1
|
Ugwu DI, Conradie J. Anticancer properties of complexes derived from bidentate ligands. J Inorg Biochem 2023; 246:112268. [PMID: 37301166 DOI: 10.1016/j.jinorgbio.2023.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Cancer is the abnormal division and multiplication of cells in an organ or tissue. It is the second leading cause of death globally. There are various types of cancer such as prostate, breast, colon, lung, stomach, liver, skin, and many others depending on the tissue or organ where the abnormal growth originates. Despite the huge investment in the development of anticancer agents, the transition of research to medications that improve substantially the treatment of cancer is less than 10%. Cisplatin and its analogs are ubiquitous metal-based anticancer agents notable for the treatment of various cancerous cells and tumors but unfortunately accompanied by large toxicities due to low selectivity between cancerous and normal cells. The improved toxicity profile of cisplatin analogs bearing bidentate ligands has motivated the synthesis of vast metal complexes of bidentate ligands. Complexes derived from bidentate ligands such as β-diketones, diolefins, benzimidazoles and dithiocarbamates have been reported to possess 20 to 15,600-fold better anticancer activity, when tested on cell lines, than some known antitumor drugs currently on the market, e.g. cisplatin, oxaliplatin, carboplatin, doxorubicin, and 5-fluorouracil. This work discusses the anticancer properties of various metal complexes derived from bidentate ligands, for possible application in chemotherapy. The results discussed were evaluated by the IC50 values as obtained from cell line tests on various metal-bidentate complexes. The structure-activity relationship study of the complexes discussed, revealed that hydrophobicity is a key factor that influences anticancer properties of molecules.
Collapse
Affiliation(s)
- David Izuchukwu Ugwu
- Department of Chemistry, University of the Free State, South Africa; Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, South Africa.
| |
Collapse
|
2
|
Arshad JZ, Hanif M. Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors. RSC Med Chem 2022; 13:1127-1149. [PMID: 36325396 PMCID: PMC9579940 DOI: 10.1039/d2md00175f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 07/31/2023] Open
Abstract
The versatile structural motif of hydroxypyrone is found in natural products and can be easily converted into hydroxypyridone and hydroxythiopyridone analogues. The favourable toxicity profile and ease of functionalization to access a vast library of compounds make them an ideal structural scaffold for drug design and discovery. This versatile scaffold possesses excellent metal chelating properties that can be exploited for chelation therapy in clinics. Deferiprone [1,2-dimethyl-3-hydroxy-4(1H)-one] was the first orally active chelator to treat iron overload in thalassemia major. Metal complexes of hydroxy-(thio)pyr(id)ones have been investigated as magnetic resonance imaging contrast agents, and anticancer and antidiabetic agents. In recent years, this compound class has demonstrated potential in discovering and developing metalloenzyme inhibitors. This review article summarizes recent literature on hydroxy-(thio)pyr(id)ones as inhibitors for metalloenzymes such as histone deacetylases, tyrosinase and metallo-β-lactamase. Different approaches to the design of hydroxy-(thio)pyr(id)ones and their biological properties against selected metalloenzymes are discussed.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College Women University Sialkot Sialkot Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland Private Bag 92019 Auckland 1142 New Zealand (+64) 9 373 7599 ext. 87422
- MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand
| |
Collapse
|
3
|
Metal-Based Complexes in Cancer Treatment. Biomedicines 2022; 10:biomedicines10102573. [PMID: 36289835 PMCID: PMC9599845 DOI: 10.3390/biomedicines10102573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
|
4
|
P K A, Kar B, Roy N, Paira P. Ru(ii)arene(N^N bpy/phen)-based RAPTA complexes for in vitro anti-tumour activity in human glioblastoma cancer cell lines and in vivo toxicity studies in a zebrafish model. RSC Adv 2022; 12:18911-18922. [PMID: 35873312 PMCID: PMC9241057 DOI: 10.1039/d2ra02677e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 01/15/2023] Open
Abstract
Herein, we have introduced a series of half-sandwich Ru(ii)arene(N^N bpy/phen)-based RAPTA complexes for brain cancer therapy. Among all the synthesized complexes, [(η6-p-cymene)RuII(κ2-N,N-4,7dimethyl phenanthroline)(PTA)]·2PF6 (4c) and [(η6-p-cymene)RuII(κ2-N,N-4,7diphenyl phenanthroline)(PTA)]·2PF6 (4d) showed outstanding potency against the T98G, LN229 and U87MG cancer cells. The antiproliferative activity of these complexes was reinforced by neurosphere, DNA intercalation, agarose gel electrophoresis, cell cycle analysis and time-dependent ROS detection assays. The real-time reverse transcription (RT)-polymerase chain reaction (PCR) study showed that complex 4c inhibited the TNF-α-induced NF-κB phosphorylation in glioma cells. Moreover, the in vivo biodistribution of complex 4c in different organs and the morphological patterns of widely used zebrafish embryos due to toxic effects have been evaluated. A series of half-sandwich Ru(ii)arene(N^N bpy/phen)-based RAPTA complexes have been developed for brain cancer therapy.![]()
Collapse
Affiliation(s)
- Anuja P K
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamilnadu India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamilnadu India
| | - Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamilnadu India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamilnadu India
| |
Collapse
|
5
|
Theranostic Potentials of Gold Nanomaterials in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14133047. [PMID: 35804818 PMCID: PMC9264814 DOI: 10.3390/cancers14133047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hematological malignancies (HMs) cover 50% of all malignancies, and people of all ages can be affected by these deadly diseases. In many cases, conventional diagnostic tools fail to diagnose HMs at an early stage, due to heterogeneity and the long-term indolent phase of HMs. Therefore, many patients start their treatment at the late stage of HMs and have poor survival. Gold nanomaterials (GNMs) have shown promise as a cancer theranostic agent. GNMs are 1 nm to 100 nm materials having magnetic resonance and surface-plasmon-resonance properties. GNMs conjugated with antibodies, nucleic acids, peptides, photosensitizers, chemotherapeutic drugs, synthetic-drug candidates, bioactive compounds, and other theranostic biomolecules may enhance the efficacy and efficiency of both traditional and advanced theranostic approaches to combat HMs. Abstract Hematological malignancies (HMs) are a heterogeneous group of blood neoplasia generally characterized by abnormal blood-cell production. Detection of HMs-specific molecular biomarkers (e.g., surface antigens, nucleic acid, and proteomic biomarkers) is crucial in determining clinical states and monitoring disease progression. Early diagnosis of HMs, followed by an effective treatment, can remarkably extend overall survival of patients. However, traditional and advanced HMs’ diagnostic strategies still lack selectivity and sensitivity. More importantly, commercially available chemotherapeutic drugs are losing their efficacy due to adverse effects, and many patients develop resistance against these drugs. To overcome these limitations, the development of novel potent and reliable theranostic agents is urgently needed to diagnose and combat HMs at an early stage. Recently, gold nanomaterials (GNMs) have shown promise in the diagnosis and treatment of HMs. Magnetic resonance and the surface-plasmon-resonance properties of GNMs have made them a suitable candidate in the diagnosis of HMs via magnetic-resonance imaging and colorimetric or electrochemical sensing of cancer-specific biomarkers. Furthermore, GNMs-based photodynamic therapy, photothermal therapy, radiation therapy, and targeted drug delivery enhanced the selectivity and efficacy of anticancer drugs or drug candidates. Therefore, surface-tuned GNMs could be used as sensitive, reliable, and accurate early HMs, metastatic HMs, and MRD-detection tools, as well as selective, potent anticancer agents. However, GNMs may induce endothelial leakage to exacerbate cancer metastasis. Studies using clinical patient samples, patient-derived HMs models, or healthy-animal models could give a precise idea about their theranostic potential as well as biocompatibility. The present review will investigate the theranostic potential of vectorized GNMs in HMs and future challenges before clinical theranostic applications in HMs.
Collapse
|
6
|
Shakil MS, Rana Z, Hanif M, Rosengren RJ. Key considerations when using the sulforhodamine B assay for screening novel anticancer agents. Anticancer Drugs 2022; 33:6-10. [PMID: 34261912 DOI: 10.1097/cad.0000000000001131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anticancer drug discovery programmes use a large number of in-vitro assays to screen the potency of compound libraries. The accuracy and reliability of these in-vitro assays are vital in selecting potent lead candidates for further (pre)clinical studies. Among the commonly used cell viability assays, the sulforhodamine B (SRB) assay has been a popular choice due to its simplicity, accuracy, reliability and reproducibility. SRB dye interacts with protein's basic amino acids and viable cell number is determined based on the cellular protein content. In this study, the cytotoxic potency of the novel hydroxythiopyridone derivatives towards A549 and H522 cells was determined using the SRB assay. The known drugs oxaliplatin and vorinostat were also examined. The resulting EC50 values were accurate, reliable and reproducible. However, all EC50 values calculated in 6-well plates were higher compared to those determined from 96-well plates. Furthermore, results from 6-well plates were also more variable compared to 96-well plates. Our results confirm that SRB assay is a reliable technique in screening the potency of anticancer drug candidates but plating conditions need to be carefully considered.
Collapse
Affiliation(s)
- Md Salman Shakil
- Department of Pharmacology and Toxicology, University of Otago, Dunedin
| | - Zohaib Rana
- Department of Pharmacology and Toxicology, University of Otago, Dunedin
| | - Muhammad Hanif
- Department of Chemical Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
7
|
Bjelosevic A, Sakoff J, Gilbert J, Zhang Y, McGhie B, Gordon C, Aldrich-Wright JR. Synthesis, characterisation and biological activity of the ruthenium(II) complexes of the N 4-tetradentate (N 4-T L), 1,6-di(2'-pyridyl)-2,5-dibenzyl-2,5-diazahexane (picenBz 2). J Inorg Biochem 2021; 226:111629. [PMID: 34740037 DOI: 10.1016/j.jinorgbio.2021.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
A series of complexes of the type rac-cis-β-[Ru(N4-TL)(N2-bidentates)]2+ (where N4-TL = 1,6-di(2'-pyridyl)-2,5-dibenzyl-2,5-diazahexane (picenBz2, N4-TL-2) and N2-bidentates = 1,10-phenanthroline (phen, Ru-2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, Ru-3), 7,8-dimethyl-dipyrido[3,2-a:2',3'-c] phenazine (dppzMe2,Ru-4), 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBz, Ru-5), 2-(p-tolyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBzMe, Ru-6), 2-(4-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (phenpyrBzNO2,Ru-7), were synthesised and characterised and X-ray crystallography of Ru-5 obtained. The in vitro cytotoxicity assays revealed that Ru-6 was 5, 2 and 19-fold more potent than oxaliplatin, cisplatin, and carboplatin, respectively displaying an average GI50 value of ≈ 0.76 μM against a panel of 11 cancer cell lines.
Collapse
Affiliation(s)
- Aleksandra Bjelosevic
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Jennette Sakoff
- Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Yingjie Zhang
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Brondwyn McGhie
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Christopher Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia; School of Medicine, Western Sydney University, Locked Bag 1797, Penrith South DC, 2751, NSW, Australia.
| |
Collapse
|
8
|
Mahmud KM, Niloy MS, Shakil MS, Islam MA. Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment. Pharmaceutics 2021; 13:1295. [PMID: 34452256 PMCID: PMC8398452 DOI: 10.3390/pharmaceutics13081295] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the intimidating causes of death around the world. CRC originated from mutations of tumor suppressor genes, proto-oncogenes and DNA repair genes. Though platinum (Pt)-based anticancer drugs have been widely used in the treatment of cancer, their toxicity and CRC cells' resistance to Pt drugs has piqued interest in the search for alternative metal-based drugs. Ruthenium (Ru)-based compounds displayed promising anticancer activity due to their unique chemical properties. Ru-complexes are reported to exert their anticancer activities in CRC cells by regulating different cell signaling pathways that are either directly or indirectly associated with cell growth, division, proliferation, and migration. Additionally, some Ru-based drug candidates showed higher potency compared to commercially available Pt-based anticancer drugs in CRC cell line models. Meanwhile Ru nanoparticles coupled with photosensitizers or anticancer agents have also shown theranostic potential towards CRC. Ru-nanoformulations improve drug efficacy, targeted drug delivery, immune activation, and biocompatibility, and therefore may be capable of overcoming some of the existing chemotherapeutic limitations. Among the potential Ru-based compounds, only Ru (III)-based drug NKP-1339 has undergone phase-Ib clinical trials in CRC treatment.
Collapse
Affiliation(s)
- Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Mahruba Sultana Niloy
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (K.M.M.); (M.S.N.)
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, Dunedin 9016, New Zealand
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|