhibit photodynamic activity, in some cases in synergy with the photothermal and optoacoustic effects. In addition, ROS generation can be induced by aggregates under the conditions of sonodynamic therapy.
Collapse
Affiliation(s)
- Dmitry A. Bunin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniil A. Gvozdev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
25
|
Abdelraof M, Fikry M, Hashem AH, El-Naggar ME, Rashdan HRM. Insight into novel anti-mucormycosis therapies: investigation of new anti-mucormycosis laser-induced photodynamic therapy based on a sulphone bis-compound loaded silica nanoemulsion. RSC Adv 2023; 13:20684-20697. [PMID: 37435382 PMCID: PMC10331924 DOI: 10.1039/d3ra02775a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
For drug delivery applications, silica nanoemulsion encapsulated with organic compounds are becoming increasingly more desirable. Therefore, the emphasis of this research was on the synthesis of a new potent antifungal drug-like candidate (1,1'-((sulfonylbis(4,1-phenylene)bis(5-methyl-1H-1,2,3-triazole-1,4-diyl))bis(3-(dimethylamino)prop-2-en-1-one), SBDMP), the chemical structure of which was confirmed on the basis of its spectral and microanalytical data. Then, silica nanoemulsion loaded with SBDMP was prepared using Pluronic F-68 as a potent surfactant. The particle shape, hydrodynamic size, and zeta potential of the produced silica nanoemulsion (with and without drug loading) were assessed. The antitumoral activity of the synthesized molecules showed the superiority of SBDMP and silica nanoemulsion with and without SBDMP loading against Rhizopus microsporous and Syncephalastrum racemosum. Subsequently, the laser-induced photodynamic inactivation (LIPDI) of Mucorales strains was determined using the tested samples. The optical properties of the samples were investigated using UV-vis optical absorption and the photoluminescence. The photosensitivity of the selected samples appeared to enhance the eradication of the tested pathogenic strains when exposed to a red (640 nm) laser light. The optical property results verified that the SBDMP-loaded silica nanoemulsion has a high depth of penetration into biological tissues due to a two-absorption photon (TAP) mechanism. Interestingly, the photosensitizing of the nanoemulsion loaded with a newly synthesized drug-like candidate, SBDMP, opens up a new route to apply new organic compounds as photosensitizers under laser-induced photodynamic therapy (LIPDT).
Collapse
Affiliation(s)
- Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre Dokki Cairo 12622 Egypt
| | - Mohamed Fikry
- Ultrafast Picosecond Laser Lab, Physics Department, Faculty of Science, Cairo University Giza 12613 Egypt
- Egypt Nanotechnology Center (EGNC), Faculty of Nanotechnology for Postgraduate Studies, Cairo University El-Sheikh Zayed 12588 Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre 33 El Bohouth St, Dokki Giza 12622 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St, Dokki 12622 Giza Egypt
| |
Collapse
|
26
|
Avancini G, Menilli L, Visentin A, Milani C, Mastrotto F, Moret F. Mesenchymal Stem Cell Membrane-Coated TPCS 2a-Loaded Nanoparticles for Breast Cancer Photodynamic Therapy. Pharmaceutics 2023; 15:1654. [PMID: 37376102 PMCID: PMC10302938 DOI: 10.3390/pharmaceutics15061654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Despite substantial improvements in breast cancer (BC) treatment there is still an urgent need to find alternative treatment options to improve the outcomes for patients with advanced-stage disease. Photodynamic therapy (PDT) is gaining a lot of attention as a BC therapeutic option because of its selectivity and low off-target effects. However, the hydrophobicity of photosensitizers (PSs) impairs their solubility and limits the circulation in the bloodstream, thus representing a major challenge. The use of polymeric nanoparticles (NPs) to encapsulate the PS may represent a valuable strategy to overcome these issues. Herein, we developed a novel biomimetic PDT nanoplatform (NPs) based on a polymeric core of poly(lactic-co-glycolic)acid (PLGA) loaded with the PS meso-tetraphenylchlorin disulfonate (TPCS2a). TPCS2a@NPs of 98.89 ± 18.56 nm with an encapsulation efficiency percentage (EE%) of 81.9 ± 7.92% were obtained and coated with mesenchymal stem cells-derived plasma membranes (mMSCs) (mMSC-TPCS2a@NPs, size of 139.31 ± 12.94 nm). The mMSC coating armed NPs with biomimetic features to impart long circulation times and tumor-homing capabilities. In vitro, biomimetic mMSC-TPCS2a@NPs showed a decrease in macrophage uptake of 54% to 70%, depending on the conditions applied, as compared to uncoated TPCS2a@NPs. Both NP formulations efficiently accumulated in MCF7 and MDA-MB-231 BC cells, while the uptake was significantly lower in normal breast epithelial MCF10A cells with respect to tumor cells. Moreover, encapsulation of TPCS2a in mMSC-TPCS2a@NPs effectively prevents its aggregation, ensuring efficient singlet oxygen (1O2) production after red light irradiation, which resulted in a considerable in vitro anticancer effect in both BC cell monolayers (IC50 < 0.15 µM) and three-dimensional spheroids.
Collapse
Affiliation(s)
- Greta Avancini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Luca Menilli
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Adele Visentin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Celeste Milani
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Francesca Moret
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (G.A.); (L.M.); (C.M.)
| |
Collapse
|
27
|
Zhang P, Xiao Y, Sun X, Lin X, Koo S, Yaremenko AV, Qin D, Kong N, Farokhzad OC, Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. MED 2023; 4:147-167. [PMID: 36549297 DOI: 10.1016/j.medj.2022.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
With the integration of nanotechnology into the medical field at large, great strides have been made in the development of nanomedicines for tackling different diseases, including cancers. To date, various cancer nanomedicines have demonstrated success in preclinical studies, improving therapeutic outcomes, prolonging survival, and/or decreasing side effects. However, the translation from bench to bedside remains challenging. While a number of nanomedicines have entered clinical trials, only a few have been approved for clinical applications. In this review, we highlight the most recent progress in cancer nanomedicine, discuss current clinical advances and challenges for the translation of cancer nanomedicines, and provide our viewpoints on accelerating clinical translation. We expect this review to benefit the future development of cancer nanotherapeutics specifically from the clinical perspective.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, China
| | - Yufen Xiao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Sun
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duotian Qin
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Seer, Inc., Redwood City, CA 94065, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Chota A, George BP, Abrahamse H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:4808. [PMID: 36902238 PMCID: PMC10003542 DOI: 10.3390/ijms24054808] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Globally, cancer is one of the leading causes of death among men and women, it is characterized by the unregulated proliferation of tumor cells. Some of the common risk factors associated with cancer development include the consistent exposure of body cells to carcinogenic agents such as alcohol, tobacco, toxins, gamma rays and alpha particles. Besides the above-mentioned risk factors, conventional therapies such as radiotherapy, and chemotherapy have also been linked to the development of cancer. Over the past decade, tremendous efforts have been invested in the synthesis of eco-friendly green metallic nanoparticles (NPs), and their medical application. Comparatively, metallic NPs have greater advantages over conventional therapies. Additionally, metallic NPs can be functionalized with different targeting moieties e.g., liposomes, antibodies, folic acid, transferrin, and carbohydrates. Herein, we review and discuss the synthesis, and therapeutic potential of green synthesized metallic NPs for enhanced cancer photodynamic therapy (PDT). Finally, the advantages of green hybridized activatable NPs over conventional photosensitizers (PSs) and the future perspectives of nanotechnology in cancer research are discussed in the review. Furthermore, we anticipate that the insights offered in this review will inspire the design and development of green nano-formulations for enhanced image-guided PDT in cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | | |
Collapse
|
29
|
Ren S, Li H, Xu X, Zhao H, He W, Zhang L, Cheng Z. Unimolecular micelles from star-shaped block polymers by photocontrolled BIT-RDRP for PTT/PDT synergistic therapy. Biomater Sci 2023; 11:509-517. [PMID: 36533394 DOI: 10.1039/d2bm01727j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unimolecular micelles (UIMs) exhibit promising potential in the precise diagnosis and accurate treatment of tumor tissues, a pressing problem in the field of medical treatment, because of their perfect stability in the complex and variable microenvironment. In this study, porphyrin-based four-armed star-shaped block polymers with narrow molar mass dispersity (Đ = 1.34) were facilely prepared by photocontrolled bromine-iodine transformation reversible-deactivation radical polymerization (BIT-RDRP). A photothermal conversion dye, ketocyanine, was covalently linked onto the PEG and then introduced into the polymers through a "grafting onto" strategy to obtain polymeric nanomaterial, THPP-4PMMA-b-4P(PEGMA-co-APMA)@NIR-800, with dual PTT/PDT function. The resulting polymers could form monodispersed UIMs in the water below critical aggregation concentration, meanwhile maintaining the capacities of singlet oxygen release and photothermal conversion. Importantly, the UIMs displayed excellent biocompatibility while exerting superior PTT and/or PDT therapeutic effects under the irradiation of specific wavelengths of light, according to in vitro cellular experiments, which is expected to become a new hot spot for cancer therapy and anti-tumor research. Overall, stable and powerful UIMs with dual PTT/PDT function is provided, which are expected to be competitive candidates in cancer therapy.
Collapse
Affiliation(s)
- Shusu Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haihui Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiang Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
30
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
31
|
Zhang M, Zhou Y, Wu B, Lu C, Quan G, Huang Z, Wu C, Pan X. An oxygen-generating metal organic framework nanoplatform as a “synergy motor” for extricating dilemma over photodynamic therapy. MATERIALS ADVANCES 2023; 4:5420-5430. [DOI: 10.1039/d3ma00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Photodynamic therapy (PDT) combined with metal organic frameworks (MOFs) addresses current obstacles.
Collapse
Affiliation(s)
- Meihong Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yixian Zhou
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Biyuan Wu
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xin Pan
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
32
|
Munegowda MA, Manalac A, Weersink M, Cole HD, McFarland SA, Lilge L. Ru(II) CONTAINING PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY: A CRITIQUE ON REPORTING AND AN ATTEMPT TO COMPARE EFFICACY. Coord Chem Rev 2022; 470:214712. [PMID: 36686369 PMCID: PMC9850455 DOI: 10.1016/j.ccr.2022.214712] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ruthenium(II)-based coordination complexes have emerged as photosensitizers (PSs) for photodynamic therapy (PDT) in oncology as well as antimicrobial indications and have great potential. Their modular architectures that integrate multiple ligands can be exploited to tune cellular uptake and subcellular targeting, solubility, light absorption, and other photophysical properties. A wide range of Ru(II) containing compounds have been reported as PSs for PDT or as photochemotherapy (PCT) agents. Many studies employ a common scaffold that is subject to systematic variation in one or two ligands to elucidate the impact of these modifications on the photophysical and photobiological performance. Studies that probe the excited state energies and dynamics within these molecules are of fundamental interest and are used to design next-generation systems. However, a comparison of the PDT efficacy between Ru(II) containing PSs and 1st or 2nd generation PSs, already in clinical use or preclinical/clinical studies, is rare. Even comparisons between Ru(II) containing molecular structures are difficult, given the wide range of excitation wavelengths, power densities, and cell lines utilized. Despite this gap, PDT dose metrics quantifying a PS's efficacy are available to perform qualitative comparisons. Such models are independent of excitation wavelength and are based on common outcome parameters, such as the photon density absorbed by the Ru(II) compound to cause 50% cell kill (LD50) based on the previously established threshold model. In this focused photophysical review, we identified all published studies on Ru(II) containing PSs since 2005 that reported the required photophysical, light treatment, and in vitro outcome data to permit the application of the Photodynamic Threshold Model to quantify their potential efficacy. The resulting LD50 values range from less than 1013 to above 1020 [hν cm-3], indicating a wide range in PDT efficacy and required optical energy density for ultimate clinical translation.
Collapse
Affiliation(s)
| | - Angelica Manalac
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
- Dept Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
| | - Madrigal Weersink
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
| | - Houston D. Cole
- Dept of Chemistry and Biochemistry, The University of Texas
at Arlington, Arlington, Texas, USA
| | - Sherri A. McFarland
- Dept of Chemistry and Biochemistry, The University of Texas
at Arlington, Arlington, Texas, USA
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network,
Toronto, Ontario, Canada
- Dept Medical Biophysics, University of Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
33
|
Mfouo-Tynga IS, Mouinga-Ondeme AG. Photodynamic Therapy: A Prospective Therapeutic Approach for Viral Infections and Induced Neoplasia. Pharmaceuticals (Basel) 2022; 15:ph15101273. [PMID: 36297385 PMCID: PMC9608479 DOI: 10.3390/ph15101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
The recent COVID-19 pandemic outbreak and arising complications during treatments have highlighted and demonstrated again the evolving ability of microorganisms, especially viral resistance to treatment as they develop into new and strong strains. The search for novel and effective treatments to counter the effects of ever-changing viruses is undergoing. Although it is an approved procedure for treating cancer, photodynamic therapy (PDT) was first used against bacteria and has now shown potential against viruses and certain induced diseases. PDT is a multi-stage process and uses photosensitizing molecules (PSs) that accumulate in diseased tissues and eradicates them after being light-activated in the presence of oxygen. In this review, studies describing viruses and their roles in disrupting cell regulation mechanisms and signaling pathways and facilitating tumorigenesis were described. With the development of innovative “or smart” PSs through the use of nanoparticles and two-photon excitation, among other strategies, PDT can boost immune responses, inactivate viral infections, and eradicate neoplastic cells. Visualization and monitoring of biological processes can be achieved in real-time with nanomedicines and better tissue penetration strategies. After photodynamic inactivation of viruses, signaling pathways seem to be restored but the underlying mechanisms are still to be elucidated. Light-mediated treatments are suitable to manage both oncogenic viral infections and induced neoplasia.
Collapse
|
34
|
Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
A Gold Nanoparticle Bioconjugate Delivery System for Active Targeted Photodynamic Therapy of Cancer and Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14194558. [PMID: 36230480 PMCID: PMC9559518 DOI: 10.3390/cancers14194558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells (CSCs), also called tumor-initiating cells, are a subpopulation of cancer cells believed to be the leading cause of cancer initiation, growth, metastasis, and recurrence. Presently there are no effective treatments targeted at eliminating CSCs. Hence, an urgent need to develop measures to target CSCs to eliminate potential recurrence and metastasis associated with CSCs. Cancer stem cells have inherent and unique features that differ from other cancer cells, which they leverage to resist conventional therapies. Targeting such features with photodynamic therapy (PDT) could be a promising treatment for drug-resistant cancer stem cells. Photodynamic therapy is a light-mediated non-invasive treatment modality. However, PDT alone is unable to eliminate cancer stem cells effectively, hence the need for a targeted approach. Gold nanoparticle bioconjugates with PDT could be a potential approach for targeted photodynamic therapy of cancer and CSCs. This approach has the potential for enhanced drug delivery, selective and specific attachment to target tumor cells/CSCs, as well as the ability to efficiently generate ROS. This review examines the impact of a smart gold nanoparticle bioconjugate coupled with a photosensitizer (PS) in promoting targeted PDT of cancer and CSC.
Collapse
|
36
|
Menilli L, Milani C, Reddi E, Moret F. Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers (Basel) 2022; 14:cancers14184462. [PMID: 36139623 PMCID: PMC9496990 DOI: 10.3390/cancers14184462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present review represents the outstanding and promising recent literature reports (2017–2022) on nanoparticle-based formulations developed for anticancer therapy with photodynamic therapy (PDT), photosensitizers, and chemotherapeutics. Besides brief descriptions of chemotherapeutics’ classification and of PDT mechanisms and limitations, several examples of nanosystems endowed with different responsiveness (e.g., acidic pH and reactive oxygen species) and peculiarity (e.g., tumor oxygenation capacity, active tumor targeting, and biomimetic features) are described, and for each drug combination, in vitro and in vivo results on preclinical cancer models are reported. Abstract The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation in biological environments. Despite this, recent preclinical studies reported on successful combinatorial regimes of PSs with chemotherapeutics obtained through the drugs encapsulation in multifunctional nanometric delivery systems. The aim of the present review deals with the punctual description of several nanosystems designed not only with the objective of co-transporting a PS and a chemodrug for combination therapy, but also with the goal of improving the therapeutic efficacy by facing the main critical issues of both therapies (side effects, scarce tumor oxygenation and light penetration, premature drug clearance, unspecific biodistribution, etc.). Therefore, particular attention is paid to the description of bio-responsive drugs and nanoparticles (NPs), targeted nanosystems, biomimetic approaches, and upconverting NPs, including analyzing the therapeutic efficacy of the proposed photo-chemotherapeutic regimens in in vitro and in vivo cancer models.
Collapse
Affiliation(s)
- Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Celeste Milani
- Department of Biology, University of Padova, 35100 Padova, Italy
- Institute of Organic Synthesis and Photoreactivity, ISOF-CNR, 40129 Bologna, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| |
Collapse
|
37
|
Dhilip Kumar SS, Abrahamse H. Recent advances in the development of biocompatible nanocarriers and their cancer cell targeting efficiency in photodynamic therapy. Front Chem 2022; 10:969809. [PMID: 36046728 PMCID: PMC9420852 DOI: 10.3389/fchem.2022.969809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the role of biocompatible nanocarriers (BNs) and their cancer cell targeting efficiency in photodynamic therapy (PDT) holds potential benefits for cancer treatment. Biocompatible and biodegradable nanoparticles are successfully used as carrier molecules to deliver cancer drugs and photosensitizers due to their material safety in the drug delivery system. Biocompatible nanocarriers are non-toxic and ensure high-level biocompatibility with blood, cells, and physiological conditions. The physicochemical properties of BNs often enable them to modify their surface chemistry, which makes conjugating specific ligands or antibodies to achieve cancer cell targeting drug delivery in PDT. This review article focuses on the various types of BNs used in targeted drug delivery, physicochemical properties, and surface chemistry of BNs in targeted drug delivery, advantages of BNs in drug delivery systems, and the targeting efficiency of BNs on some specific targeting receptors for cancer therapy. Furthermore, the review briefly recaps the nanocarrier-based targeted approaches in cancer PDT.
Collapse
|
38
|
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem 2022; 10:946574. [PMID: 36034651 PMCID: PMC9405672 DOI: 10.3389/fchem.2022.946574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy is a promising cancer treatment that induces apoptosis as a result of the interactions between light and a photosensitizing drug. Lately, the emergence of biocompatible nanoparticles has revolutionized the prospects of photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is now being focused on developing non-toxic, biocompatible nanoparticle-based photosensitizers for effective cancer treatments using PDT. In this regard, semiconducting quantum dots have shown encouraging results. Quantum dots are artificial semiconducting nanocrystals with distinct chemical and physical properties. Their optical properties can be fine-tuned by varying their size, which usually ranges from 1 to 10 nm. They present many advantages over conventional photosensitizers, mainly their emission properties can be manipulated within the near IR region as opposed to the visible region by the former. Consequently, low intensity light can be used to penetrate deeper tissues owing to low scattering in the near IR region. Recently, successful reports on imaging and PDT of cancer using carbon (carbon, graphene based) and metallic (Cd based) based quantum dots are promising. This review aims to summarize the development and the status quo of quantum dots for cancer treatment.
Collapse
|
39
|
Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay Drug Dev Technol 2022; 20:191-210. [DOI: 10.1089/adt.2022.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hira Aslam
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hareem Fatima
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
40
|
Kailass K, Sadovski O, Zipfel WR, Beharry AA. Two-Photon Photodynamic Therapy Targeting Cancers with Low Carboxylesterase 2 Activity Guided by Ratiometric Fluorescence. J Med Chem 2022; 65:8855-8868. [PMID: 35700557 DOI: 10.1021/acs.jmedchem.1c01965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human carboxylesterase 2 (hCES2) converts anticancer prodrugs, such as irinotecan, into their active metabolites via phase I drug metabolism. Owing to interindividual variability, hCES2 serves as a predictive marker of patient response to hCES2-activated prodrug-based therapy, whereby a low intratumoral hCES2 activity leads to therapeutic resistance. Despite the ability to identify nonresponders, effective treatments for resistant patients are needed. Clinically approved photodynamic therapy is an attractive alternative for irinotecan-resistant patients. Here, we describe the application of our hCES2-selective small-molecule ratiometric fluorescent chemosensor, Benz-AP, as a single theranostic agent given its discovered functionality as a photosensitizer. Benz-AP produces singlet oxygen and induces photocytotoxicity in cancer cells in a strong negative correlation with hCES2 activity. Two-photon excitation of Benz-AP produces fluorescence, singlet oxygen, and photocytotoxicity in tumor spheroids. Overall, Benz-AP serves as a novel theranostic agent with selective photocytotoxicity in hCES2-prodrug resistant cancer cells, making Benz-AP a promising agent for in vivo applications.
Collapse
Affiliation(s)
- Karishma Kailass
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
41
|
Chota A, George BP, Abrahamse H. Dicoma anomala Enhances Phthalocyanine Mediated Photodynamic Therapy in MCF-7 Breast Cancer Cells. Front Pharmacol 2022; 13:892490. [PMID: 35559263 PMCID: PMC9086192 DOI: 10.3389/fphar.2022.892490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 01/20/2023] Open
Abstract
Breast cancer is one of the most common types of cancer in women, and it is regarded as the second leading cause of cancer-related deaths worldwide. The present study investigated phytochemical profiling, in vitro anticancer effects of Dicoma anomala methanol root extract and its enhancing effects in phthalocyanine mediated PDT on MCF-7 (ATCC® HTB-22™) breast cancer cells. Ultra-high performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry (UHPLC-qTOF-MS2) was used to identify the secondary metabolites in the crude extract. The 50% inhibitory concentration (IC50) of the two experimental models was established from dose response studies 24 h post-treatment with D. anomala methanol root extract (25, 50, and 100 μg/ml) and ZnPcS4 (5, 10, 20, 40, and 60 μM) mediated PDT. The inverted microscope was used to analyze morphological changes, trypan blue exclusion assay for viability, and Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) for cell death mechanisms. Immunofluorescence analysis was used to investigate the qualitative expression of the Bax, p53, and caspase 3 apoptotic proteins. Experiments were performed 4 times (n = 4) and SPSS version 27 software was used to analyze statistical significances. D. anomala methanol root extract induced cell death in MCF-7 cells by decreasing cell viability. The combination of D. anomala methanol root extract and ZnPcS4 mediated PDT led to a significant increase in apoptotic activities, expression of Bax, and p53 with significant decrease in cell viability. These findings pinpoint the possibility of D. anomala methanol root extract of being employed as a natural antiproliferative agent in the treatment of various cancers.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
42
|
Elucidation of the Interactions of Reactive Oxygen Species and Antioxidants in Model Membranes Mimicking Cancer Cells and Normal Cells. MEMBRANES 2022; 12:membranes12030286. [PMID: 35323761 PMCID: PMC8949560 DOI: 10.3390/membranes12030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Photosensitizers (PSs) used in photodynamic therapy (PDT) have been developed to selectively destroy tumor cells. However, PSs recurrently reside on the extracellular matrix or affect normal cells in the vicinity, causing side effects. Additionally, the membrane stability of tumor cells and normal cells in the presence of reactive oxygen species (ROS) has not been studied, and the effects of ROS at the membrane level are unclear. In this work, we elucidate the stabilities of model membranes mimicking tumor cells and normal cells in the presence of ROS. The model membranes are constructed according to the degree of saturation in lipids and the bilayers are prepared either in symmetric or asymmetric form. Interestingly, membranes mimicking normal cells are the most vulnerable to ROS, while membranes mimicking tumor cells remain relatively stable. The instability of normal cell membranes may be one cause of the side effects of PDT. Moreover, we also show that ROS levels are controlled by antioxidants, helping to maintain an appropriate amount of ROS when PDT is applied.
Collapse
|
43
|
Ferreira-Gonçalves T, Gaspar MM, Coelho JMP, Marques V, Viana AS, Ascensão L, Carvalho L, Rodrigues CMP, Ferreira HA, Ferreira D, Reis CP. The Role of Rosmarinic Acid on the Bioproduction of Gold Nanoparticles as Part of a Photothermal Approach for Breast Cancer Treatment. Biomolecules 2022; 12:71. [PMID: 35053219 PMCID: PMC8773507 DOI: 10.3390/biom12010071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a high-burden malignancy for society, whose impact boosts a continuous search for novel diagnostic and therapeutic tools. Among the recent therapeutic approaches, photothermal therapy (PTT), which causes tumor cell death by hyperthermia after being irradiated with a light source, represents a high-potential strategy. Furthermore, the effectiveness of PTT can be improved by combining near infrared (NIR) irradiation with gold nanoparticles (AuNPs) as photothermal enhancers. Herein, an alternative synthetic method using rosmarinic acid (RA) for synthesizing AuNPs is reported. The RA concentration was varied and its impact on the AuNPs physicochemical and optical features was assessed. Results showed that RA concentration plays an active role on AuNPs features, allowing the optimization of mean size and maximum absorbance peak. Moreover, the synthetic method explored here allowed us to obtain negatively charged AuNPs with sizes favoring the local particle accumulation at tumor site and maximum absorbance peaks within the NIR region. In addition, AuNPs were safe both in vitro and in vivo. In conclusion, the synthesized AuNPs present favorable properties to be applied as part of a PTT system combining AuNPs with a NIR laser for the treatment of breast cancer.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.); (V.M.); (C.M.P.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.); (V.M.); (C.M.P.R.)
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.); (V.M.); (C.M.P.R.)
| | - Ana S. Viana
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Lina Carvalho
- Central Testing Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.); (V.M.); (C.M.P.R.)
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, 7004-516 Évora, Portugal;
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (M.M.G.); (V.M.); (C.M.P.R.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| |
Collapse
|
44
|
Ferreira-Gonçalves T, Ferreira D, Ferreira HA, Reis CP. Nanogold-based materials in medicine: from their origins to their future. Nanomedicine (Lond) 2021; 16:2695-2723. [PMID: 34879741 DOI: 10.2217/nnm-2021-0265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, Évora, 7000, Portugal
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal.,Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| |
Collapse
|
45
|
Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021; 13:pharmaceutics13111933. [PMID: 34834348 PMCID: PMC8624654 DOI: 10.3390/pharmaceutics13111933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of nanotechnology in drug delivery has become increasingly important, and this field of research holds many potential benefits for cancer treatment, particularly, in achieving cancer cell targeting and reducing the side effects of anticancer drugs. Biocompatible and biodegradable properties have been essential for using a novel material as a carrier molecule in drug delivery applications. Biocompatible nanocarriers are easy to synthesize, and their surface chemistry often enables them to load different types of photosensitizers (PS) to use targeted photodynamic therapy (PDT) for cancer treatment. This review article explores recent studies on the use of different biocompatible nanocarriers, their potential applications in PDT, including PS-loaded biocompatible nanocarriers, and the effective targeting therapy of PS-loaded biocompatible nanocarriers in PDT for cancer treatment. Furthermore, the review briefly recaps the global clinical trials of PDT and its applications in cancer treatment.
Collapse
|
46
|
Zhou X, Huang JQ, Liu LS, Deng FA, Liu YB, Li YM, Chen AL, Yu XY, Li SY, Cheng H. Self-Remedied Nanomedicine for Surmounting the Achilles' Heel of Photodynamic Tumor Therapy. ACS APPLIED BIO MATERIALS 2021; 4:8023-8032. [PMID: 35006783 DOI: 10.1021/acsabm.1c00938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxygen-dependent photodynamic therapy (PDT) could exacerbate tumor hypoxia to induce the upregulation of hypoxia-inducible factor-1α (HIF-1α), which would promote tumor growth and metastasis. In this paper, a self-remedied nanomedicine is developed based on a photosensitizer and a HIF-1α inhibitor to surmount the Achilles' heel of PDT for enhanced antitumor efficacy. Specifically, the nanomedicine (designated as CYC-1) is prepared by the self-assembly of chlorine e6 (Ce6) and 3-(5'-hydroxy-methyl-2'-furyl)-1-benzylindazole (YC-1) through π-π stacking and hydrophobic interactions. Of special note, carrier-free CYC-1 holds an extremely high drug loading rate and avoids excipient-triggered adverse reactions. Intravenously administered CYC-1 prefers to accumulate in the tumor tissue for effective cellular uptake. More importantly, it is verified that CYC-1 is capable of inhibiting the HIF-1α activity, thereby improving its PDT efficacy on tumor suppression. Besides, CYC-1 has the overwhelming superiority in restraining tumor proliferation over the combined administration of Ce6 and YC-1, which highlights the advantage of this self-remedied strategy in drug delivery and tumor therapy. This study sheds light on the development of self-delivery nanomedicine for efficient PDT against malignancies.
Collapse
Affiliation(s)
- Xiang Zhou
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jia-Qi Huang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ling-Shan Liu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Fu-An Deng
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yi-Bin Liu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - A-Li Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Xi-Yong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|