1
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Feng S, Tang J, Wei X, Lu Z, Xu Y, Zhang T, Han H. Swertia cincta and its main active ingredients regulate the PPAR-α pathway in anti-cholestatic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118956. [PMID: 39423946 DOI: 10.1016/j.jep.2024.118956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Swertia cincta is a traditional remedy for cholestasis commonly utilised in Yunnan, China. Despite its widespread use, the specific active components and underlying mechanisms of action remain poorly understood. AIM OF THIS STUDY This study aimed to investigate the therapeutic properties, mechanisms, and active compounds of Swertia cincta in an animal model of cholestasis induced by alpha-naphthylisothiocyanate (ANIT). MATERIALS AND METHODS UHPLC/Q-TOF-MS and high-performance liquid chromatography (HPLC) were utilised to analyse the blood components of Swertia cincta. An ANIT-induced cholestatic liver injury animal model was established, and metabolomics was employed to explore the potential mechanisms of Swertia cincta in treating cholestatic liver injury. Hepatocellular injury induced by taurochenodeoxycholic acid was evaluated in vitro, and key bioactive components of Swertia cincta for cholestatic liver injury treatment were identified and confirmed using the ANIT-induced mouse model. RESULTS The established HPLC method demonstrates good specificity and reproducibility, enabling the simultaneous determination of six components in Swertia cincta. Results from serum biochemical indicators and liver pathology analysis indicated that Swertia cincta exhibits promising anti-cholestasis liver injury effects. Specifically, gentiopicroside, loganic acid, and isoorientin were identified as key active ingredients in treating cholestatic liver injury. Their mechanism of action primarily involves regulating PPAR-α, FXR, CYP3A4, NTCP, CAR, and CPT2. By modulating PPAR-α and bile acid metabolism-related proteins, reducing pro-inflammatory factors, enhancing bile acid transport, and promoting fatty acid oxidation to reduce lipid accumulation, Swertia cincta exerts protective and therapeutic effects against cholestatic liver injury. Notably, gentian bitter glycosides appear to be the most critical components for this effect. CONCLUSION Swertia cincta may improve cholestatic liver injury by activating the peroxisome proliferator-activated receptor alpha pathway, and the key active compounds were gentiopicroside, loganic acid, and isoorientin.
Collapse
Affiliation(s)
- Shuaixia Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Jie Tang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xia Wei
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zou Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Ying Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Han Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| |
Collapse
|
3
|
Al Subait A, Alghamdi RH, Ali R, Alsharidah A, Huwaizi S, Alkhodier RA, Almogren AS, Alzomia BA, Alaskar A, Boudjelal M. Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds. Int J Mol Sci 2025; 26:736. [PMID: 39859448 PMCID: PMC11766124 DOI: 10.3390/ijms26020736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity. Using this reporter system, we screened 240 compounds representing kinase inhibitors, epigenetic modulators, and stem cell differentiators and identified compounds that inhibit the PPARα-activated PPARE-Luciferase reporter in the KAIMRC1 cell. We selected 11 compounds (five epigenetic modulators, two stem cell differentiators, and four kinase inhibitors) that inhibited the reporter by at least 40% compared to the controls (DMSO-treated cells). We tested them in a dose-dependent manner and measured the KAIMRC1 cell viability after 48 h. All 11 compounds induced the cell killing at different IC50 values. We selected two compounds, PHA665752 and NSC3852, to dissect how they kill KAIMRC1 cells compared to the antagonist GW6741. First, molecular docking and a TR-FRET PPARα binding assay showed that compared to GW6471, these two compounds could not bind to PPARα. This means they inhibit the PPARα pathway independently rather than binding to the receptor. We further confirmed that PHA665752 and NSC3852 induce cell killing depending on the level of PPARα expression, and as such, their potency for killing the SW620 colon cancer cell line that expresses the lowest level of PPARα was less potent than for the KAIMRC1 and MDA-MB-231 cell lines. Further, using an apoptosis array and fatty acid gene expression panel, we found that both compounds regulate the PPARα pathway by controlling the genes involved in the fatty acid oxidation process. Our findings suggest that these two compounds have opposite effects involving fatty acid oxidation in the KAIMRC1 breast cancer cell line. Although we do not fully understand their mechanism of action, our data provide new insights into the potential role of these compounds in targeting breast cancer cells.
Collapse
Affiliation(s)
- Arwa Al Subait
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Raghad H. Alghamdi
- King Abdulaziz and His Companions Foundation for Giftedness and Creativity (MAWHIBA), Riyadh 11481, Saudi Arabia;
| | - Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Amani Alsharidah
- College of Science, King Saud University, Riyadh 11459, Saudi Arabia;
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Reem A. Alkhodier
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Aljawharah Saud Almogren
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Barrak A. Alzomia
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Ahmad Alaskar
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| |
Collapse
|
4
|
Pratama AM, Sharma M, Naidu S, Bömmel H, Prabhuswamimath SC, Madhusudhan T, Wihadmadyatami H, Bachhuka A, Karnati S. Peroxisomes and PPARs: Emerging role as master regulators of cancer metabolism. Mol Metab 2024; 90:102044. [PMID: 39368612 PMCID: PMC11550351 DOI: 10.1016/j.molmet.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Cancer is a disease characterized by the acquisition of a multitude of unique traits. It has long been understood that cancer cells divert significantly from normal cell metabolism. The most obvious of metabolic changes is that cancer cells strongly rely on glucose conversion by aerobic glycolysis. In addition, they also regularly develop mechanisms to use lipids and fatty acids for their energy needs. Peroxisomes lie central to these adaptive changes of lipid metabolism. Peroxisomes are metabolic organelles that take part in over 50 enzymatic reactions crucial for cellular functioning. Thus, they are essential for an effective and comprehensive use of lipids' energy supplied to cells. Cancer cells display a substantial increase in the biogenesis of peroxisomes and an increased expression of proteins necessary for the enzymatic functions provided by peroxisomes. Moreover, the enzymatic conversion of FAs in peroxisomes is a significant source of reactive oxygen and nitrogen species (ROS/RNS) that strongly impact cancer malignancy. Important regulators in peroxisomal FA oxidation and ROS/RNS generation are the transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. This review describes the metabolic changes in tumorigenesis and cancer progression influenced by peroxisomes. We will highlight the ambivalent role that peroxisomes and PPARs play in the different stages of tumor development and summarize our current understanding of how to capitalize on the comprehension of peroxisomal biology for cancer treatment.
Collapse
Affiliation(s)
- Anggi Muhtar Pratama
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Mansi Sharma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Heike Bömmel
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, 570 015, Karnataka, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Akash Bachhuka
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.
| | - Srikanth Karnati
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany.
| |
Collapse
|
5
|
Xue H, Nie H, Huang Z, Lu B, Wei M, Xu H, Ji L. 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside promotes liver regeneration after partial hepatectomy in mice: The potential involvement of PPARα-mediated fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118513. [PMID: 38969151 DOI: 10.1016/j.jep.2024.118513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the principal bioactive compound contained in Polygonum multiflorum Thunb. (PMT), which is traditionally recorded to possess tonic and anti-aging efficacy. AIM OF THE STUDY To identify the TSG-provided promotion on liver regeneration (LR) following partial hepatectomy (PHx) in mice and to explicate its involved mechanism. MATERIALS AND METHODS The promotion of TSG on LR was evaluated by hematoxylin and eosin (H&E), 5-bromodeoxyuridinc (BrdU) and Ki-67 staining, and measuring the level of proliferating cell nuclear antigen (PCNA) and Cyclin D1 in mice with PHx at different time points. Gene Expression Omnibus (GEO, GSE15239) database and the label-free quantitative proteomics from liver of mice at 24 h after PHx were integrated to identify potential involved critical proteins, which were verified by Western-blot, Real-time polymerase chain reaction (RT-PCR), molecular docking and luciferase activity assay. Primary hepatocytes isolated from mice were used to investigate the TSG-provided promotion on proliferation in vitro. RESULTS TSG (20 mg/kg) promoted LR in mice after PHx. Results from RNA expression data from clinical samples and proteomic analysis from liver tissues indicated that peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid metabolism pathway were crucially associated with the TSG-provided promotion on LR. TSG enhanced the nuclear translocation of PPARα and the mRNA expression of a series of PPARα-regulated downstream genes. In addition, TSG lowered hepatic triglyceride (TG) and non-esterified fatty acid (NEFA) amounts and increased hepatic adenosine triphosphate (ATP) level in mice after PHx. TSG up-regulated the transcriptional activity of PPARα in vitro. Next results displayed that TSG promoted cell proliferation as well as ATP level in mice primary hepatocytes, which were abolished when PPARα was suppressed. Meanwhile, the cell viability was also elevated in mice primary hepatocytes treated with ATP. CONCLUSION Activating PPARα-mediated fatty acid β-oxidation (FAO) pathway led to the production of ATP, which contributed to the TSG-provided promotion on LR after PHx in mice.
Collapse
Affiliation(s)
- Haoyu Xue
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huizhong Nie
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Lee SY, Shin MJ, Choi SM, Kim DK, Choi MG, Kim JS, Suh DS, Kim JH, Kim SJ. Role of Peroxisome Proliferator-Activated Receptor α-Dependent Mitochondrial Metabolism in Ovarian Cancer Stem Cells. Int J Mol Sci 2024; 25:11760. [PMID: 39519311 PMCID: PMC11546303 DOI: 10.3390/ijms252111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), including PPAR-α, PPAR-β/δ, and PPAR-γ, are involved in various cellular responses, including metabolism and cell proliferation. Increasing evidence suggests that PPARs are closely associated with tumorigenesis and metastasis. However, the exact role of PPARs in energy metabolism and cancer stem cell (CSC) proliferation remains unclear. This study investigated the role of PPARs in energy metabolism and tumorigenesis in ovarian CSCs. The expression of PPARs and fatty acid consumption as an energy source increased in spheroids derived from A2780 ovarian cancer cells (A2780-SP) compared with their parental cells. GW6471, a PPARα inhibitor, induced apoptosis in A2780-SP. PPARα silencing mediated by small hairpin RNA reduced A2780-SP cell proliferation. Treatment with GW6471 significantly inhibited the respiratory oxygen consumption of A2780-SP cells, with reduced dependency on fatty acids, glucose, and glutamine. In a xenograft tumor transplantation mouse model, intraperitoneal injection of GW6471 inhibited in vivo tumor growth of A2780-SP cells. These results suggest that PPARα plays a vital role in regulating the proliferation and energy metabolism of CSCs by altering mitochondrial activity and that it offers a promising therapeutic target to eradicate CSCs.
Collapse
Affiliation(s)
- Seo Yul Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Seong Min Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Dae Kyoung Kim
- HiCellTech Inc., Yangsan 50612, Gyeongsangnam-do, Republic of Korea;
| | - Mee Gyeon Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Jun Se Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Dong Soo Suh
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea;
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea; (S.Y.L.); (M.J.S.); (S.M.C.); (M.G.C.); (J.S.K.)
| | - Seong Jang Kim
- Department of Nuclear Medicine, School of Medicine, Pusan National University, Yangsan 50612, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
7
|
Lee SG, Rhee J, Seok J, Kim J, Kim MW, Song GE, Park S, Jeong KS, Lee S, Lee YH, Jeong Y, Kim CY, Chung HM. Promotion of maturation of human pluripotent stem cell-derived cardiomyocytes via treatment with the peroxisome proliferator-activated receptor alpha agonist Fenofibrate. Stem Cells Transl Med 2024; 13:750-762. [PMID: 38946019 PMCID: PMC11328931 DOI: 10.1093/stcltm/szae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/04/2024] [Indexed: 07/02/2024] Open
Abstract
As research on in vitro cardiotoxicity assessment and cardiac disease modeling becomes more important, the demand for human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is increasing. However, it has been reported that differentiated hPSC-CMs are in a physiologically immature state compared to in vivo adult CMs. Since immaturity of hPSC-CMs can lead to poor drug response and loss of acquired heart disease modeling, various approaches have been attempted to promote maturation of CMs. Here, we confirm that peroxisome proliferator-activated receptor alpha (PPARα), one of the representative mechanisms of CM metabolism and cardioprotective effect also affects maturation of CMs. To upregulate PPARα expression, we treated hPSC-CMs with fenofibrate (Feno), a PPARα agonist used in clinical hyperlipidemia treatment, and demonstrated that the structure, mitochondria-mediated metabolism, and electrophysiology-based functions of hPSC-CMs were all mature. Furthermore, as a result of multi electrode array (MEA)-based cardiotoxicity evaluation between control and Feno groups according to treatment with arrhythmia-inducing drugs, drug response was similar in a dose-dependent manner. However, main parameters such as field potential duration, beat period, and spike amplitude were different between the 2 groups. Overall, these results emphasize that applying matured hPSC-CMs to the field of preclinical cardiotoxicity evaluation, which has become an essential procedure for new drug development, is necessary.
Collapse
Affiliation(s)
- Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul 05029, Republic of Korea
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jooeon Rhee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Seok
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyeong-Eun Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Shinhye Park
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Sik Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Suemin Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun Hyeong Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngin Jeong
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Gwangjin-Gu, Seoul 05029, Republic of Korea
- Miraecell Bio Co. Ltd., Seoul 04795, Korea
| |
Collapse
|
8
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
9
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
10
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Hu P, Li K, Peng X, Kan Y, Li H, Zhu Y, Wang Z, Li Z, Liu HY, Cai D. Nuclear Receptor PPARα as a Therapeutic Target in Diseases Associated with Lipid Metabolism Disorders. Nutrients 2023; 15:4772. [PMID: 38004166 PMCID: PMC10674366 DOI: 10.3390/nu15224772] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid metabolic diseases have substantial morbidity and mortality rates, posing a significant threat to human health. PPARα, a member of the peroxisome proliferator-activated receptors (PPARs), plays a crucial role in lipid metabolism and immune regulation. Recent studies have increasingly recognized the pivotal involvement of PPARα in diverse pathological conditions. This comprehensive review aims to elucidate the multifaceted role of PPARα in metabolic diseases including liver diseases, diabetes-related diseases, age-related diseases, and cancers, shedding light on the underlying molecular mechanisms and some regulatory effects of natural/synthetic ligands of PPARα. By summarizing the latest research findings on PPARα, we aim to provide a foundation for the possible therapeutic exploitation of PPARα in lipid metabolic diseases.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Yanli Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Ziyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (P.H.); (K.L.); (X.P.); (Y.K.); (H.L.); (Y.Z.); (Z.W.); (Z.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
12
|
Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol 2023:125008. [PMID: 37217063 DOI: 10.1016/j.ijbiomac.2023.125008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yan-Jie Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Qian Yu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Tong-Mei Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
13
|
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol 2023; 14:1184794. [PMID: 37251321 PMCID: PMC10213337 DOI: 10.3389/fphar.2023.1184794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and β/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyan Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xueling Qu
- Dalian Women and Children’s Medical Center(Group), Dalian, Liaoning, China
| | - Tao Huang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
d’Angelo M, Brandolini L, Catanesi M, Castelli V, Giorgio C, Alfonsetti M, Tomassetti M, Zippoli M, Benedetti E, Cesta MC, Colagioia S, Cocchiaro P, Cimini A, Allegretti M. Differential Effects of Nonsteroidal Anti-Inflammatory Drugs in an In Vitro Model of Human Leaky Gut. Cells 2023; 12:cells12050728. [PMID: 36899865 PMCID: PMC10001324 DOI: 10.3390/cells12050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The intestinal barrier is the main contributor to gut homeostasis. Perturbations of the intestinal epithelium or supporting factors can lead to the development of intestinal hyperpermeability, termed "leaky gut". A leaky gut is characterized by loss of epithelial integrity and reduced function of the gut barrier, and is associated with prolonged use of Non-Steroidal Anti-Inflammatories. The harmful effect of NSAIDs on intestinal and gastric epithelial integrity is considered an adverse effect that is common to all drugs belonging to this class, and it is strictly dependent on NSAID properties to inhibit cyclo-oxygenase enzymes. However, different factors may affect the specific tolerability profile of different members of the same class. The present study aims to compare the effects of distinct classes of NSAIDs, such as ketoprofen (K), Ibuprofen (IBU), and their corresponding lysine (Lys) and, only for ibuprofen, arginine (Arg) salts, using an in vitro model of leaky gut. The results obtained showed inflammatory-induced oxidative stress responses, and related overloads of the ubiquitin-proteasome system (UPS) accompanied by protein oxidation and morphological changes to the intestinal barrier, many of these effects being counteracted by ketoprofen and ketoprofen lysin salt. In addition, this study reports for the first time a specific effect of R-Ketoprofen on the NFkB pathway that sheds new light on previously reported COX-independent effects, and that may account for the observed unexpected protective effect of K on stress-induced damage on the IEB.
Collapse
Affiliation(s)
- Michele d’Angelo
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Laura Brandolini
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
| | - Mariano Catanesi
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vanessa Castelli
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Cristina Giorgio
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Margherita Alfonsetti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Mara Tomassetti
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Mara Zippoli
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Elisabetta Benedetti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Sandro Colagioia
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
| | | | - Annamaria Cimini
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Dept. of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.A.)
| | - Marcello Allegretti
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
- Correspondence: (A.C.); (M.A.)
| |
Collapse
|
15
|
Zhao T, Gao P, Li Y, Tian H, Ma D, Sun N, Chen C, Zhang Y, Qi X. Investigating the role of FADS family members in breast cancer based on bioinformatic analysis and experimental validation. Front Immunol 2023; 14:1074242. [PMID: 37122728 PMCID: PMC10130515 DOI: 10.3389/fimmu.2023.1074242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Breast cancer (BC) is the most common malignant tumor in women worldwide. Emerging evidence indicates the significance of fatty acid metabolism in BC. Fatty acid desaturase (FADS) is closely associated with cancer occurrence and development. Here, bioinformatic analysis and experimental validation were applied to investigate the potential functions of FADS in BC. Several public databases, including TCGA, GEO, HPA, Kaplan-Meier plotter, STRING, DAVID, cBioPortal, TIMER, TRRUST, and LinkedOmics were used to determine mRNA/protein expression levels, prognostic significance, functional enrichment, genetic alterations, association with tumor-infiltrating immune cells, and related transcription factors and kinases. BC tissues showed higher and lower mRNA expression of FADS2/6/8 and FADS3/4/5, respectively. FADS1/2/6 and FADS3/4/5 showed higher and lower protein expression levels, respectively, in BC tissues. Moreover, FADS1/7 up- and FADS3/8 down-regulation predicted poor overall and recurrence-free survival, while FADS2/5 up- and FADS4 down-regulation were associated with poor recurrence-free survival. Receiver operating characteristic curves revealed that FADS2/3/4/8 were indicative diagnostic markers. FADS family members showing differential expression levels were associated with various clinical subtypes, clinical stages, lymph node metastasis status, copy number variants, DNA methylation, and miRNA regulation in BC. The mRNA expression level of FADS1/2/3/4/5/7/8 was observed to be significantly negatively correlated with DNA methylation. FADS1/2 upregulation was significantly correlated with clinical stages. FADS1/4 expression was obviously lower in BC patients with higher lymph node metastasis than lower lymph node metastasis, while FADS7/8 expression was obviously higher in BC patients with higher lymph node metastasis than lower lymph node metastasis. FADS family members showed varying degrees of genetic alterations, and Gene Ontology and KEGG pathway enrichment analyses suggested their involvement in lipid metabolism. Their expression level was correlated with immune cell infiltration levels. FADS2 was chosen for further validation analyses. We found FADS2 to be significantly over-expressed in clinical BC tissue samples. The proliferation, migration, and invasion abilities of MDA-MB-231 and BT474 cells were significantly reduced after FADS2 knockdown. Furthermore, FADS2 may promote the occurrence and development of BC cells via regulating the epithelial-mesenchymal transition (EMT) pathway. Altogether, our results suggest that FADS1/2/3/4 can serve as potential therapeutic targets, prognostic indicators, and diagnostic markers in patients with BC.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pingping Gao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanling Li
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dandan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Na Sun
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ceshi Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China
- Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
- *Correspondence: Xiaowei Qi, ; Yi Zhang, ; Ceshi Chen,
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- *Correspondence: Xiaowei Qi, ; Yi Zhang, ; Ceshi Chen,
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- *Correspondence: Xiaowei Qi, ; Yi Zhang, ; Ceshi Chen,
| |
Collapse
|
16
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
17
|
Guerrero-Rodríguez SL, Mata-Cruz C, Pérez-Tapia SM, Velasco-Velázquez MA. Role of CD36 in cancer progression, stemness, and targeting. Front Cell Dev Biol 2022; 10:1079076. [PMID: 36568966 PMCID: PMC9772993 DOI: 10.3389/fcell.2022.1079076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
CD36 is highly expressed in diverse tumor types and its expression correlates with advanced stages, poor prognosis, and reduced survival. In cancer cells, CD36: 1) increases fatty acid uptake, reprogramming lipid metabolism; 2) favors cancer cell proliferation, and 3) promotes epithelial-mesenchymal transition. Furthermore, CD36 expression correlates with the expression of cancer stem cell markers and CD36+ cancer cells display increased stemness functional properties, including clonogenicity, chemo- and radioresistance, and metastasis-initiating capability, suggesting CD36 is a marker of the cancer stem cell population. Thus, CD36 has been pointed as a potential therapeutic target in cancer. At present, at least three different types of molecules have been developed for reducing CD36-mediated functions: blocking monoclonal antibodies, small-molecule inhibitors, and compounds that knock-down CD36 expression. Herein, we review the role of CD36 in cancer progression, its participation in stemness control, as well as the efficacy of reported CD36 inhibitors in cancer cell cultures and animal models. Overall, the evidence compiled points that CD36 is a valid target for the development of new anti-cancer therapies.
Collapse
Affiliation(s)
| | - Cecilia Mata-Cruz
- Pharmacology Department, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Graduate Program in Biochemical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sonia M. Pérez-Tapia
- Research and Development in Biotherapeutics Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological products LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
- Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Marco A. Velasco-Velázquez
- Pharmacology Department, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Han W, Wang N, Kong R, Bao W, Lu J. Ligand-activated PPARδ expression promotes hepatocellular carcinoma progression by regulating the PI3K-AKT signaling pathway. J Transl Med 2022; 20:86. [PMID: 35151320 PMCID: PMC8840031 DOI: 10.1186/s12967-022-03288-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Peroxisome proliferator-activated receptor-beta/delta (PPARδ) was considered as the key regulator involved in the evolution of various tumors. Given that PPARδ potential role in hepatocellular carcinoma (HCC) is still obscure, we comprehensively assessed its expression pattern, prognosis, functions and correlation with tumor microenvironment in HCC using public database data and in vitro studies. Methods Transcriptional data and clinical data in the TCGA and GEO database were analyzed in R software. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry were used to detect the expression level of related RNA and proteins. The malignant biological characteristics were explored by cell counting Kit-8 (CCK8), 5-Ethynyl-2ʹ-deoxyuridine (EdU) assay and wound healing assay. Results Our results illustrated that PPARδ expression was significantly higher in HCC tissues and HCC cell lines. Elevated expression of PPARδ suggested poor clinical staging and prognosis in HCC. Ligand-activated PPARδ expression promoted the proliferation and invasion of HCC cells via PDK1/AKT/GSK3β signaling pathway. The expression of PPARδ was closely related to the HCC tumor microenvironment. Conclusions PPARδ plays an important part in HCC progression, penetrating investigation of the related regulatory mechanism may shed light upon further biological and pharmacological value.
Collapse
|
19
|
Potential Therapeutic Effects of PPAR Ligands in Glioblastoma. Cells 2022; 11:cells11040621. [PMID: 35203272 PMCID: PMC8869892 DOI: 10.3390/cells11040621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GB), also known as grade IV astrocytoma, represents the most aggressive form of brain tumor, characterized by extraordinary heterogeneity and high invasiveness and mortality. Thus, a great deal of interest is currently being directed to investigate a new therapeutic strategy and in recent years, the research has focused its attention on the evaluation of the anticancer effects of some drugs already in use for other diseases. This is the case of peroxisome proliferator-activated receptors (PPARs) ligands, which over the years have been revealed to possess anticancer properties. PPARs belong to the nuclear receptor superfamily and are divided into three main subtypes: PPAR-α, PPAR-β/δ, and PPAR-γ. These receptors, once activated by specific natural or synthetic ligands, translocate to the nucleus and dimerize with the retinoid X receptors (RXR), starting the signal transduction of numerous genes involved in many physiological processes. PPARs receptors are activated by specific ligands and participate principally in the preservation of homeostasis and in lipid and glucose metabolism. In fact, synthetic PPAR-α agonists, such as fibrates, are drugs currently in use for the clinical treatment of hypertriglyceridemia, while PPAR-γ agonists, including thiazolidinediones (TZDs), are known as insulin-sensitizing drugs. In this review, we will analyze the role of PPARs receptors in the progression of tumorigenesis and the action of PPARs agonists in promoting, or not, the induction of cell death in GB cells, highlighting the conflicting opinions present in the literature.
Collapse
|
20
|
Sakai G, Hirao-Suzuki M, Koga T, Kobayashi T, Kamishikiryo J, Tanaka M, Fujii K, Takiguchi M, Sugihara N, Toda A, Takeda S. Perfluorooctanoic acid (PFOA) as a stimulator of estrogen receptor-negative breast cancer MDA-MB-231 cell aggressiveness: Evidence for involvement of fatty acid 2-hydroxylase (FA2H) in the stimulated cell migration. J Toxicol Sci 2022; 47:159-168. [DOI: 10.2131/jts.47.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Genki Sakai
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Takayuki Koga
- Department of Hygienic Chemistry, Daiichi University of Pharmacy
| | | | - Jun Kamishikiryo
- Department of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Michitaka Tanaka
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Kiyonaga Fujii
- Laboratory of Analytical Chemistry, Daiichi University of Pharmacy
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Akihisa Toda
- Department of Hygienic Chemistry, Daiichi University of Pharmacy
| | - Shuso Takeda
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
21
|
Xiao Y, Liu Q, Peng N, Li Y, Qiu D, Yang T, Kang R, Usmani A, Amadasu E, Borlongan CV, Yu G. Lovastatin Inhibits RhoA to Suppress Canonical Wnt/β-Catenin Signaling and Alternative Wnt-YAP/TAZ Signaling in Colon Cancer. Cell Transplant 2022; 31:9636897221075749. [PMID: 35168393 PMCID: PMC8855423 DOI: 10.1177/09636897221075749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/25/2021] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Statins are first-line drugs used to control patient lipid levels, but there is recent evidence that statin treatment can lower colorectal cancer (CRC) incidence by 50% and prolong CRC patient survival through mechanisms that are poorly understood. In this study, we found that the treatment of APCmin mice by the mevalonate pathway inhibitor lovastatin significantly reduced the number of colonic masses and improved hypersplenism and peripheral anemia. Furthermore, reverse transcription polymerase chain reaction (RT-PCR) analysis of colonic mass tissues showed a potent inhibitory effect in both Wnt/β-catenin signaling and YAP/TAZ signaling in the lovastatin treatment group. The results of our transcriptomic analyses in RKO indicated that lovastatin regulated several proliferation-related signaling pathways. Moreover, lovastatin suppressed important genes and proteins related to the canonical Wnt/β-catenin and alternative Wnt-YAP/TAZ signaling pathways in RKO and SW480 cells, and these effects were rescued by mevalonic acid (MVA), as confirmed through a series of Western blotting, RT-PCR, and reporter assays. Given that statins suppress oncogenic processes primarily through the inhibition of Rho GTPase in the mevalonate pathway, we speculate that lovastatin can inhibit certain Rho GTPases to suppress both canonical Wnt/β-catenin signaling and alternative Wnt-YAP/TAZ signaling. In RKO cells, lovastatin showed similar inhibitory properties as the RhoA inhibitor CCG1423, being able to inhibit β-catenin, TAZ, and p-LATS1 protein activity. Our results revealed that lovastatin inhibited RhoA activity, thereby suppressing the downstream canonical Wnt/β-catenin and alternative Wnt-YAP/TAZ pathways in colon cancer cells. These inhibitory properties suggest the promise of statins as a treatment for CRC. Altogether, the present findings support the potential clinical use of statins in non-cardiovascular contexts and highlight novel targets for anticancer treatments.
Collapse
Affiliation(s)
- Yi Xiao
- Division of Cardiovascular, Xiangya
Hospital, Central South University, Changsha, China
| | - Qin Liu
- Division of Cardiovascular, Xiangya
Hospital, Central South University, Changsha, China
| | - Nanyin Peng
- Division of Cardiovascular, Xiangya
Hospital, Central South University, Changsha, China
| | - Yuzhang Li
- Division of Cardiovascular, Xiangya
Hospital, Central South University, Changsha, China
| | - Danyang Qiu
- Division of Cardiovascular, Xiangya
Hospital, Central South University, Changsha, China
| | - Tianlun Yang
- Division of Cardiovascular, Xiangya
Hospital, Central South University, Changsha, China
| | - Richard Kang
- Department of Neurosurgery and Brain
Repair, University of South Florida Morsani College of Medicine, Tampa, FL,
USA
| | - Ahsan Usmani
- Department of Neurosurgery and Brain
Repair, University of South Florida Morsani College of Medicine, Tampa, FL,
USA
| | - Efosa Amadasu
- Department of Neurosurgery and Brain
Repair, University of South Florida Morsani College of Medicine, Tampa, FL,
USA
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain
Repair, University of South Florida Morsani College of Medicine, Tampa, FL,
USA
| | - Guolong Yu
- Division of Cardiovascular, Xiangya
Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Lin Y, Wang Y, Li PF. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1074911. [PMID: 36589809 PMCID: PMC9800994 DOI: 10.3389/fendo.2022.1074911] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is involved in lipid metabolism of various tissues. Different metabolites of fatty acids and agonists like fibrates activate PPARα for its transactivative or repressive function. PPARα is known to affect diverse human diseases, and we focus on advanced studies of its transcriptional regulation in these diseases. In MAFLD, PPARα shows a protective function with its upregulation of lipid oxidation and mitochondrial biogenesis and transcriptional repression of inflammatory genes, which is similar in Alzheimer's disease and cardiovascular disease. Activation of PPARα also prevents the progress of diabetes complications; however, its role in diabetes and cancers remains uncertain. Some PPARα-specific agonists, such as Wy14643 and fenofibrate, have been applied in metabolic syndrome treatment, which might own potential in wider application. Future studies may further explore the functions and interventions of PPARα in cancer, diabetes, immunological diseases, and neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Lin
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
23
|
Rajarajan D, Natesh J, Penta D, Meeran SM. Dietary Piperine Suppresses Obesity-Associated Breast Cancer Growth and Metastasis by Regulating the miR-181c-3p/ PPARα Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15562-15574. [PMID: 34905918 DOI: 10.1021/acs.jafc.1c05670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adipocyte-derived leptin activates multiple oncogenic signaling, leading to breast cancer cell progression and metastasis. Hence, finding effective strategies to inhibit the oncogenic effects of leptin would provide a novel approach for disrupting obesity-associated breast cancer. In the current study, we explored the role of piperine, a major plant alkaloid from Piper nigrum (black pepper), against leptin-induced breast cancer. Piperine treatment significantly inhibited leptin-induced breast cancer cell proliferation, colony formation, migration, and invasion. We found that piperine downregulated the expression of PPARα, a predicted target of miR-181c-3p. Mechanistically, piperine potentiates miR-181c-3p-mediated anticancer potential in leptin-induced breast cancer cells. Interestingly, the knockdown of PPARα reduced the proliferative potential of leptin-induced breast cancer cells. Further, oral administration of piperine inhibited breast tumor growth in diet-induced obese mice, accompanied by the upregulation of miR-181c-3p and downregulation of PPARα expression. Together, piperine represents a potential candidate for further development as an anticancer agent for treating obesity-associated breast cancer.
Collapse
Affiliation(s)
- Dheeran Rajarajan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Parvanova I, Borziak K, Guarino J, Finkelstein J. A Platform for Integrating and Sharing Cancer Stem Cell Data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:2320-2325. [PMID: 34891750 DOI: 10.1109/embc46164.2021.9630083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advancements in cancer research and treatment have highlighted the need for standardization and sharing of cancer stem cell (CSC) data to facilitate research transparency and to promote collaboration within the scientific community. Although previous applications have attempted to gather and disseminate these data, currently no platform organizes the heterogeneous CSC information into a harmonized project-based framework. The aim of our platform, ReMeDy, is to provide an intelligent informatics solution integrating diverse CSC characteristics, outcomes information, and omics data across clinical, preclinical and in vitro studies. These heterogeneous data streams are organized within a multi-modular framework, subjected to a stringent validation by using standardized ontologies, and stored in a searchable format. To test usefulness of our approach for capturing diverse data related to CSCs, we integrated data from 52 publicly-available CSC projects. We validated the robustness of the platform, by efficiently organizing diverse data elements, and demonstrated its potential for promoting future knowledge discovery driven by aggregation of published data. Next steps include expanding number of uploaded CSC projects and developing additional data visualization tools. The platform is accessible through https://remedy.mssm.edu/.
Collapse
|
25
|
Cizkova K, Foltynkova T, Hanyk J, Kamencak Z, Tauber Z. When Activator and Inhibitor of PPARα Do the Same: Consequence for Differentiation of Human Intestinal Cells. Biomedicines 2021; 9:biomedicines9091255. [PMID: 34572440 PMCID: PMC8472525 DOI: 10.3390/biomedicines9091255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-dependent transcription factor that plays a role in various processes including differentiation of several cell types. We investigated the role of PPARα in the differentiation of intestinal cells using HT-29 and Caco2 cell lines as a model as well as human normal colon and colorectal carcinoma tissues. We detected a significant increase in PPARα expression in differentiated HT-29 cells as well as in normal surface colon epithelium where differentiated cells are localised. Thus, it seems that PPARα may play a role in differentiation of intestinal cells. Interestingly, we found that both PPARα activators (fenofibrate and WY-14643) as well as its inhibitor (GW6471) regulated proliferation and differentiation of HT-29 cells in vitro in the same way. Both compounds led to a decrease in proliferation accompanied by a significant increase in expression of villin, intestinal alkaline phosphatase (differentiation markers). Moreover, the same trend in villin expression was observed in Caco2 cells. Furthermore, villin expression was independent of subcellular localisation of PPARα. In addition, we found similar levels of PPARα expression in colorectal carcinomas in comparison to adjacent normal epithelium. All these findings support the hypothesis that differentiation of intestinal epithelium is PPARα-independent.
Collapse
Affiliation(s)
| | | | | | | | - Zdenek Tauber
- Correspondence: ; Tel.: +420-585-632-283; Fax: +420-585-632-966
| |
Collapse
|
26
|
Cheng HS, Yip YS, Lim EKY, Wahli W, Tan NS. PPARs and Tumor Microenvironment: The Emerging Roles of the Metabolic Master Regulators in Tumor Stromal-Epithelial Crosstalk and Carcinogenesis. Cancers (Basel) 2021; 13:2153. [PMID: 33946986 PMCID: PMC8125182 DOI: 10.3390/cancers13092153] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for more than three decades. Consisting of three isotypes, PPARα, γ, and β/δ, these nuclear receptors are regarded as the master metabolic regulators which govern many aspects of the body energy homeostasis and cell fate. Their roles in malignancy are also increasingly recognized. With the growing interest in crosstalk between tumor stroma and epithelium, this review aims to highlight the current knowledge on the implications of PPARs in the tumor microenvironment. PPARγ plays a crucial role in the metabolic reprogramming of cancer-associated fibroblasts and adipocytes, coercing the two stromal cells to become substrate donors for cancer growth. Fibroblast PPARβ/δ can modify the risk of tumor initiation and cancer susceptibility. In endothelial cells, PPARβ/δ and PPARα are pro- and anti-angiogenic, respectively. Although the angiogenic role of PPARγ remains ambiguous, it is a crucial regulator in autocrine and paracrine signaling of cancer-associated fibroblasts and tumor-associated macrophages/immune cells. Of note, angiopoietin-like 4 (ANGPTL4), a secretory protein encoded by a target gene of PPARs, triggers critical oncogenic processes such as inflammatory signaling, extracellular matrix derangement, anoikis resistance and metastasis, making it a potential drug target for cancer treatment. To conclude, PPARs in the tumor microenvironment exhibit oncogenic activities which are highly controversial and dependent on many factors such as stromal cell types, cancer types, and oncogenesis stages. Thus, the success of PPAR-based anticancer treatment potentially relies on innovative strategies to modulate PPAR activity in a cell type-specific manner.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (Y.S.Y.); (W.W.)
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (Y.S.Y.); (W.W.)
| | - Eldeen Kai Yi Lim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (Y.S.Y.); (W.W.)
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, 31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (Y.S.Y.); (W.W.)
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|