1
|
Ren X, Jin C, Li Q, Fu C, Fang Y, Xu Z, Liang Z, Wang T. Fatty acid binding proteins-mediated mitochondrial dysfunction in the development of age-related diseases: A review. Int J Biol Macromol 2025; 309:142913. [PMID: 40203912 DOI: 10.1016/j.ijbiomac.2025.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Fatty acid-binding proteins (FABPs) act as lipid chaperones and play a role in the pathological processes of various lipid signaling pathways. Mitochondria are crucial for the regulation of lipid metabolism. As an aging marker, lipid-mediated mitochondrial dysfunction has been observed in the etiology of numerous diseases, including neurodegenerative diseases, metabolic syndromes, cardiovascular diseases, and tumorigenesis. Members of the FABP family have been identified to regulate mitochondrial function. Targeting FABPs specifically may provide a promising approach to improve mitochondrial function and treat age-related diseases. This review summarizes the connection between FABPs and mitochondrial function and highlights certain FABPs involved in age-related diseases that hold significant therapeutic promise.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chaoyuan Jin
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qilin Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Congyi Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Yu Fang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zihang Xu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zi Liang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tianshi Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201207, China.
| |
Collapse
|
2
|
Lang J, Xiong Z. Protective effects of harpagoside on mitochondrial functions in rotenone‑induced cell models of Parkinson's disease. Biomed Rep 2025; 22:64. [PMID: 39991000 PMCID: PMC11843190 DOI: 10.3892/br.2025.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/16/2024] [Indexed: 02/25/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Currently, no radical treatment is available for this disease. Harpagoside is a proposed neuroprotective iridoid active ingredient that can be derived from Scrophulariae buergeriana, Scrophularia striata and Harpagophytum procumbens. The present study aimed to investigate the effects of harpagoside on mitochondrial functions in rotenone-induced cell models of Parkinson's disease (PD). Neuro-2A (N2A) cells were treated with rotenone to establish in vitro cell models of PD. Cell viability and survival were measured using a Cell Counting Kit-8 assay. Biochemical assays with spectrophotometry were used to measure complex I activity, mitochondrial swelling and caspase 3 activity. The cell survival rate was first found to be significantly decreased by rotenone (20 nmol/l) treatment. However, intervention with harpagoside (10 µmol/l) was found to increase the cell survival rate of rotenone-induced N2A cell models differentiated with 1 mmol/l of dibutyryl-cAMP. At ≥0.1 µmol/l concentration, harpagoside significantly alleviated rotenone-induced mitochondrial swelling, whereas at 1 µmol/l it significantly counteracted the inhibitory effects of rotenone on complex I activity. At 10 µmol/l harpagoside significantly inhibited rotenone-induced caspase 3 activation. These results suggest that harpagoside has the potential to protect mitochondrial functions against rotenone-induced injury in N2A cell models of PD.
Collapse
Affiliation(s)
- Juan Lang
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Zhongkui Xiong
- Department of Radiation Oncology, Shaoxing Second Hospital, Shaoxing, Zhejiang 312000, P.R. China
- Department of Medical Imaging, School of Medicine, Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
3
|
Shen L, Dettmer U. Alpha-Synuclein Effects on Mitochondrial Quality Control in Parkinson's Disease. Biomolecules 2024; 14:1649. [PMID: 39766356 PMCID: PMC11674454 DOI: 10.3390/biom14121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The maintenance of healthy mitochondria is essential for neuronal survival and relies upon mitochondrial quality control pathways involved in mitochondrial biogenesis, mitochondrial dynamics, and mitochondrial autophagy (mitophagy). Mitochondrial dysfunction is critically implicated in Parkinson's disease (PD), a brain disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Consequently, impaired mitochondrial quality control may play a key role in PD pathology. This is affirmed by work indicating that genes such as PRKN and PINK1, which participate in multiple mitochondrial processes, harbor PD-associated mutations. Furthermore, mitochondrial complex-I-inhibiting toxins like MPTP and rotenone are known to cause Parkinson-like symptoms. At the heart of PD is alpha-synuclein (αS), a small synaptic protein that misfolds and aggregates to form the disease's hallmark Lewy bodies. The specific mechanisms through which aggregated αS exerts its neurotoxicity are still unknown; however, given the vital role of both αS and mitochondria to PD, an understanding of how αS influences mitochondrial maintenance may be essential to elucidating PD pathogenesis and discovering future therapeutic targets. Here, the current knowledge of the relationship between αS and mitochondrial quality control pathways in PD is reviewed, highlighting recent findings regarding αS effects on mitochondrial biogenesis, dynamics, and autophagy.
Collapse
Affiliation(s)
- Lydia Shen
- College of Arts & Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
4
|
Luo S, Tamada A, Saikawa Y, Wang Y, Yu Q, Hisatsune T. P2Y1R silencing in Astrocytes Protected Neuroinflammation and Cognitive Decline in a Mouse Model of Alzheimer's Disease. Aging Dis 2024; 15:1969-1988. [PMID: 37962465 PMCID: PMC11272185 DOI: 10.14336/ad.2023.1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Astrocytes, the major non-dividing glial cells in the central nervous system, exhibit hyperactivation in Alzheimer's disease (AD), leading to neuroinflammation and cognitive impairments. P2Y1-receptor (P2Y1R) in AD brain has been pointed out some contribution to AD pathogenesis, therefore, this study aims to elucidate how astrocytic P2Y1R affects the progression of AD and explore its potential as a new target for AD therapy. In this study, we performed the two-steps verification to assess P2Y1R inhibition in AD progression: P2Y1R-KO AD mice and AD mice treated with astrocyte-specific P2Y1R gene knockdown by using shRNAs for P2Y1R in adeno-associated virus vector. Histochemistry was conducted for the assessment of amyloid-beta accumulation, neuroinflammation and blood brain barrier function. Expression of inflammatory cytokines was evaluated by qPCR after the separation of astrocytes. Cognitive function was assessed through the Morris water maze, Y maze, and contextual fear conditioning tests. P2Y1R inhibition not only by gene knockout but also by astrocyte-specific knockdown reduced amyloid-beta accumulation, glial neuroinflammation, blood brain barrier dysfunction, and cognitive impairment in an AD mice model. Reduced neuroinflammation by astrocytic P2Y1R silencing in AD was further confirmed by the reduction of IL-6 gene expression after the separation of astrocytes from AD mouse brain, which may relate to the amelioration of blood brain barrier as well as cognitive functions. Our results clearly note that P2Y1R in astrocyte contributes to the progression of AD pathology through the acceleration of neuroinflammation, and one-time gene therapy for silencing astrocytic P2Y1R may offer a new therapeutic target for AD.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ami Tamada
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuichi Saikawa
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Qing Yu
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
5
|
Zhong FF, Wei B, Bao GX, Lou YP, Wei ME, Wang XY, Xiao X, Tian JJ. FABP3 Induces Mitochondrial Autophagy to Promote Neuronal Cell Apoptosis in Brain Ischemia-Reperfusion Injury. Neurotox Res 2024; 42:35. [PMID: 39008165 DOI: 10.1007/s12640-024-00712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/30/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
This study elucidates the molecular mechanisms by which FABP3 regulates neuronal apoptosis via mitochondrial autophagy in the context of cerebral ischemia-reperfusion (I/R). Employing a transient mouse model of middle cerebral artery occlusion (MCAO) established using the filament method, brain tissue samples were procured from I/R mice. High-throughput transcriptome sequencing on the Illumina CN500 platform was performed to identify differentially expressed mRNAs. Critical genes were selected by intersecting I/R-related genes from the GeneCards database with the differentially expressed mRNAs. The in vivo mechanism was explored by infecting I/R mice with lentivirus. Brain tissue injury, infarct volume ratio in the ischemic penumbra, neurologic deficits, behavioral abilities, neuronal apoptosis, apoptotic factors, inflammatory factors, and lipid peroxidation markers were assessed using H&E staining, TTC staining, Longa scoring, rotation experiments, immunofluorescence staining, and Western blot. For in vitro validation, an OGD/R model was established using primary neuron cells. Cell viability, apoptosis rate, mitochondrial oxidative stress, morphology, autophagosome formation, membrane potential, LC3 protein levels, and colocalization of autophagosomes and mitochondria were evaluated using MTT assay, LDH release assay, flow cytometry, ROS/MDA/GSH-Px measurement, transmission electron microscopy, MitoTracker staining, JC-1 method, Western blot, and immunofluorescence staining. FABP3 was identified as a critical gene in I/R through integrated transcriptome sequencing and bioinformatics analysis. In vivo experiments revealed that FABP3 silencing mitigated brain tissue damage, reduced infarct volume ratio, improved neurologic deficits, restored behavioral abilities, and attenuated neuronal apoptosis, inflammation, and mitochondrial oxidative stress in I/R mice. In vitro experiments demonstrated that FABP3 silencing restored OGD/R cell viability, reduced neuronal apoptosis, and decreased mitochondrial oxidative stress. Moreover, FABP3 induced mitochondrial autophagy through ROS, which was inhibited by the free radical scavenger NAC. Blocking mitochondrial autophagy with sh-ATG5 lentivirus confirmed that FABP3 induces mitochondrial dysfunction and neuronal apoptosis by activating mitochondrial autophagy. In conclusion, FABP3 activates mitochondrial autophagy through ROS, leading to mitochondrial dysfunction and neuronal apoptosis, thereby promoting cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fang-Fang Zhong
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China.
| | - Bo Wei
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Guo-Xiang Bao
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, China
| | - Yi-Ping Lou
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Ming-Er Wei
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Xin-Yue Wang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiao Xiao
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Jin-Jin Tian
- School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
6
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
7
|
Kawahata I, Sekimori T, Oizumi H, Takeda A, Fukunaga K. Using Fatty Acid-Binding Proteins as Potential Biomarkers to Discriminate between Parkinson's Disease and Dementia with Lewy Bodies: Exploration of a Novel Technique. Int J Mol Sci 2023; 24:13267. [PMID: 37686075 PMCID: PMC10487513 DOI: 10.3390/ijms241713267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
An increase in the global aging population is leading to an increase in age-related conditions such as dementia and movement disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The accurate prediction of risk factors associated with these disorders is crucial for early diagnosis and prevention. Biomarkers play a significant role in diagnosing and monitoring diseases. In neurodegenerative disorders like α-synucleinopathies, specific biomarkers can indicate the presence and progression of disease. We previously demonstrated the pathogenic impact of fatty acid-binding proteins (FABPs) in α-synucleinopathies. Therefore, this study investigated FABPs as potential biomarkers for Lewy body diseases. Plasma FABP levels were measured in patients with AD, PD, DLB, and mild cognitive impairment (MCI) and healthy controls. Plasma FABP3 was increased in all groups, while the levels of FABP5 and FABP7 tended to decrease in the AD group. Additionally, FABP2 levels were elevated in PD. A correlation analysis showed that higher FABP3 levels were associated with decreased cognitive function. The plasma concentrations of Tau, GFAP, NF-L, and UCHL1 correlated with cognitive decline. A scoring method was applied to discriminate between diseases, demonstrating high accuracy in distinguishing MCI vs. CN, AD vs. DLB, PD vs. DLB, and AD vs. PD. The study suggests that FABPs could serve as potential biomarkers for Lewy body diseases and aid in early disease detection and differentiation.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan (K.F.)
| | - Tomoki Sekimori
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan (K.F.)
| | - Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai 982-0805, Japan (A.T.)
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai Nishitaga Hospital, Sendai 982-0805, Japan (A.T.)
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan (K.F.)
| |
Collapse
|
8
|
Sohrabi T, Mirzaei-Behbahani B, Zadali R, Pirhaghi M, Morozova-Roche LA, Meratan AA. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease. J Mol Biol 2023:167992. [PMID: 36736886 DOI: 10.1016/j.jmb.2023.167992] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is the most common neurological movement disorder characterized by the selective and irreversible loss of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. While most cases are sporadic or environmental, about 10% of patients have a positive family history with a genetic cause. The misfolding and aggregation of α-synuclein (α-syn) as a casual factor in the pathogenesis of PD has been supported by a great deal of literature. Extensive studies of mechanisms underpinning degeneration of the dopaminergic neurons induced by α-syn dysfunction suggest a complex process that involves multiple pathways, including mitochondrial dysfunction and increased oxidative stress, impaired calcium homeostasis through membrane permeabilization, synaptic dysfunction, impairment of quality control systems, disruption of microtubule dynamics and axonal transport, endoplasmic reticulum/Golgi dysfunction, nucleus malfunction, and microglia activation leading to neuroinflammation. Among them mitochondrial dysfunction has been considered as the most primary target of α-syn-induced toxicity, leading to neuronal cell death in both sporadic and familial forms of PD. Despite reviewing many aspects of PD pathogenesis related to mitochondrial dysfunction, a systemic study on how α-syn malfunction/aggregation damages mitochondrial functionality and leads to neurodegeneration is missing in the literature. In this review, we give a detailed molecular overview of the proposed mechanisms by which α-syn, directly or indirectly, contributes to mitochondrial dysfunction. This may provide valuable insights for development of new therapeutic approaches in relation to PD. Antioxidant-based therapy as a potential strategy to protect mitochondria against oxidative damage, its challenges, and recent developments in the field are discussed.
Collapse
Affiliation(s)
- Tahereh Sohrabi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behnaz Mirzaei-Behbahani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ramin Zadali
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
9
|
Zhou X, Zhou S, Tao J, Gao Y, Meng G, Cao D, Gao L. HIV-1 Tat drives the Fabp4/NF-κB feedback loop in microglia to mediate inflammatory response and neuronal apoptosis. J Neurovirol 2022; 28:483-496. [PMID: 36070137 DOI: 10.1007/s13365-022-01094-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Fatty acid-binding proteins (FABPs) are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of FABPs in HIV-associated neurocognitive disorder (HAND) remain yet unclear. In this study, cultured BV-2 microglial cells and HT-22 neuronal cells were used for in vitro experiments and HAND mouse models were constructed through intracerebroventricular injection of lentiviral vectors for in vivo experiments. FABP expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The interrelationship between Fabp4 and NF-κB signaling was investigated using chromatin immunoprecipitation, qRT-PCR, and Western blot. The role of Fabp4 in regulating inflammatory response was determined using qRT-PCR, enzyme-linked immunosorbent assay, Western blot, and immunofluorescence staining. Cell viability and apoptosis were analyzed using cell counting kit-8 assay and flow cytometry assay, respectively. Our results suggested an upregulation of Fabp4 expression in the presence of Tat. Tat-induced Fabp4 expression was directly regulated by NF-κB p65, followed by, Fabp4 facilitating Tat-activated NF-κB signaling pathway. We also observed that Fabp4 knockdown in microglial cells significantly suppressed inflammatory response and neuronal apoptosis both in vitro and in vivo. In conclusion, the presence of Tat in microglial cells results in Fabp4 and NF-κB to form a positive feedback loop leading to exacerbate inflammatory response and neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaodan Zhou
- Department of Hematology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Shuhui Zhou
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Jian Tao
- Department of Hematology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Yanan Gao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Gaoqiang Meng
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Duo Cao
- College of Life Science, Yan'an University, Yan'an, 716000, People's Republic of China.
| | - Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Fatty acid-binding proteins 3 and 5 are involved in the initiation of mitochondrial damage in ischemic neurons. Redox Biol 2022; 59:102547. [PMID: 36481733 PMCID: PMC9727700 DOI: 10.1016/j.redox.2022.102547] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
We have previously shown that a fatty acid-binding protein7 (FABP7) inhibitor ameliorates cerebral ischemia-reperfusion injury in mice, suggesting an association between FABPs and ischemic neuronal injury. However, the precise role of FABPs in ischemic neuronal injury remains unclear. In this study, we investigated the role of FABPs in ischemia-reperfusion neuronal injury. FABP3, FABP5, and FABP7 were upregulated in the ischemic penumbra regions in mice. However, only FABP3 and FABP5 were expressed in injured neurons. Furthermore, FABP3 and FABP5 accumulated in the mitochondria of ischemic neurons. Overexpressing either FABP3 or FABP5 aggravated the reduced mitochondrial membrane potential and induced cell death in human neuroblastoma SH-SY5Y cells during oxidative stress. This damage was mediated by the formation of BAX-containing pores in the mitochondrial membrane. Moreover, FABP5 mediates lipid peroxidation and generates toxic by-products (i.e., 4-HNE) in SH-SY5Y cells. HY11-08 (HY08), a novel FABP3 and 5 inhibitor that does not act on FABP7, significantly reduced cerebral infarct volume and blocked FABP3/5-induced mitochondrial damage, including lipid peroxidation and BAX-related apoptotic signaling. Thus, FABP3 and FABP5 are key players in triggering mitochondrial damage in ischemic neurons. In addition, the novel FABP inhibitor, HY08, may be a potential neuroprotective treatment for ischemic stroke.
Collapse
|
11
|
Scarfò G, Piccarducci R, Daniele S, Franzoni F, Martini C. Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants (Basel) 2022; 11:2116. [PMID: 36358488 PMCID: PMC9686611 DOI: 10.3390/antiox11112116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
The human brain is primarily composed of lipids, and their homeostasis is crucial to carry on normal neuronal functions. In order to provide an adequate amount of lipid transport in and out of the central nervous system, organisms need a set of proteins able to bind them. Therefore, alterations in the structure or function of lipid-binding proteins negatively affect brain homeostasis, as well as increase inflammation and oxidative stress with the consequent risk of neurodegeneration. In this regard, lifestyle changes seem to be protective against neurodegenerative processes. Nutraceutical supplementation with antioxidant molecules has proven to be useful in proving cognitive functions. Additionally, regular physical activity seems to protect neuronal vitality and increases antioxidant defenses. The aim of the present review was to investigate mechanisms that link lipid-binding protein dysfunction and oxidative stress to cognitive decline, also underlining the neuroprotective effects of diet and exercise.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, Division of General Medicine, University of Pisa, 56126 Pisa, Italy
- Center for Rehabilitative Medicine “Sport and Anatomy”, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
12
|
Guo Q, Kawahata I, Cheng A, Jia W, Wang H, Fukunaga K. Fatty Acid-Binding Proteins: Their Roles in Ischemic Stroke and Potential as Drug Targets. Int J Mol Sci 2022; 23:9648. [PMID: 36077044 PMCID: PMC9455833 DOI: 10.3390/ijms23179648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. However, despite long-term research yielding numerous candidate neuroprotective drugs, there remains a lack of effective neuroprotective therapies for ischemic stroke patients. Among the factors contributing to this deficiency could be that single-target therapy is insufficient in addressing the complex and extensive mechanistic basis of ischemic brain injury. In this context, lipids serve as an essential component of multiple biological processes and play important roles in the pathogenesis of numerous common neurological diseases. Moreover, in recent years, fatty acid-binding proteins (FABPs), a family of lipid chaperone proteins, have been discovered to be involved in the onset or development of several neurodegenerative diseases, including Alzheimer's and Parkinson's disease. However, comparatively little attention has focused on the roles played by FABPs in ischemic stroke. We have recently demonstrated that neural tissue-associated FABPs are involved in the pathological mechanism of ischemic brain injury in mice. Here, we review the literature published in the past decade that has reported on the associations between FABPs and ischemia and summarize the relevant regulatory mechanisms of FABPs implicated in ischemic injury. We also propose candidate FABPs that could serve as potential therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Qingyun Guo
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - An Cheng
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Wenbin Jia
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haoyang Wang
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- BRI Pharma Incorporated, Sendai 982-0804, Japan
| |
Collapse
|
13
|
Zhang J, Sun B, Yang J, Chen Z, Li Z, Zhang N, Li H, Shen L. Comparison of the effect of rotenone and 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine on inducing chronic Parkinson's disease in mouse models. Mol Med Rep 2022; 25:91. [PMID: 35039876 PMCID: PMC8809117 DOI: 10.3892/mmr.2022.12607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Animal models for Parkinson's disease (PD) are very useful in understanding the pathogenesis of PD and screening for new therapeutic approaches. The present study compared two commonly used neurotoxin‑induced mouse models of chronic PD to guide model selection, explore the pathogenesis and mechanisms underlying PD and develop effective treatments. The chronic PD mouse models were established via treatment with rotenone or 1‑methyl‑4‑phenyl‑1,2,3,6-tetrahydropyridine (MPTP) for 6 weeks. The effects of rotenone and MPTP in the mice were compared by assessing neurobehavior, neuropathology and mitochondrial function through the use of the pole, rotarod and open field tests, immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), ionized calcium‑binding adapter molecule 1 (Iba‑1), neuronal nuclear antigen (NeuN) and (p)S129 α‑synuclein, immunofluorescence for GFAP, Iba‑1 and NeuN, western blotting for TH, oxygen consumption, complex I enzyme activity. The locomotor activity, motor coordination and exploratory behavior in both rotenone and MPTP groups were significantly lower compared with the control group. However, behavioral tests were no significant differences between the two groups. In the MPTP group, the loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta, the reduction of the tyrosine hydroxylase content in the SN and striatum and the astrocyte proliferation and microglial activation in the SN were more significant compared with the rotenone group. Notably, mitochondrial‑dependent oxygen consumption and complex I enzyme activity in the SN were significantly reduced in the rotenone group compared with the MPTP group. In addition, Lewy bodies were present only in SN neurons in the rotenone group. Although no significant differences in neurobehavior were observed between the two mouse models, the MPTP model reproduced the pathological features of PD more precisely in terms of the loss of DA neurons, decreased dopamine levels and neuroinflammation in the SN. On the other hand, the rotenone model was more suitable for studying the role of mitochondrial dysfunction (deficient complex I activity) and Lewy body formation in the SN, which is a characteristic pathological feature of PD. The results indicated that MPTP and rotenone PD models have advantages and disadvantages, therefore one or both should be selected based on the purpose of the study.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jifeng Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhuo Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhengzheng Li
- Department of Internal Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Nan Zhang
- Department of Internal Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Luxi Shen
- Department of Internal Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
14
|
Kawahata I, Fukunaga K. Impact of fatty acid-binding proteins and dopamine receptors on α-synucleinopathy. J Pharmacol Sci 2022; 148:248-254. [DOI: 10.1016/j.jphs.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
|
15
|
Khan AH, Lee LK, Smith DJ. Single-cell analysis of gene expression in the substantia nigra pars compacta of a pesticide-induced mouse model of Parkinson's disease. Transl Neurosci 2022; 13:255-269. [PMID: 36117858 PMCID: PMC9438968 DOI: 10.1515/tnsci-2022-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Exposure to pesticides in humans increases the risk of Parkinson’s disease (PD), but the mechanisms remain poorly understood. To elucidate these pathways, we dosed C57BL/6J mice with a combination of the pesticides maneb and paraquat. Behavioral analysis revealed motor deficits consistent with PD. Single-cell RNA sequencing of substantia nigra pars compacta revealed both cell-type-specific genes and genes expressed differentially between pesticide and control, including Fam241b, Emx2os, Bivm, Gm1439, Prdm15, and Rai2. Neurons had the largest number of significant differentially expressed genes, but comparable numbers were found in astrocytes and less so in oligodendrocytes. In addition, network analysis revealed enrichment in functions related to the extracellular matrix. These findings emphasize the importance of support cells in pesticide-induced PD and refocus our attention away from neurons as the sole agent of this disorder.
Collapse
Affiliation(s)
- Arshad H. Khan
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Box 951735, 23-151 A CHS, Los Angeles, CA 90095-1735, United States of America
| | - Lydia K. Lee
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-6928, United States of America
| | - Desmond J. Smith
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Box 951735, 23-151 A CHS, Los Angeles, CA 90095-1735, United States of America
| |
Collapse
|
16
|
Queiroz Junior NF, Steffani JA, Machado L, Longhi PJH, Montano MAE, Martins M, Machado SA, Machado AK, Cadoná FC. Antioxidant and cytoprotective effects of avocado oil and extract ( Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:875-890. [PMID: 34256683 DOI: 10.1080/15287394.2021.1945515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidative stress is known to be involved in development of numerous diseases including cardiovascular, respiratory, renal, kidney and cancer. Thus, investigations that mimic oxidative stress in vitro may play an important role to find new strategies to control oxidative stress and subsequent consequences are important. Rotenone, widely used as a pesticide has been used as a model to simulate oxidative stress. However, this chemical was found to produce several diseases. Therefore, the aim of this study was to investigate the antioxidant and cytoprotective effect of avocado (Persea americana Mill) extract and oil in monkey kidney epithelial cells (VERO) exposed to rotenone. VERO cells were exposed to IC50 of rotenone in conjunction with different concentrations of avocado extract and oil (ranging from 1 to 1000 µg/ml), for 24 hr. Subsequently, cell viability and oxidative metabolism were assessed. Data demonstrated that avocado extract and oil in the presence of rotenone increased cellular viability at all tested concentrations compared to cells exposed only to rotenone. In addition, extract and avocado oil exhibited antioxidant action as evidenced by decreased levels of reactive oxygen species (ROS), superoxide ion, and lipid peroxidation, generated by rotenone. Further, avocado extract and oil appeared to be safe, since these compounds did not affect cell viability and or generate oxidative stress. Therefore, avocado appears to display a promising antioxidant potential by decreasing oxidative stress.
Collapse
Affiliation(s)
| | - Jovani Antônio Steffani
- Postgraduate Program of Biosciences and Health, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Larissa Machado
- Biological Sciences Course, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | | | - Mathias Martins
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Sérgio Abreu Machado
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | - Francine Carla Cadoná
- Postgraduate Program in Sciences of Health and Life, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
17
|
A novel fatty acid-binding protein 5 and 7 inhibitor ameliorates oligodendrocyte injury in multiple sclerosis mouse models. EBioMedicine 2021; 72:103582. [PMID: 34624687 PMCID: PMC8502714 DOI: 10.1016/j.ebiom.2021.103582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease characterised by the demyelination of mature oligodendrocytes in the central nervous system. Recently, several studies have indicated the vital roles of fatty acid-binding proteins (FABPs) 5 and 7 in regulating the immune response. METHODS We assessed a novel FABP5/FABP7 inhibitor, FABP ligand 6 (MF 6), as a potential therapeutic for MS therapy. In vivo, we established MOG35-55-administered experimental autoimmune encephalomyelitis (EAE) mice as an MS mouse model, followed by prophylactic and symptomatic treatment with MF 6. The therapeutic effect of MF 6 was determined using behavioural and biochemical analyses. In vitro, MF 6 effects on astrocytes and oligodendrocytes were examined using both astrocyte primary culture and KG-1C cell lines. FINDINGS Prophylactic and symptomatic MF 6 therapy reduced myelin loss and clinical EAE symptoms. Furthermore, oxidative stress levels and GFAP-positive and ionised calcium-binding adaptor protein-1-positive cells were reduced in the spinal cord of MF 6-treated mice. In addition, MF 6 attenuated lipopolysaccharide-stimulated interleukin-1β and tumour necrosis factor-α accumulation in primary astrocyte culture. Moreover, MF 6 indicated a powerful protective function for the mitochondria in the oligodendrocytes of EAE mice via FABP5 inhibition. INTERPRETATIONS MF 6 is a potent inhibitor of FABP5 and FABP7; targeted inhibition of the two proteins may confer potential therapeutic effects in MS via immune inhibition and oligodendrocyte protection. FUNDING This work was supported by the Strategic Research Program for Brain Sciences from the Japan Agency for Medical Research and Development (JP17dm0107071, JP18dm0107071, JP19dm0107071, and JP20dm0107071).
Collapse
|
18
|
Cheng A, Jia W, Kawahata I, Fukunaga K. Impact of Fatty Acid-Binding Proteins in α-Synuclein-Induced Mitochondrial Injury in Synucleinopathy. Biomedicines 2021; 9:biomedicines9050560. [PMID: 34067791 PMCID: PMC8156290 DOI: 10.3390/biomedicines9050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Synucleinopathies are diverse diseases with motor and cognitive dysfunction due to progressive neuronal loss or demyelination, due to oligodendrocyte loss in the brain. While the etiology of neurodegenerative disorders (NDDs) is likely multifactorial, mitochondrial injury is one of the most vital factors in neuronal loss and oligodendrocyte dysfunction, especially in Parkinson’s disease, dementia with Lewy body, multiple system atrophy, and Krabbe disease. In recent years, the abnormal accumulation of highly neurotoxic α-synuclein in the mitochondrial membrane, which leads to mitochondrial dysfunction, was well studied. Furthermore, fatty acid-binding proteins (FABPs), which are members of a superfamily and are essential in fatty acid trafficking, were reported to trigger α-synuclein oligomerization in neurons and glial cells and to target the mitochondrial outer membrane, thereby causing mitochondrial loss. Here, we provide an updated overview of recent findings on FABP and α-synuclein interactions and mitochondrial injury in NDDs.
Collapse
Affiliation(s)
- An Cheng
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Wenbin Jia
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
| | - Ichiro Kawahata
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Departments of Pharmacology, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan; (A.C.); (W.J.); (I.K.)
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-(22)-795-6837
| |
Collapse
|