1
|
Abo Elnaga AA, Serag I, Alsaied MA, Khalefa BB, Rajput J, Ramadan S, Elettreby AM. Efficacy and safety of tenapanor vs placebo in treating CKD patients on dialysis and with hyperphosphatemia: a systematic review and meta-analysis of 2251 patients. Int Urol Nephrol 2025; 57:1835-1850. [PMID: 39702842 DOI: 10.1007/s11255-024-04316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Hyperphosphatemia is common in chronic kidney disease (CKD) patients, especially patients on hemodialysis. Tenapanor is a novel drug with fewer side effects and high compliance compared to traditional phosphate binders. We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of tenapanor. METHODS A comprehensive search was conducted on PubMed, Scopus, Web of Science, and Cochrane Library, from inception to June 25, 2024. Nine randomized controlled trials (RCTs) and three single-arm studies comparing tenapanor to placebo were included. By adopting a random-effect empirical Bayes model, STATA and RevMan were used to pool dichotomous and continuous data. The primary outcome assessed was serum phosphate. Secondary outcomes included intact parathyroid hormone (iPTH), serum calcium, potassium, and sodium, bowel movement frequency, stool consistency using BSFS score and safety outcomes. RESULTS Twelve studies with a total of 2,251 patients were included. Tenapanor was superior to placebo in reducing phosphate at all assessed end points, week 1 (MD = -1.28 mg/dL, P < 0.001), week 2 (MD = -1.07 mg/dL, P < 0.001), week 3 (MD = -1.22 mg/dL, P < 0.001), and week 4 (MD = -0.91 mg/dL, P < 0.001). In addition, iPTH was almost statistically significantly lower in the tenapanor group (MD = -36.53 ng/L, P = 0.07). Moreover, it led to a statistically significant reduction in sodium level (MD = -0.7 mmol/L, P = 0.0003). On the contrary, tenapanor had no statistically significant effect on calcium or potassium levels. Bowel movement frequency and stool consistency were significantly higher in the tenapanor group at all assessed end points. Regarding safety analysis, diarrhea and nausea were statistically significantly higher in the tenapanor group, (RR = 3.71, P < 0.001) and (RR = 1.97, P < 0.001), respectively. There were no significant differences in other adverse events. CONCLUSION Based on our meta-analysis, tenapanor can effectively reduce serum phosphate, iPTH, and sodium. Additionally, it improves bowel movement frequency and stool consistency. However, it is associated with a higher risk of GIT symptoms that should be considered and managed during treatment. We recommend conducting further RCTs to perform head-to-head comparisons against other active comparators such as phosphate binders.
Collapse
Affiliation(s)
| | - Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | - Jaisingh Rajput
- Vaughn Clinic, Department of Family Medicine, Baptist Family Medicine Residency Program, Montgomery Alabama, USA
| | - Shrouk Ramadan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
2
|
Mohamed ON, Mohamed MI, Kamel SF, Dardeer AM, Shehata S, Mohammed HM, Kamel AK, Ismail DE, Abbas NI, Abdelsamie MA, Ziady AFK, Sayed MM, Toni NDM, Hafez SM, Elsaghir SMM. Serum midkine level and its association with subclinical coronary artery calcification and carotid atherosclerosis in chronic kidney disease. BMC Nephrol 2025; 26:185. [PMID: 40211171 PMCID: PMC11987434 DOI: 10.1186/s12882-025-04066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/11/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND There are no studies investigating the role of midkine (MK) in vascular calcification (VC) or vascular disease associated with chronic kidney disease (CKD). This study assessed serum MK level and investigated its relationship with carotid atherosclerosis and coronary artery calcification (CAC) in non-dialysis CKD. METHODS The study comprised 80 controls and 185 adult patients with CKD at stages 3-5 who were free of cardiovascular diseases. Acute renal failure, chronic hemodialysis, severe liver disease, inflammatory states, anticoagulation therapy and cancer were excluded. The patients were classified based on presence of CAC score into severe and mild to moderate CAC groups. They were also divided into atherosclerotic and non-atherosclerotic groups based on carotid atherosclerosis. CBC, kidney function tests, lipid profile, intact parathyroid hormone (iPTH), and phosphorus were assessed. Serum levels of MK, tumor necrosis factor- α (TNF- α), interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hs-CRP) were quantitatively tested using ELISA. Cardiac CT scan was done to calculate CAC score. Carotid ultrasonography was used to evaluate carotid intima media thickness (CIMT) and identify plaques. RESULTS All CKD categories, including CKD-3, CKD-4, and CKD-5, showed higher rates of carotid plaques (p = 0.007, p < 0.001, and p < 0.001, respectively), higher levels of MK (p < 0.001 for each), and higher CAC scores (p < 0.001 for each) as CKD worsened. Compared to mild to moderate CAC patients, severe CAC patients showed increased CIMT (p < 0.001) and raised serum levels of MK (p < 0.001), TNF-α (p = 0.001), IL-6 (p = 0.002), hs-CRP (p = 0.003), iPTH (p = 0.02), phosphorus (p < 0.001), total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C). Multivariate linear regression revealed that CAC was reliably predicted by MK (p = 0.008) and serum creatinine (p = 0.001). Carotid atherosclerotic patients had higher serum levels of MK, TNF-α, IL-6, hs-CRP, iPTH, phosphorus, TC, total triglycerides and LDL-C (p < 0.001 for each). Multivariate logistic regression showed that serum MK (p = 0.001), serum creatinine (p = 0.005), age (p < 0.001), iPTH (p = 0.007), and IL-6 (p = 0.024) were significant predictors of carotid atherosclerosis. CONCLUSIONS As CKD worsened, MK levels, carotid atherosclerosis and CAC increased. Serum MK was a reliable biomarker for asymptomatic carotid atherosclerosis and CAC in non-dialysis CKD, allowing prompt early diagnosis to avert cardiovascular morbidity and death in the future. TRIAL REGISTRATION The trial number was 1138 and its registration was approved by the hospital's Research Ethics Committee in 4/2024.
Collapse
Affiliation(s)
- Osama Nady Mohamed
- Department of Internal Medicine, Faculty of Medicine, Minia University, Taha Hussein street, Minia, Egypt.
| | - Marwa Ibrahim Mohamed
- Department of Internal Medicine, Faculty of Medicine, Minia University, Taha Hussein street, Minia, Egypt
| | - Shaimaa F Kamel
- Department of Internal Medicine, Faculty of Medicine, Minia University, Taha Hussein street, Minia, Egypt
| | - Ahmed M Dardeer
- Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hassan Mh Mohammed
- Department of Cardiology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Asmaa Khalf Kamel
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Doaa Elzaeem Ismail
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nehal I Abbas
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | | | - Manar M Sayed
- Department of Radiology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Shaimaa Moustafa Hafez
- Department of Public and Preventive Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
3
|
Jha PK, Nakano T, Itto LYU, Barbeiro MC, Lupieri A, Aikawa E, Aikawa M. Vascular inflammation in chronic kidney disease: the role of uremic toxins in macrophage activation. Front Cardiovasc Med 2025; 12:1574489. [PMID: 40201789 PMCID: PMC11975941 DOI: 10.3389/fcvm.2025.1574489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition characterized by the gradual loss of kidney function, leading to the accumulation of uremic toxins in the bloodstream. These toxins play a pivotal role in mediating vascular inflammation, a key contributor to the high cardiovascular morbidity and mortality observed in CKD patients. This review article explores the intricate mechanisms by which uremic toxins accelerate vascular inflammation. Macrophages, as versatile immune cells, are central to the inflammatory response. Evidence suggests that the uremic milieu influences macrophage biology. In this review article, we focus on the signaling through which uremic toxins, particularly indoxyl sulfate-an independent risk factor for cardiovascular complications in CKD patients, modulate macrophage activation and function, and how these changes contribute to vascular inflammation, leading to the increased cardiovascular risk. Investigation of such mechanisms provide molecular bases for the development of new therapies that retard the development of cardiovascular disorders in CKD patients.
Collapse
Affiliation(s)
- Prabhash Kumar Jha
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Toshiaki Nakano
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lucas Yuji Umesaki Itto
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Miguel Cantadori Barbeiro
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adrien Lupieri
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Pan Y, Zhang Y, Lin J, Liu Z, Li Z, Luo Z, Xu N. Simulating Arterial Stress for Rapid Evaluation of Antivascular Calcification Therapies from Herbal Extracts. ACS Biomater Sci Eng 2025; 11:1212-1221. [PMID: 39853277 DOI: 10.1021/acsbiomaterials.4c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Vascular calcification severely disrupts cardiovascular hemodynamics, leading to high rates of morbidity and mortality. Despite their clinical impact, the development of effective treatments remains limited, underscoring an urgent need for efficient and reliable drug screening methods. Vascular smooth muscle cells (VSMCs) are known to play a central role in driving the calcification process, undergoing an osteogenic transition in response to pathological conditions. To mimic this process, we developed a cyclic stretching device that replicates the physiological mechanical stresses experienced by VSMCs during arterial pulsation. This device dramatically accelerates the osteogenic transition of VSMCs, reducing phenotypic switching from 13 days under static conditions to just 4 h. Using this device, we screened 20 herbal extracts for anticalcification properties and identifiedSalvia miltiorrhizaas a candidate with therapeutic potential that inhibits VSMC osteogenic transdifferentiation in vitro. The anticalcification efficacy ofSalvia miltiorrhizawas further validated in a vitamin D-induced rat model of cardiovascular calcification, highlighting its translational potential. This screening platform provides a rapid and physiologically relevant method for evaluating potential antivascular calcification therapies, significantly improving the efficiency of drug discovery for clinical translation.
Collapse
Affiliation(s)
- Yu Pan
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Yuhang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Junsheng Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Nan Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
5
|
Otis JL, Parker NM, Busch RA. Nutrition support for patients with renal dysfunction in the intensive care unit: A narrative review. Nutr Clin Pract 2025; 40:35-53. [PMID: 39446967 PMCID: PMC11713211 DOI: 10.1002/ncp.11231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Providing optimal nutrition support in the intensive care unit (ICU) is a challenging and dynamic process. Energy, protein, fluid, electrolyte, and micronutrient requirements all can be altered in patients with acute, chronic, and acute-on-chronic kidney disease. Given that renal dysfunction occurs in up to one-half of ICU patients, it is imperative that nutrition support providers understand how renal dysfunction, its metabolic consequences, and its treatments, including renal replacement therapy (RRT), affect patients' nutrition needs. Data on nutrient requirements in critically ill patients with renal dysfunction are sparse. This article provides an overview of renal dysfunction in the ICU and identifies and addresses the unique nutrition challenges present among these patients, including those receiving RRT, as supported by the available literature and guidelines.
Collapse
Affiliation(s)
- Joanna L. Otis
- Department of Clinical NutritionUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - Nicholas M. Parker
- Department of PharmacyUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - Rebecca A. Busch
- Division of Acute Care and Regional General Surgery, Department of SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
6
|
Fan Y, Jialiken D, Zheng Z, Zhang W, Zhang S, Zheng Y, Sun Z, Zhang H, Yan X, Liu M, Fang Z. Qianyang Yuyin granules alleviate hypertension-induced vascular remodeling by inhibiting the phenotypic switch of vascular smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118896. [PMID: 39393558 DOI: 10.1016/j.jep.2024.118896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qianyang Yuyin granules (QYYY) have been used clinically to treat hypertension for over two decades. Previous clinical trials have shown that QYYY can improve vascular elastic function in hypertensive patients. However, the underlying pharmacological mechanism is unclear. AIM OF THE STUDY To elucidate the effects and mechanisms of QYYY on vascular remodeling using a multidisciplinary approach that includes network pharmacology, proteomics, and both in vitro and in vivo experiments. MATERIALS AND METHODS The main components of QYYY were identified using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Network pharmacology and molecular docking were employed to predict QYYY's primary active ingredients, potential therapeutic targets and intervention pathways in hypertensive vascular remodeling. We induced hypertension in male C57BL/6 mice by infusing angiotensin II (Ang II) via osmotic minipumps, and performed pre-treatment with QYYY or Sacubitril/valsartan (Entresto). Blood pressure was monitored in vivo, followed by the extraction of aortas to examine pathological structural changes and alterations in protein expression patterns. The expression and location of proteins involved in the HIF-1α/TWIST1/P-p65 signaling pathway were investigated, as well as markers of vascular smooth muscle cells (VSMCs) phenotypic switch. In vitro, we studied the effects of QYYY water extract on Ang II-stimulated human aortic VSMCs. We investigated whether QYYY could affect the HIF-1α/TWIST1/P-p65 signaling pathway, thereby ameliorating apoptosis, autophagy, and phenotype switch in VSMCs. RESULTS We identified 62 main compounds in QYYY, combined with network pharmacology, speculated 827 potentially active substances, and explored 1021 therapeutic targets. The KEGG pathway analysis revealed that the mechanisms of action associated with QYYY therapy potentially encompass various biological processes, including metabolic pathways, TNF signaling pathways, apoptosis, Ras signaling pathways, HIF-1 signaling pathways, autophagy-animal pathways. In hypertensive mice, QYYY restored abnormally elevated blood pressure, vascular remodeling, and inflammation with a dose-response relationship while altering abnormal protein patterns. In vitro, QYYY could inhibit abnormal proliferation, migration, intracellular Ca2+ accumulation and cytoskeletal changes of VSMCs. It improved mitochondrial function, reduced ROS levels, stabilized membrane potential, prevented cell death, and reduced overproduction of TGF-β1, TNF-a, and IL-1β. CONCLUSION QYYY may be able to inhibit the overactivation of the HIF-1α/TWIST1/P-p65 signaling pathway, improve the phenotypic switch, and balance apoptosis and autophagy in VSMCs, thereby effectively improving vascular remodeling caused by hypertension.
Collapse
Affiliation(s)
- Yadong Fan
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China.
| | - Dinala Jialiken
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ziwen Zheng
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weiting Zhang
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Siqi Zhang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Yawei Zheng
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zeqi Sun
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haitao Zhang
- Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiwu Yan
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China.
| | - Ming Liu
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Zhuyuan Fang
- Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; Jiangsu Chinese Medicine Clinical Medicine Innovation Center for Hypertension, Nanjing, 210029, China; Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
7
|
Kostov K, Simeonova T, Ignatov B, Eftimova T. Evaluation of Individual Cardiovascular Risk in Pre-Dialysis CKD Patients by Using the Ratio of Calcium-Phosphorus Product to Estimated Glomerular Filtration Rate (Ca × P/eGFR). Biomedicines 2025; 13:235. [PMID: 39857818 PMCID: PMC11762089 DOI: 10.3390/biomedicines13010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) patients have an increased risk of cardiovascular disease (CVD), necessitating effective risk assessment methods. This study evaluates the calcium-phosphorus product (Ca × P) to estimated glomerular filtration rate (Ca × P/eGFR) ratio as a potential biomarker for predicting CV risk in pre-dialysis CKD patients. METHODS Eighty-four CKD patients in stages G1-G4, according to the KDIGO criteria, were classified into CVD (n = 43) and non-CVD (n = 41) groups. Biochemical parameters, including serum creatinine (SCr), blood urea nitrogen (BUN), calcium (Ca), inorganic phosphate (Pi), parathyroid hormone (PTH), alkaline phosphatase (ALP), Ca × P, eGFR, and the Ca × P/eGFR ratio, were measured and calculated. Statistical analyses were performed to identify predictors of CV risk and evaluate the diagnostic reliability of the Ca × P/eGFR ratio for predicting the risk. RESULTS Significant differences were observed in SCr, BUN, eGFR (p < 0.001), and the Ca × P/eGFR ratio (p = 0.007) between the groups. Regression analysis indicated the Ca × P/eGFR ratio as a significant CVD risk predictor (p = 0.012, OR = 1.206, 95% CI: 1.042-1.395). Receiver Operating Characteristic (ROC) curve analysis revealed an AUC of 0.751 (p < 0.001, 95% CI: 0.645-0.857), with a sensitivity and specificity of the method of 74.4% and 70.7%, respectively. Significant correlations were found between the Ca × P/eGFR ratio and SCr, BUN, UA, Ca, Pi, PTH, and ALP. CONCLUSIONS The Ca × P/eGFR ratio may serve as a significant predictor of CVD risk in pre-dialysis CKD patients, suggesting that its integration into routine evaluations could enhance CV risk stratification and management.
Collapse
Affiliation(s)
- Krasimir Kostov
- Department of Physiology and Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria; (T.S.); (B.I.)
| | - Tatyana Simeonova
- Department of Physiology and Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria; (T.S.); (B.I.)
| | - Borislav Ignatov
- Department of Physiology and Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria; (T.S.); (B.I.)
| | | |
Collapse
|
8
|
Ahmed SA, Yar AA, Ghaith AM, Alahmadi RN, Almaleki FA, Alahmadi HS, Almaramhy WH, Alsaedi AM, Alraddadi MK, Ismail HM. Prevalence of Vitamin K2 Deficiency and Its Association with Coronary Artery Disease: A Case-Control Study. Diseases 2025; 13:12. [PMID: 39851476 PMCID: PMC11764201 DOI: 10.3390/diseases13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Vitamin K2 analogs are associated with decreased vascular calcification, which may provide protective benefits for individuals with coronary artery disease (CAD) by stimulating anti-calcific proteins like matrix Gla protein and adjusting innate immune responses. This study addresses a significant gap in understanding the association between serum levels of vitamin K2 analogs in different CAD types and examines their correlations with clinical risk parameters in CAD patients. METHODS This case-control study enrolled CAD patients and healthy controls to assess and compare serum concentrations of two vitamin K2 analogs including menaquinone-4 (MK-4) and menaquinone-7 (MK-7) via ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). CAD risk factors were evaluated and related to serum levels of vitamin K2 analogs. The CAD group was further subdivided into stable angina, STEMI, NSTEMI, and unstable angina groups to investigate potential differences in vitamin K2 analog levels. RESULTS Patients experiencing acute coronary syndrome exhibited notably reduced serum levels of MK-4 and MK-7 (1.61 ± 0.66, and 1.64 ± 0.59 ng/mL, respectively) in comparison to the control group (2.29 ± 0.54, and 2.16 ± 0.46 ng/mL, respectively), with MK-4 and MK-7 displaying stronger associations with CAD risk indicators. Notable variations in vitamin K2 analog levels were found between CAD patients and control groups (p < 0.001). Unstable angina patients showed the lowest serum levels of MK-4 and MK-7. CONCLUSIONS The present study demonstrated a higher prevalence rate of vitamin K2 deficiency among patients with CAD. The most pronounced decrease in MK-4 and MK-7 was observed in unstable angina patients. Moreover, these outcomes indicate the imperative requirement for an integrative approach that incorporates metabolic, lipid, and vitamin K2-related pathways in the risk stratification and management of CAD.
Collapse
Affiliation(s)
- Sameh A. Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah 42353, Saudi Arabia
| | - Abdulaziz A. Yar
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah 42353, Saudi Arabia
| | - Anas M. Ghaith
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia (H.M.I.)
| | - Rayan N. Alahmadi
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia (H.M.I.)
| | - Faisal A. Almaleki
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia (H.M.I.)
| | - Hassan S. Alahmadi
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia (H.M.I.)
| | - Waleed H. Almaramhy
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia (H.M.I.)
| | - Ahmed M. Alsaedi
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia (H.M.I.)
| | - Man K. Alraddadi
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia (H.M.I.)
| | - Hussein M. Ismail
- Department of Internal Medicine, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia (H.M.I.)
- Department of Cardiology, College of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
9
|
Dong R, Ji Z, Wang M, Ma G. Role of macrophages in vascular calcification: From the perspective of homeostasis. Int Immunopharmacol 2025; 144:113635. [PMID: 39566391 DOI: 10.1016/j.intimp.2024.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Vascular calcification (VC) is a crucial risk factor for the high morbidity and mortality associated with cardiovascular and cerebrovascular diseases. With the global population aging, the incidence of VC is escalating annually. However, due to its silent clinical process, VC often results in irreversible clinical outcomes. Inflammation is a core element in the VC process, and macrophages are the major inflammatory cells. Due to their diverse origins, microenvironments, and polarization states, macrophages exhibit significant heterogeneity, exerting strong effects on the occurrence, development, and even the regression of VC. In this review, we summarize the origin, distribution, classification, and surface markers of macrophages. Simultaneously, we explore the mechanisms by which macrophages maintain homeostasis or regulate inflammation, including the macrophage-mediated regulation of VC through the release of inflammatory factors, osteogenic genes, extracellular vesicles, and alterations in efferocytosis. Finally, we discuss research targeting inflammation and macrophages to develop novel therapeutic regimens for preventing and treating VC.
Collapse
Affiliation(s)
- Rong Dong
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China; Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Mi Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing 210009, China.
| |
Collapse
|
10
|
Kanda D, Tokushige A, Ohmure K, Shimono H, Tabata H, Ito N, Kubozono T, Ohishi M. Impact of serum cholinesterase on calcified nodules in patients with stable coronary artery disease. Coron Artery Dis 2025; 36:70-77. [PMID: 39373114 PMCID: PMC11617076 DOI: 10.1097/mca.0000000000001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Calcified nodules (CNs) are an advanced stage of coronary calcification that can have significant clinical implications. We investigated factors associated with CNs, the etiology of which is not fully understood. METHODS We retrospectively evaluated 619 patients with stable coronary artery disease who underwent intravascular ultrasound (IVUS)-guided percutaneous coronary intervention (PCI). CNs in the culprit lesion were evaluated via IVUS, and all-cause mortality and major cardiovascular and cerebrovascular events (MACCEs) were compared between the CN and non-CN groups. RESULTS The CN group ( n = 40 patients) had a significantly lower survival rate and a higher incidence of MACCE than the non-CN group ( P = 0.020 and P < 0.001, respectively). Multivariate logistic regression analysis models revealed that chronic kidney disease and serum cholinesterase (ChE) level were associated with CN formation [odds ratio (OR): 3.15, 95% confidence interval (CI): 1.30-7.69, P = 0.001 and OR: 0.94, 95% CI: 0.88-0.99, P = 0.042]. The optimal cutoff of serum ChE level as per the receiver operating characteristic curve was 309 units/l (Area under the curve = 0.67, sensitivity = 93%, specificity = 40%, P = 0.001). The low-ChE group divided according to the optimal cutoff value showed significantly higher cumulative incidence of MACCEs after PCI than the high-ChE group as per Kaplan-Meier analysis. CONCLUSION The presence of CNs is significantly associated with a poor prognosis and MACCE after PCI among patients with stable coronary artery disease. Serum ChE levels may affect CN formation.
Collapse
Affiliation(s)
- Daisuke Kanda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihiro Tokushige
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kenta Ohmure
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirokazu Shimono
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroyuki Tabata
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Nobuhiro Ito
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuro Kubozono
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Wang Z, Gui Z, Zhang L, Wang Z. Advances in the mechanisms of vascular calcification in chronic kidney disease. J Cell Physiol 2025; 240:e31464. [PMID: 39392232 DOI: 10.1002/jcp.31464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Vascular calcification (VC) is common in patients with advanced chronic kidney disease (CKD).A series of factors, such as calcium and phosphorus metabolism disorders, uremic toxin accumulation, inflammation and oxidative stress and cellular senescence, cause osteoblast-like differentiation of vascular smooth muscle cells, secretion of extracellular vesicles, and imbalance of calcium regulatory factors, which together promote the development of VC in CKD. Recent advances in epigenetics have provided better tools for the investigation of VC etiology and new approaches for finding more accurate biomarkers. These advances have not only deepened our understanding of the pathophysiological mechanisms of VC in CKD, but also provided valuable clues for the optimization of clinical predictors and the exploration of potential therapeutic targets. The aim of this article is to provide a comprehensive overview of the pathogenesis of CKD VC, especially the new advances made in recent years, including the various key factors mentioned above. Through the comprehensive analysis, we expect to provide a solid theoretical foundation and research direction for future studies targeting the specific mechanisms of CKD VC, the establishment of clinical predictive indicators and the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Zebin Gui
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| | - Lirong Zhang
- Department of Radiology, Affliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
13
|
Siracusa C, Carabetta N, Morano MB, Manica M, Strangio A, Sabatino J, Leo I, Castagna A, Cianflone E, Torella D, Andreucci M, Zicarelli MT, Musolino M, Bolignano D, Coppolino G, De Rosa S. Understanding Vascular Calcification in Chronic Kidney Disease: Pathogenesis and Therapeutic Implications. Int J Mol Sci 2024; 25:13096. [PMID: 39684805 DOI: 10.3390/ijms252313096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Vascular calcification (VC) is a biological phenomenon characterized by an accumulation of calcium and phosphate deposits within the walls of blood vessels causing the loss of elasticity of the arterial walls. VC plays a crucial role in the incidence and progression of chronic kidney disease (CKD), leading to a significant increase in cardiovascular mortality in these patients. Different conditions such as age, sex, dyslipidemia, diabetes, and hypertension are the main risk factors in patients affected by chronic kidney disease. However, VC may occur earlier and faster in these patients if it is associated with new or non-traditional risk factors such as oxidative stress, anemia, and inflammation. In chronic kidney disease, several pathophysiological processes contribute to vascular calcifications, including osteochondrogenic differentiation of vascular cells, hyperphosphatemia and hypercalcemia, and the loss of specific vascular calcification inhibitors including pyrophosphate, fetuin-A, osteoprotegerin, and matrix GLA protein. In this review we discuss the main traditional and non-traditional risk factors that can promote VC in patients with kidney disease. In addition, we provide an overview of the main pathogenetic mechanisms responsible for VC that may be crucial to identify new prevention strategies and possible new therapeutic approaches to reduce cardiovascular risk in patients with kidney disease.
Collapse
Affiliation(s)
- Chiara Siracusa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Benedetta Morano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Marzia Manica
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Alberto Castagna
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Maria Teresa Zicarelli
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Michela Musolino
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Giuseppe Coppolino
- Department of Health Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, "Magna Grecia" University, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Fu C, Liu Y, Yang H, Liang Q, Liu W, Guo W. Construction of a miR-15a-based risk prediction model for vascular calcification detection in patients undergoing hemodialysis. Ren Fail 2024; 46:2313175. [PMID: 38419564 PMCID: PMC10906117 DOI: 10.1080/0886022x.2024.2313175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/27/2024] [Indexed: 03/02/2024] Open
Abstract
Vascular calcification (VC) is highly prevalent in patients undergoing hemodialysis, and is a significant contributor to the mortality rate. Therefore, biomarkers that can accurately predict the onset of VC are urgently required. Our study aimed to investigate serum miR-15a levels in relation to VC and to develop a predictive model for VC in patients undergoing hemodialysis at the Beijing Friendship Hospital hemodialysis center between 1 January 2019 and 31 December 2020. The patients were categorized into two groups: VC and non-VC. Logistic regression (LR) models were used to examine the risk factors associated with VC. Additionally, we developed an miR-15a-based nomogram based on the results of the multivariate LR analysis. A total of 138 patients under hemodialysis were investigated (age: 58.41 ± 13.22 years; 54 males). VC occurred in 79 (57.2%) patients. Multivariate LR analysis indicated that serum miR-15a, age, and WBC count were independent risk factors for VC. A miR-15a-based nomogram was developed by incorporating the following five predictors: age, dialysis vintage, predialysis nitrogen, WBC count, and miR-15a. The receiver operating characteristic (ROC) curve had an area under the curve of 0.921, diagnostic threshold of 0.396, sensitivity of 0.722, and specificity of 0.932, indicating that this model had good discrimination. This study concluded that serum miR-15a levels, age, and white blood cell (WBC) count are independent risk factors for VC. A nomogram constructed by integrating these risk factors can be used to predict the risk of VC in patients undergoing hemodialysis.
Collapse
Affiliation(s)
- Chen Fu
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Yingjie Liu
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Huayu Yang
- Division of Geriatrics, Medical and Health Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Qiaojing Liang
- Division of Geriatrics, Medical and Health Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Wenhu Liu
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Weikang Guo
- Department of Nephrology, Faculty of Kidney Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
15
|
Mashaba RG, Phoswa W, Maimela E, Lebelo S, Modjadji P, Mokgalaboni K. Systematic review and meta-analysis assessing the status of carotid intima-media thickness and lipid profiles in type 2 diabetes mellitus. BMJ Open 2024; 14:e087496. [PMID: 39521468 PMCID: PMC11552583 DOI: 10.1136/bmjopen-2024-087496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Carotid intima-media thickness (CIMT) is a measurement for subclinical atherosclerosis and has been associated with overall cardiovascular diseases, especially in type 2 diabetes mellitus (T2DM). We aimed to assess the status of carotid health and lipid profile in T2DM. DESIGN This systematic review and meta-analysis synthesised data published from clinical studies. DATA SOURCES Google Scholar, PubMed and Scopus were searched from inception to 18 January 2024. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies conducted in patients with T2DM and those without T2DM were included. Studies conducted in T2DM adults evaluating carotid status and lipid profile were considered. DATA EXTRACTION AND SYNTHESIS Two authors independently used standardised methods to comprehensively search, screen and extract data from all relevant studies. The risk of bias was assessed using the Newcastle-Ottawa checklist. Meta-analysis was conducted using Review Manager and metaHun through random effects models. The random effect model was used due to high heterogeneity. RESULTS Evidence was analysed from 57 studies with a sample size of 29 502 (8254 T2DM and 21 248 people without T2DM). There was a significantly higher CIMT, with a standardised mean difference (SMD) of 1.01 (95% CI 0.75, 1.26, p<0.00001). Additionally, there was an elevated triglyceride (TG) (SMD=1.12, 95% CI 0.82, 1.41, p<0.00001), total cholesterol (TC), (SMD=0.24, 95% CI 0.02, 0.46, p=0.03) and low-density lipoprotein-cholesterol (LDL-C), (SMD=0.35, 95% CI 0.11, 0.59, p=0.004) in patients with T2DM compared with those without T2DM. Furthermore, a significant decrease in high-density lipoprotein cholesterol (HDL-C) was observed in the T2DM compared with people without T2DM, SMD=-0.79, 95% CI -0.96, -0.62, p<0.00001). Age, body mass index and hypertension were associated with increased CIMT and TG and decreased HDL-C in T2DM. Additionally, age, gender and hypertension were associated with an increased LDL-C in T2DM. CONCLUSION Our findings suggest that an increased CIMT is accompanied by increased TG, TC, LDL-C and HDL-C reduction in patients with T2DM. PROSPERO REGISTRATION NUMBER CRD42023451731.
Collapse
Affiliation(s)
- Reneilwe Given Mashaba
- Life and Consumer Sciences, University of South Africa College of Agriculture and Environmental Sciences, Florida, Gauteng, South Africa
- DIMAMO Population Health Research Centre, University of Limpopo - Turfloop Campus, Mankweng, South Africa
| | - Wendy Phoswa
- Life and Consumer Sciences, University of South Africa College of Agriculture and Environmental Sciences, Florida, Gauteng, South Africa
| | - Eric Maimela
- DIMAMO Population Health Research Centre, University of Limpopo - Turfloop Campus, Mankweng, South Africa
| | - Sogolo Lebelo
- Life and Consumer Sciences, University of South Africa College of Agriculture and Environmental Sciences, Florida, Gauteng, South Africa
| | - Perpetua Modjadji
- Life and Consumer Sciences, University of South Africa College of Agriculture and Environmental Sciences, Florida, Gauteng, South Africa
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Public Health, School of Health Care Sciences, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Kabelo Mokgalaboni
- Life and Consumer Sciences, University of South Africa College of Agriculture and Environmental Sciences, Florida, Gauteng, South Africa
| |
Collapse
|
16
|
Zhou L, Xing Y, Li W. Insights into SLC7A11 levels and vascular calcification in maintenance peritoneal dialysis patients. Nephrology (Carlton) 2024; 29:772. [PMID: 39079716 DOI: 10.1111/nep.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Lianwei Zhou
- School of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Yuhe Xing
- School of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Wenbo Li
- School of Clinical Medicine, Jiamusi University, Jiamusi, China
| |
Collapse
|
17
|
Yu H, Xie Y, Lan L, Ma S, Mok SWF, Wong IN, Wang Y, Zhong G, Yuan L, Zhao H, Hu X, Macrae VE, He S, Chen G, Zhu D. Sirt7 protects against vascular calcification via modulation of reactive oxygen species and senescence of vascular smooth muscle cells. Free Radic Biol Med 2024; 223:30-41. [PMID: 39053861 DOI: 10.1016/j.freeradbiomed.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Vascular calcification is frequently seen in patients with chronic kidney disease (CKD), and significantly increases cardiovascular mortality and morbidity. Sirt7, a NAD+-dependent histone deacetylases, plays a crucial role in cardiovascular disease. However, the role of Sirt7 in vascular calcification remains largely unknown. Using in vitro and in vivo models of vascular calcification, this study showed that Sirt7 expression was significantly reduced in calcified arteries from mice administered with high dose of vitamin D3 (vD3). We found that knockdown or inhibition of Sirt7 promoted vascular smooth muscle cell (VSMC), aortic ring and vascular calcification in mice, whereas overexpression of Sirt7 had opposite effects. Intriguingly, this protective effect of Sirt7 on vascular calcification is dependent on its deacetylase activity. Unexpectedly, Sirt7 did not alter the osteogenic transition of VSMCs. However, our RNA-seq and subsequent studies demonstrated that knockdown of Sirt7 in VSMCs resulted in increased intracellular reactive oxygen species (ROS) accumulation, and induced an Nrf-2 mediated oxidative stress response. Treatment with the ROS inhibitor N-acetylcysteine (NAC) significantly attenuated the inhibitory effect of Sirt7 on VSMC calcification. Furthermore, we found that knockdown of Sirt7 delayed cell cycle progression and accelerated cellular senescence of VSMCs. Taken together, our results indicate that Sirt7 regulates vascular calcification at least in part through modulation of ROS and cellular senescence of VSMCs. Sirt7 may be a potential therapeutic target for vascular calcification.
Collapse
MESH Headings
- Animals
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Reactive Oxygen Species/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Cellular Senescence
- Sirtuins/metabolism
- Sirtuins/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress
- Humans
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Male
- Cholecalciferol/pharmacology
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Mice, Inbred C57BL
- Cells, Cultured
Collapse
Affiliation(s)
- Hongjiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Yuchen Xie
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siyu Ma
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yueheng Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Guoli Zhong
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Liang Yuan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Huan Zhao
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xiao Hu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Shengping He
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Guojun Chen
- Department of Cardiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
18
|
Oulhaj A, Aziz F, Suliman A, Eller K, Bentoumi R, Buse JB, Al Mahmeed W, von Lewinski D, Coleman RL, Holman RR, Sourij H. Estimated glomerular filtration rate slope and risk of primary and secondary major adverse cardiovascular events and heart failure hospitalization in people with type 2 diabetes: An analysis of the EXSCEL trial. Diabetes Obes Metab 2024; 26:4602-4612. [PMID: 39086032 DOI: 10.1111/dom.15817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
AIM The decline in estimated glomerular filtration rate (eGFR), a significant predictor of cardiovascular disease (CVD), occurs heterogeneously in people with diabetes because of various risk factors. We investigated the role of eGFR decline in predicting CVD events in people with type 2 diabetes in both primary and secondary CVD prevention settings. MATERIALS AND METHODS Bayesian joint modelling of repeated measures of eGFR and time to CVD event was applied to the Exenatide Study of Cardiovascular Event Lowering (EXSCEL) trial to examine the association between the eGFR slope and the incidence of major adverse CV event/hospitalization for heart failure (MACE/hHF) (non-fatal myocardial infarction, non-fatal stroke, CV death, or hospitalization for heart failure). The analysis was adjusted for age, sex, smoking, systolic blood pressure, baseline eGFR, antihypertensive and lipid-lowering medication, diabetes duration, atrial fibrillation, high-density cholesterol, total cholesterol, HbA1c and treatment allocation (once-weekly exenatide or placebo). RESULTS Data from 11 101 trial participants with (n = 7942) and without (n = 3159) previous history of CVD were analysed. The mean ± SD eGFR slope per year in participants without and with previous CVD was -0.68 ± 1.67 and -1.03 ± 2.13 mL/min/1.73 m2, respectively. The 5-year MACE/hHF incidences were 7.5% (95% CI 6.2, 8.8) and 20% (95% CI 19, 22), respectively. The 1-SD decrease in the eGFR slope was associated with increased MACE/hHF risks of 48% (HR 1.48, 95% CI 1.12, 1.98, p = 0.007) and 33% (HR 1.33, 95% CI 1.18,1.51, p < 0.001) in participants without and with previous CVD, respectively. CONCLUSIONS eGFR trajectories over time significantly predict incident MACE/hHF events in people with type 2 diabetes with and without existing CVD, with a higher hazard ratio for MACE/hHF in the latter group.
Collapse
Affiliation(s)
- Abderrahim Oulhaj
- Department of Public Health and Epidemiology, College of Medicine and Health Sciences, Khalifa University of Sciences and Technology, Abu Dhabi, United Arab Emirates
- Biotechnology Center, Khalifa University of Sciences and Technology, Abu Dhabi, United Arab Emirates
| | - Faisal Aziz
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Abubaker Suliman
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kathrin Eller
- Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Rachid Bentoumi
- Mathematics and Statistics Department, Zayed University, Abu Dhabi, United Arab Emirates
| | - John B Buse
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Wael Al Mahmeed
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | | | - Ruth L Coleman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| |
Collapse
|
19
|
Li R, Thompson J, Peshel E, Recarey M, Hata K, Sidawy AN, Lala S, Nguyen BN. Carotid endarterectomy has lower stroke risk than carotid artery stenting for patients with asymptomatic carotid stenosis and chronic kidney disease. Curr Probl Surg 2024; 61:101557. [PMID: 39168536 DOI: 10.1016/j.cpsurg.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Renxi Li
- The George Washington University School of Medicine and Health Sciences, Washington, DC.
| | - Jamie Thompson
- Department of Surgery, The George Washington University Hospital, Washington, DC
| | - Emanuela Peshel
- Department of Surgery, The George Washington University Hospital, Washington, DC
| | - Melina Recarey
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Kai Hata
- Department of Surgery, The George Washington University Hospital, Washington, DC
| | - Anton N Sidawy
- Department of Surgery, The George Washington University Hospital, Washington, DC
| | - Salim Lala
- Department of Surgery, The George Washington University Hospital, Washington, DC
| | - Bao-Ngoc Nguyen
- Department of Surgery, The George Washington University Hospital, Washington, DC
| |
Collapse
|
20
|
Neofytou IE, Stamou A, Demopoulos A, Roumeliotis S, Zebekakis P, Liakopoulos V, Stamellou E, Dounousi E. Vitamin K for Vascular Calcification in Kidney Patients: Still Alive and Kicking, but Still a Lot to Learn. Nutrients 2024; 16:1798. [PMID: 38931153 PMCID: PMC11206649 DOI: 10.3390/nu16121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Patients with chronic kidney disease (CKD) suffer disproportionately from a high burden of cardiovascular disease, which, despite recent scientific advances, remains partly understood. Vascular calcification (VC) is the result of an ongoing process of misplaced calcium in the inner and medial layers of the arteries, which has emerged as a critical contributor to cardiovascular events in CKD. Beyond its established role in blood clotting and bone health, vitamin K appears crucial in regulating VC via vitamin K-dependent proteins (VKDPs). Among these, the matrix Gla protein (MGP) serves as both a potent inhibitor of VC and a valuable biomarker (in its inactive form) for reflecting circulating vitamin K levels. CKD patients, especially in advanced stages, often present with vitamin K deficiency due to dietary restrictions, medications, and impaired intestinal absorption in the uremic environment. Epidemiological studies confirm a strong association between vitamin K levels, inactive MGP, and increased CVD risk across CKD stages. Based on the promising results of pre-clinical data, an increasing number of clinical trials have investigated the potential benefits of vitamin K supplementation to prevent, delay, or even reverse VC, but the results have remained inconsistent.
Collapse
Affiliation(s)
- Ioannis Eleftherios Neofytou
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Aikaterini Stamou
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Antonia Demopoulos
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Pantelis Zebekakis
- 1st Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (I.E.N.); (A.S.); (A.D.); (V.L.)
| | - Eleni Stamellou
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.S.); (E.D.)
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52062 Aachen, Germany
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.S.); (E.D.)
| |
Collapse
|
21
|
Li D, Fan C, Li X, Zhao L. The role of macrophage polarization in vascular calcification. Biochem Biophys Res Commun 2024; 710:149863. [PMID: 38579535 DOI: 10.1016/j.bbrc.2024.149863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Vascular calcification is an important factor in the high morbidity and mortality of Cardiovascular and cerebrovascular diseases. Vascular damage caused by calcification of the intima or media impairs the physiological function of the vascular wall. Inflammation is a central factor in the development of vascular calcification. Macrophages are the main inflammatory cells. Dynamic changes of macrophages with different phenotypes play an important role in the occurrence, progression and stability of calcification. This review focuses on macrophage polarization and the relationship between macrophages of different phenotypes and calcification environment, as well as the mechanism of interaction, it is considered that macrophages can promote vascular calcification by releasing inflammatory mediators and promoting the osteogenic transdifferentiation of smooth muscle cells and so on. In addition, several therapeutic strategies aimed at macrophage polarization for vascular calcification are described, which are of great significance for targeted treatment of vascular calcification.
Collapse
Affiliation(s)
- Dan Li
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Chu Fan
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Xuepeng Li
- Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China
| | - Lin Zhao
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China; Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing City, China.
| |
Collapse
|
22
|
Wungu CDK, Susilo H, Alsagaff MY, Witarto BS, Witarto AP, Pakpahan C, Gusnanto A. Role of klotho and fibroblast growth factor 23 in arterial calcification, thickness, and stiffness: a meta-analysis of observational studies. Sci Rep 2024; 14:5712. [PMID: 38459119 PMCID: PMC10923819 DOI: 10.1038/s41598-024-56377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
This meta-analysis was conducted to clarify the role of klotho and fibroblast growth factor 23 (FGF-23) in human arterial remodeling across recent studies, in terms of arterial calcification, thickness, and stiffness. A systematic literature search was conducted on five databases for articles up to December 2023. Arterial calcification, thickness, and stiffness were determined using the calcification score and artery affected, carotid intima-media thickness (CIMT), and pulse wave velocity (PWV), respectively. Sixty-two studies with a total of 27,459 individuals were included in this meta-analysis. Most studies involved chronic kidney disease patients. Study designs were mostly cross-sectional with only one case-control and nine cohorts. FGF-23 was positively correlated with arterial calcification (r = 0.446 [0.254-0.611], p < 0.0001 and aOR = 1.36 [1.09-1.69], p = 0.006), CIMT (r = 0.188 [0.02-0.354], p = 0.03), and PWV (r = 0.235 [0.159-0.310], p < 0.00001). By contrast, Klotho was inversely correlated with arterial calcification (r = - 0.388 [- 0.578 to - 0.159], p = 0.001) and CIMT (r = - 0.38 [- 0.53 to - 0.207], p < 0.00001). In conclusion, FGF-23 and Klotho were associated with arterial calcification, thickness, and stiffness, clarifying their role in arterial remodeling processes.
Collapse
Affiliation(s)
- Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Division of Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia.
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya, 60115, Indonesia.
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya, 60115, Indonesia
| | | | - Andro Pramana Witarto
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Cennikon Pakpahan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Arief Gusnanto
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
23
|
Moldovan D, Rusu C, Potra A, Tirinescu D, Ticala M, Kacso I. Food to Prevent Vascular Calcification in Chronic Kidney Disease. Nutrients 2024; 16:617. [PMID: 38474744 DOI: 10.3390/nu16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Vascular calcification (VC) is a consequence of chronic kidney disease (CKD) which is of paramount importance regarding the survival of CKD patients. VC is far from being controlled with actual medication; as a result, in recent years, diet modulation has become more compelling. The concept of medical nutritional therapy points out the idea that food may prevent or treat diseases. The aim of this review was to evaluate the influence of food habits and nutritional intervention in the occurrence and progression of VC in CKD. Evidence reports the harmfulness of ultra-processed food, food additives, and animal-based proteins due to the increased intake of high absorbable phosphorus, the scarcity of fibers, and the increased production of uremic toxins. Available data are more supportive of a plant-dominant diet, especially for the impact on gut microbiota composition, which varies significantly depending on VC presence. Magnesium has been shown to prevent VC but only in experimental and small clinical studies. Vitamin K has drawn considerable attention due to its activation of VC inhibitors. There are positive studies; unfortunately, recent trials failed to prove its efficacy in preventing VC. Future research is needed and should aim to transform food into a medical intervention to eliminate VC danger in CKD.
Collapse
Affiliation(s)
- Diana Moldovan
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Crina Rusu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Alina Potra
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Dacian Tirinescu
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Maria Ticala
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| | - Ina Kacso
- Department of Nephrology, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, 400347 Cluj-Napoca, Romania
- Nephrology Clinic, Emergency County Hospital Cluj-Napoca, 400347 Cluj-Napoca, Romania
| |
Collapse
|
24
|
Sidgwick GP, Weston R, Mahmoud AM, Schiro A, Serracino-Inglott F, Tandel SM, Skeoch S, Bruce IN, Jones AM, Alexander MY, Wilkinson FL. Novel Glycomimetics Protect against Glycated Low-Density Lipoprotein-Induced Vascular Calcification In Vitro via Attenuation of the RAGE/ERK/CREB Pathway. Cells 2024; 13:312. [PMID: 38391925 PMCID: PMC10887290 DOI: 10.3390/cells13040312] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against β-glycerophosphate-induced vascular calcification and in the restoration of the functional capacity of diabetic endothelial colony-forming cells in vitro. This study aims to investigate whether our novel glycomimetic compounds can attenuate glycated low-density lipoprotein (g-LDL)-induced calcification by inhibiting RAGE signalling within the context of critical limb ischemia (CLI). We used an established osteogenic in vitro vascular smooth muscle cell (VSMC) model. Osteoprotegerin (OPG), sclerostin and glycation levels were all significantly increased in CLI serum compared to healthy controls, while the vascular calcification marker osteocalcin (OCN) was down-regulated in CLI patients vs. controls. Incubation with both CLI serum and g-LDL (10 µg/mL) significantly increased VSMC calcification vs. controls after 21 days, with CLI serum-induced calcification apparent after only 10 days. Glycomimetics (C2 and C3) significantly inhibited g-LDL and CLI serum-induced mineralisation, as shown by a reduction in alizarin red (AR) staining and alkaline phosphatase (ALP) activity. Furthermore, secretion of the osteogenic marker OCN was significantly reduced in VSMCs incubated with CLI serum in the presence of glycomimetics. Phosphorylation of cyclic AMP response element-binding protein (CREB) was significantly increased in g-LDL-treated cells vs. untreated controls, which was attenuated with glycomimetics. Blocking CREB activation with a pharmacological inhibitor 666-15 replicated the protective effects of glycomimetics, evidenced by elevated AR staining. In silico molecular docking simulations revealed the binding affinity of the glycomimetics C2 and C3 with the V domain of RAGE. In conclusion, these findings demonstrate that novel glycomimetics, C2 and C3 have potent anti-calcification properties in vitro, inhibiting both g-LDL and CLI serum-induced VSMC mineralisation via the inhibition of LDLR, RAGE, CREB and subsequent expression of the downstream osteogenic markers, ALP and OCN.
Collapse
Affiliation(s)
- Gary P. Sidgwick
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ria Weston
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ayman M. Mahmoud
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Andrew Schiro
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Ferdinand Serracino-Inglott
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Shikha M. Tandel
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Sarah Skeoch
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Royal National Hospital for Rheumatic Diseases, Bath BA1 1RL, UK
| | - Ian N. Bruce
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Alan M. Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK
| | - M. Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Fiona L. Wilkinson
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| |
Collapse
|
25
|
Mashaba RG, Phoswa W, Maimela E, Mokgalaboni K. Association of carotid intima-media thickness and dyslipidaemia in patients with type 2 diabetes: a protocol for systematic review and meta-analysis. BMJ Open 2024; 14:e079209. [PMID: 38262658 PMCID: PMC10823995 DOI: 10.1136/bmjopen-2023-079209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION Patients with diabetes mellitus (DM) often present with comorbidities such as hypertension, dyslipidaemia, insulin resistance, obesity and hyperglycaemia, which increases their risk of cardiovascular diseases (CVDs)-related mortality. Carotid intima-media thickness (CIMT), a biomarker for subclinical atherosclerosis, has been associated with overall CVD, especially in type 2 DM (T2DM). Hence, this protocol for systematic review and meta-analysis aims to review existing literature on the association of CIMT and dyslipidaemia in patients with T2DM. METHODS AND ANALYSIS The proposed systematic review and meta-analysis will be conducted according to an updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols guideline. A comprehensive search of peer-reviewed studies on Google Scholar, PubMed, Science Direct and Web of Sciences databases will be conducted up to 30 June 2023. A meta-analysis of data extracted from selected studies will be performed to explore the association between dyslipidaemia and CIMT in patients with diabetes. The effect estimates will be reported as standardised mean differences/Cohen's d and 95% CIs. A random effect model will be used in case of high heterogeneity whereas fixed-effect model will be used in the absence of heterogeneity. All statistical analysis will be performed using SPSS V.29.0 software. In cases of high heterogeneity, subgroup analysis will be performed based on study design, countries of publication and body mass index to identify potential sources of heterogeneity. Publication bias will be assessed graphically via funnel plots and statistically using Egger's regression test. Sensitivity analysis will also be performed to evaluate the stability of the overall effect size and the grading of recommendations assessment, development and evaluation will be used to grade the quality of analysed evidence. ETHICS AND DISSEMINATION As the proposed study will use secondary published data, approval will not be sought from the ethics committee. PROSPERO REGISTRATION NUMBER CRD42023451731.
Collapse
Affiliation(s)
- Reneilwe Given Mashaba
- DIMAMO PHRC, University of Limpopo, Polokwane, South Africa
- Life and Consumer Sciences, University of South Africa College of Agriculture and Environmental Sciences, Florida, South Africa
| | - Wendy Phoswa
- Life and Consumer Sciences, University of South Africa College of Agriculture and Environmental Sciences, Florida, South Africa
| | - Eric Maimela
- DIMAMO PHRC, University of Limpopo, Polokwane, South Africa
| | - Kabelo Mokgalaboni
- Life and Consumer Sciences, University of South Africa College of Agriculture and Environmental Sciences, Florida, South Africa
| |
Collapse
|
26
|
Yao Y, Zhao K, Zhang Y, Wang L, Shan W, Yan X. D-box-binding protein alleviates vascular calcification in rats with chronic kidney disease by activating microRNA-195-5p and downregulating cyclin D1. BIOMOLECULES & BIOMEDICINE 2024; 24:857-870. [PMID: 38190139 PMCID: PMC11293247 DOI: 10.17305/bb.2023.10080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 01/07/2024] [Indexed: 01/09/2024]
Abstract
Vascular calcification (VC) is a critical complication in chronic kidney disease (CKD), where transcription factors (TFs) and microRNAs (miRs) could potentially play a pivotal role in its pathogenesis and progression. To explore the potential molecular mechanism by which the TF D-box-binding protein (DBP) regulates the miR-195-5p/cyclin D1 (CCND1) axis and its impact on aortic VC in CKD rats, we established a rat model of CKD with VC through a 5/6 nephrectomy procedure. This model was treated with lentivirus overexpressing DBP or CCND1 to analyze their roles in aortic VC. Additionally, an in vitro cell model of VC was induced by high phosphorus. This model underwent transfection with lentivirus overexpressing DBP or miR-195-5p mimic/inhibitor to confirm their regulatory roles in aortic VC in vitro. We assessed the interactions between DBP and miR-195-5p, as well as between miR-195-5p and CCND1. Our results indicated that the expression of DBP and miR-195-5p was reduced, while CCND1 levels were elevated in both the rat and cell models. Overexpression of miR-195-5p inhibited VC in vascular smooth muscle cells (VSMCs). Bioinformatics prediction and dual luciferase assays confirmed that DBP could act as a TF to enhance miR-195-5p expression, with Ccnd1 identified as a downstream target gene of miR-195-5p. Overexpression of DBP inhibited aortic calcification in CKD rats, whereas overexpression of CCND1 produced the opposite effect. In conclusion, the TF DBP can inhibit CCND1 expression through transcriptional activation of miR-195-5p, thereby preventing VC in rats with CKD.
Collapse
MESH Headings
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Cyclin D1/metabolism
- Cyclin D1/genetics
- Rats
- Male
- Rats, Sprague-Dawley
- Down-Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Disease Models, Animal
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Ye Yao
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Kun Zhao
- Basic Medical College of Qiqihar Medical University, Qiqihar, China
| | - Yan Zhang
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lihui Wang
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Wei Shan
- Clinical Laboratory, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xu Yan
- Department of Nephrology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
27
|
Chiriac C, Ciurea O, Lipan M, Capusa C, Mircescu G. VITAMIN D DEFICIENCY, BONE TURNOVER MARKERS AND ARTERIAL CALCIFICATIONS IN NON-DIALYSIS CHRONIC KIDNEY DISEASE PATIENTS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2024; 20:12-20. [PMID: 39372299 PMCID: PMC11449234 DOI: 10.4183/aeb.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Introduction Vitamin D [25(OH)D] deficiency is prevalent in chronic kidney disease (CKD), related to bone turnover and potentially involved in arterial calcifications. Objective To evaluate vitamin D status in non-dialysis CKD patients and its relationships with bone turnover markers (BTM) and arterial calcifications. Design Cross-sectional, prospective, multicentric study. Subjects and methods One hundred twenty-eight CKD patients (median age 61 years, 58% males, median eGFR 29mL/min) were included. Comorbidities, mineral and bone metabolism parameters were evaluated. Total alkaline phosphatase (T-ALP) was used to assess bone turnover. Atherosclerosis was evaluated by carotid intima-media thickness (CIMT), endothelial calcifications by aortic calcification score (ACS), and arterial stiffness by cardio-ankle vascular index (CAVI). Vitamin D deficiency was defined as 25(OH)D <15 ng/mL. Factors associated with vitamin D, T-ALP and vascular parameters were assessed in multivariate regression models. Results Prevalence of vitamin D deficiency was 63% and median 25(OH)D was 12.8 ng/mL. Older age, female sex and higher parathormone were predictors of vitamin D deficiency. Increased T-ALP was predicted by higher parathormone, suggesting high turnover bone disease. While age was a determinant of all evaluated vascular parameters, lower 25(OH)D was associated only with endothelial calcifications, which correlated with CAVI, suggesting a direct relation between vitamin D deficiency mediated plaques calcification and arterial stiffness. Conclusion Vitamin D deficiency was highly prevalent in this non-dialysis CKD cohort and was related to age, sex and parathormone. Vitamin D deficiency was associated with increased calcifications of endothelial plaques, which seemed to increase arterial stiffness.
Collapse
Affiliation(s)
- C. Chiriac
- “Carol Davila” University of Medicine and Pharmacy - Nephrology Department
- “Carol Davila” Nephrology Hospital - Nephrology Department
| | - O.A. Ciurea
- “Carol Davila” University of Medicine and Pharmacy - Nephrology Department
- “Carol Davila” Nephrology Hospital - Nephrology Department
| | - M. Lipan
- “Carol Davila” Nephrology Hospital - Laboratory, Bucharest, Romania
| | - C.S. Capusa
- “Carol Davila” University of Medicine and Pharmacy - Nephrology Department
- “Carol Davila” Nephrology Hospital - Nephrology Department
| | - G. Mircescu
- “Carol Davila” University of Medicine and Pharmacy - Nephrology Department
- “Carol Davila” Nephrology Hospital - Nephrology Department
| |
Collapse
|
28
|
Dragoș D, Manea MM, Dobri AM, Stoican IC, Enache II, Ghenu MI, Tuta S. Risk factors for the outcome after thrombolysis in acute ischemic stroke - the prominent role of kidney dysfunction: A retrospective cohort observational study. Medicine (Baltimore) 2023; 102:e35688. [PMID: 37904370 PMCID: PMC10615531 DOI: 10.1097/md.0000000000035688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
A complex interplay of factors reflecting the general biological, cardiovascular, neurological, renal, and metabolic status of patients influences the outcome of thrombolysis in stroke patients. This is a retrospective cohort observational study aimed to determine the importance of kidney dysfunction among these factors. Data (demographic, lifestyle, physical examination, laboratory, imaging, including metabolic and cardiovascular risk factors and comorbidities, neurological scores, and outcomes) of all stroke patients who underwent thrombolysis have been registered since January 1, 2016, in an online database. A total of 296 patients registered until December 31, 2020, were included in the study. The National Institutes of Health Stroke Scale, modified Rankin scale, Barthel index, percentage of hemorrhagic transformation, and in hospital death were used to evaluate the neurological status and outcomes of the patients. Regression analysis, Mann-Whitney test, Fisher exact test, logistic regression, and multivariate analysis were used for statistical analysis. Kidney dysfunction, as reflected by the estimated glomerular filtration rate, was associated with in hospital death and all but one of the neurological scores. Other risk factors most frequently associated with neurological scores were age, international normalized ratio, and cognitive decline. Multivariate analysis revealed estimated glomerular filtration rate (as determined by chronic kidney disease-EPI equation) as a determinant for all but one of these scores, and as the most important determinant for most of them, except for those reflecting the pre-intervention neurological status of the patient. Kidney dysfunction seems to be the most important determinant of the outcome of thrombolysed stroke patients, a result obtained by no other study.
Collapse
Affiliation(s)
- Dorin Dragoș
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- 1st Internal Medicine Department, Emergency University Hospital, Bucharest, Romania
| | - Maria Mirabela Manea
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Ana-Maria Dobri
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Iulia-Cosmina Stoican
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Iulia-Ioana Enache
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Maria Iuliana Ghenu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- 1st Internal Medicine Department, Emergency University Hospital, Bucharest, Romania
| | - Sorin Tuta
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Neurology Department, National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| |
Collapse
|
29
|
Kaur R, Krishan P, Kumari P, Singh T, Singh V, Singh R, Ahmad SF. Clinical Significance of Adropin and Afamin in Evaluating Renal Function and Cardiovascular Health in the Presence of CKD-MBD Biomarkers in Chronic Kidney Disease. Diagnostics (Basel) 2023; 13:3158. [PMID: 37835901 PMCID: PMC10572291 DOI: 10.3390/diagnostics13193158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
AIM The study aims to test the hypothesis that concentrations of adropin and afamin differ between patients in various stages of chronic kidney disease when compared with healthy controls. The study also investigates the association of the biomarkers (adropin and afamin) with CKD-MBD and traditional cardiovascular risk parameters in CKD patients. METHODOLOGY The cross-sectional study includes the subjects divided into four groups comprising the control group (healthy volunteers = 50), CKD stages 1-2 patients (n = 50), CKD stages 3-4 patients (n = 50), CKD stage 5 patients (n = 50). Serum concentrations of adropin and afamin were determined using ELISA. Clinical variables (renal, lipid, and CKD-MBD parameters) were correlated to adropin and afamin concentrations. RESULTS Afamin concentration was found to be higher in group IV, followed by groups III and II when compared to the control group, i.e., (83.243 ± 1.46, 64.233 ± 0.99, and 28.948 ± 0.72 vs. 14.476 ± 0.5) mg/L (p < 0.001), and adropin concentration was found to be lower in group IV as compared to groups III, II, and I (200.342 ± 8.37 vs. 284.682 ± 9.89 vs. 413.208 ± 12.32 vs. 706.542 ± 11.32) pg/mL (p < 0.001), respectively. Pearson correlation analysis showed that afamin was positively correlated with traditional cardiovascular risk biomarkers, while adropin showed a negative correlation. CONCLUSIONS Adropin and afamin may potentially serve as futuristic predictors for the deterioration of renal function and may be involved in the pathological mechanisms of CKD and its associated complications such as CKD-MBD and high lipid levels.
Collapse
Affiliation(s)
- Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India;
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA;
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India;
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
30
|
Ramezankhani A, Azizi F, Hadaegh F. Association between estimated glomerular filtration rate slope and cardiovascular disease among individuals with and without diabetes: a prospective cohort study. Cardiovasc Diabetol 2023; 22:270. [PMID: 37794456 PMCID: PMC10552420 DOI: 10.1186/s12933-023-02008-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Previous studies have reported an association between a significant decline in estimated glomerular filtration rate (eGFR) over time and an increased risk of cardiovascular disease (CVD). This study aimed to investigate the association between the eGFR slope and CVD among individuals with and without diabetes. METHODS This prospective cohort study was conducted within the Tehran Lipid and Glucose Study (TLGS) framework. We studied 6919 adults aged 20-70 years, including 985 with diabetes and 5934 without diabetes. The eGFR slope was determined based on repeated measurements of eGFR through linear mixed-effects models. A multivariable Cox proportional hazard model was employed to evaluate the association between eGFR slope, both in continuous and categorical form, and the risk of CVD. RESULTS The slopes of eGFR exhibited a bell-shaped distribution, with a mean (standard deviation (SD)) of -0.63 (0.13) and - 0.70 (0.14) ml/min per 1.73 m2 per year in individuals with and without diabetes, respectively. During a median follow-up of 8.22 years, following the 9-year eGFR slope ascertainment period, a total of 551 CVD events (195 in patients with diabetes) were observed. Among individuals with diabetes, a steeper decline in eGFR slope was significantly associated with a higher risk of CVD events, even after adjusting for baseline eGFR, demographic factors, and traditional risk factors for CVD; slopes of (-1.05 to -0.74) and (-0.60 to -0.52) were associated with 2.12 and %64 higher risks for CVD, respectively, compared with a slope of (-0.51 to 0.16). Among individuals without diabetes, the annual eGFR slope did not show a significant association with the risk of CVD. CONCLUSION Monitoring the eGFR slope may serve as a potential predictor of CVD risk in individuals with diabetes.
Collapse
Affiliation(s)
- Azra Ramezankhani
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Mehta A, Chandiramani R, Spirito A, Vogel B, Mehran R. Significance of Kidney Disease in Cardiovascular Disease Patients. Interv Cardiol Clin 2023; 12:453-467. [PMID: 37673491 DOI: 10.1016/j.iccl.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Cardiorenal syndrome is a condition where is a bidirectional and mutually detrimental relationship between the heart and kidneys. The mechanisms underlying cardiorenal syndrome are multifactorial and complex. Patients with kidney disease exhibit increased cardiovascular risk, presenting as coronary and peripheral artery disease, structural heart disease, arrhythmias, heart failure, and sudden cardiac death, largely occurring because of a systemic proinflammatory state, causing myocardial and vascular remodeling, manifesting as atherosclerotic lesions, vascular and valvular calcification, and myocardial fibrosis, particularly among those with advanced disease. This review summarizes the current understanding and clinical implications of kidney disease in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Adhya Mehta
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, 1400 Pelham Parkway South, Bronx, NY 10461, USA
| | - Rishi Chandiramani
- Department of Internal Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, 1400 Pelham Parkway South, Bronx, NY 10461, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Alessandro Spirito
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Birgit Vogel
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA
| | - Roxana Mehran
- Center for Interventional Cardiovascular Research and Clinical Trials, The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA.
| |
Collapse
|
32
|
陈 韦, 杜 辉, 沙 媛, 周 玉, 梁 静, 陈 韵, 马 茜, 吴 雪, 钱 赓. [Long noncoding RNA H19 promotes vascular calcification by repressing the Bax inhibitor 1/optic atrophy 1 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1469-1475. [PMID: 37814860 PMCID: PMC10563108 DOI: 10.12122/j.issn.1673-4254.2023.09.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To investigate whether long noncoding RNA H19 (lncRNA H19) induces vascular calcification by promoting calcium deposition, osteogenic differentiation and apoptosis via inhibiting the Bax inhibitor 1/optic atrophy 1 (BI-1/ OPA1) pathway. METHODS β-glycerophosphate and calcium chloride were used to induce calcification in rat vascular smooth muscle cells (VSMCs), and the effects of siH19, alone or in combination with BI-1 or OPA1 knockdown, on calcification of the cells were investigated. Osteogenic differentiation was assessed by measuring Runt-related transcription factor 2 (Runx-2) and bone morphogenetic protein 2 (BMP-2) expression with Western blotting, and cell apoptosis was evaluated by TUNEL staining and Western blotting. An ApoE-/- diabetic mouse model with high-fat feeding for 32 weeks were given an intraperitoneal injection of siH19, and the changes in calcium deposition in the aortic arch were examined using Alizarin red S staining and von Kossa staining. RESULTS In rat VSMCs with calcification, the expression of lncRNA H19 was significantly increased, and the expressions of BI- 1 and OPA1 were significantly decreased. Downregulation of lncRNA H19 significantly increased the expressions of BI-1 and OPA1 proteins in the cells, and BI-1 knockdown further reduced OPA1 expression (P<0.001). The cells treated with siH19 showed total disappearance of the calcified nodules with significantly reduced expressions of Runx-2, BMP-2 and cleaved caspase-3 and a lowered cell apoptosis rate (P<0.001). Calcified nodules were again observed in the cells with lncRNA H19 knockdown combined with BI-1 or OPA1 knockdown, and the expressions of Runx-2, BMP-2, cleaved-caspase-3 and cell apoptosis rate all significantly increased (P<0.001). In the diabetic mouse model with high-fat feeding, siH19 treatment significantly reduced the calcification area and increased mRNA expressions of BI-I and OPA1 in the aortic arch. CONCLUSION LncRNA H19 promotes vascular calcification possibly by promoting calcium deposition, osteogenic differentiation and cell apoptosis via inhibiting the BI-1/OPA1 pathway.
Collapse
Affiliation(s)
- 韦任 陈
- 首都医科大学附属北京安贞医院心内12病房//北京市心肺血管疾病研究所//冠心病精准治疗北京市重点实验室//首都医科大学冠心病临床诊疗与研究中心,北京 100029Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
- 清华大学附属北京清华长庚医院心血管内科,北京 102218Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - 辉 杜
- 中国人民解放军总医院第二医学中心心血管内科//国家老年疾病临床研究中心,北京 100853Department of Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - 媛 沙
- 中国人民解放军总医院第二医学中心心血管内科//国家老年疾病临床研究中心,北京 100853Department of Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - 玉杰 周
- 首都医科大学附属北京安贞医院心内12病房//北京市心肺血管疾病研究所//冠心病精准治疗北京市重点实验室//首都医科大学冠心病临床诊疗与研究中心,北京 100029Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - 静 梁
- 首都医科大学附属北京安贞医院心内12病房//北京市心肺血管疾病研究所//冠心病精准治疗北京市重点实验室//首都医科大学冠心病临床诊疗与研究中心,北京 100029Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - 韵岱 陈
- 中国人民解放军总医院第一医学中心心血管内科,北京 100853Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - 茜 马
- 首都医科大学附属北京安贞医院心内12病房//北京市心肺血管疾病研究所//冠心病精准治疗北京市重点实验室//首都医科大学冠心病临床诊疗与研究中心,北京 100029Department of Cardiology, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - 雪萍 吴
- 中国人民解放军总医院第二医学中心心血管内科//国家老年疾病临床研究中心,北京 100853Department of Cardiology, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - 赓 钱
- 中国人民解放军总医院第一医学中心心血管内科,北京 100853Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
33
|
Branca L, Metra M, Adamo M. Treatment of aortic stenosis in dialysis: a necessary update in a challenging population. J Cardiovasc Med (Hagerstown) 2023; 24:674-675. [PMID: 37605958 DOI: 10.2459/jcm.0000000000001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Affiliation(s)
- Luca Branca
- Cardiology, Cardiothoraci Department, Civi Hospital and Department of Medical and Surgical Specialities, Radiological Sciences, and Public Helath, University of Brescia, Brescia, Italy
| | | | | |
Collapse
|
34
|
Brown RB. Salt-Sensitive Hypertension: Mediation by Salt-Induced Hypervolemia and Phosphate-Induced Vascular Calcification. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2023; 17:11795468231158206. [PMID: 37434790 PMCID: PMC10331233 DOI: 10.1177/11795468231158206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/01/2023] [Indexed: 07/13/2023]
Abstract
Preventing hypertension by restricting dietary salt intake, sodium chloride, is well established in public health policy, but a pathophysiological mechanism has yet to explain the controversial clinical finding that some individuals have a greater risk of hypertension from exposure to salt intake, termed salt-sensitive hypertension. The present perspective paper synthesizes interdisciplinary findings from the research literature and offers novel insights proposing that the pathogenesis of salt-sensitive hypertension is mediated by interaction of salt-induced hypervolemia and phosphate-induced vascular calcification. Arterial stiffness and blood pressure increase as calcification in the vascular media layer reduces arterial elasticity, preventing arteries from expanding to accommodate extracellular fluid overload in hypervolemia related to salt intake. Furthermore, phosphate has been found to be a direct inducer of vascular calcification. Reduction of dietary phosphate may help reduce salt-sensitive hypertension by lowering the prevalence and progression of vascular calcification. Further research should investigate the correlation of vascular calcification with salt-sensitive hypertension, and public health recommendations to prevent hypertension should encourage reductions of both sodium-induced hypervolemia and phosphate-induced vascular calcification.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
35
|
Prem PN, Chellappan DR, Kurian GA. Impaired renal ischemia reperfusion recovery after bilateral renal artery ligation in rats treated with adenine: role of renal mitochondria. J Bioenerg Biomembr 2023; 55:219-232. [PMID: 37392294 DOI: 10.1007/s10863-023-09974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Vascular calcification (VC) and ischemia reperfusion (IR) injury is characterised to have mitochondrial dysfunction. However, the impact of dysfunctional mitochondria associated with vascular calcified rat kidney challenged to IR is not explored and is addressed in the present study. Male Wistar rats were treated with adenine for 20 days to induce chronic kidney dysfunction and VC. After 63 days, renal IR protocol was performed with subsequent recovery for 24 h and 7 days. Various mitochondrial parameters and biochemical assays were performed to assess kidney function, IR injury and its recovery. Adenine-induced rats with VC, decreased creatinine clearance (CrCl), and severe tissue injury demonstrated an increase in renal tissue damage and decreased CrCl after 24 h of IR (CrCl in ml: IR-0.220.02, VC-IR-0.050.01). Incidentally, the 24 h IR pathology in kidney was similar in both VC-IR and normal rat IR. But, the magnitude of dysfunction was higher with VC-IR due to pre-existing basal tissue alterations. We found severed deterioration in mitochondrial quantity and quality supported by low bioenergetic function in both VC basal tissue and IR challenged sample. However, post 7 days of IR, unlike normal rat IR, VC rat IR did not improve CrCl and corresponding mitochondrial damage in terms of quantity and its function were observed. Based on the above findings, we conclude that IR in VC rat adversely affect the post-surgical recovery, mainly due to the ineffective renal mitochondrial functional restoration from the surgery.
Collapse
Affiliation(s)
- Priyanka N Prem
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - David Raj Chellappan
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India
| | - Gino A Kurian
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India.
- Vascular Biology lab, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
36
|
Ibrahim M, Suleiman ME, Gandomkar Z, Tavakoli Taba A, Arnott C, Jorm L, Barraclough JY, Barbieri S, Brennan PC. Associations of Breast Arterial Calcifications with Cardiovascular Disease. J Womens Health (Larchmt) 2023; 32:529-545. [PMID: 36930147 DOI: 10.1089/jwh.2022.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Cardiovascular diseases (CVD), including coronary artery disease (CAD), continue to be the leading cause of global mortality among women. While traditional CVD/CAD prevention tools play a significant role in reducing morbidity and mortality among both men and women, current tools for preventing CVD/CAD rely on traditional risk factor-based algorithms that often underestimate CVD/CAD risk in women compared with men. In recent years, some studies have suggested that breast arterial calcifications (BAC), which are benign calcifications seen in mammograms, may be linked to CVD/CAD. Considering that millions of women older than 40 years undergo annual screening mammography for breast cancer as a regular activity, innovative risk prediction factors for CVD/CAD involving mammographic data could offer a gender-specific and convenient solution. Such factors that may be independent of, or complementary to, current risk models without extra cost or radiation exposure are worthy of detailed investigation. This review aims to discuss relevant studies examining the association between BAC and CVD/CAD and highlights some of the issues related to previous studies' design such as sample size, population types, method of assessing BAC and CVD/CAD, definition of cardiovascular events, and other confounding factors. The work may also offer insights for future CVD risk prediction research directions using routine mammograms and radiomic features other than BAC such as breast density and macrocalcifications.
Collapse
Affiliation(s)
- Mu'ath Ibrahim
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia
| | - Mo'ayyad E Suleiman
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia
| | - Ziba Gandomkar
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia
| | - Amir Tavakoli Taba
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia
| | - Clare Arnott
- Cardiovascular Program, The George Institute for Global Health, Newtown, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Louisa Jorm
- Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia
| | - Jennifer Y Barraclough
- Cardiovascular Program, The George Institute for Global Health, Newtown, Australia
- Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Sebastiano Barbieri
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia
| | - Patrick C Brennan
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Wu CC, Liao MH, Kung WM, Wang YC. Proton Pump Inhibitors and Risk of Chronic Kidney Disease: Evidence from Observational Studies. J Clin Med 2023; 12:2262. [PMID: 36983271 PMCID: PMC10052387 DOI: 10.3390/jcm12062262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Previous epidemiological studies have raised the concern that the use of proton pump inhibitors (PPIs) is associated with an increased risk of kidney diseases. To date, no comprehensive meta-analysis has been conducted to assess the association between PPIs and the risk of chronic kidney disease (CKD). Therefore, we conducted a systematic review and meta-analysis to address the association between PPIs and CKD. The primary search was conducted in the most popular databases, such as PubMed, Scopus, and Web of Science. All observational studies evaluated the risk of CKD among PPI users, and non-users were considered for inclusion. Two reviewers conducted data extraction and assessed the risk of bias. Random-effect models were used to calculate pooled effect sizes. A total of 6,829,905 participants from 10 observational studies were included. Compared with non-PPI use, PPI use was significantly associated with an increased risk of CKD (RR 1.72, 95% CI: 1.02-2.87, p = 0.03). This updated meta-analysis showed that PPI was significantly associated with an increased risk of CKD. Association was observed in the same among moderate-quality studies. Until further randomized control trials (RCTs) and biological studies confirm these results, PPI therapy should not stop patients with gastroesophageal reflux disease (GERD). However, caution should be used when prescribing to patients with high-risk kidney disease.
Collapse
Affiliation(s)
- Chieh-Chen Wu
- Department of Healthcare Information and Management, School of Health Technology, Ming Chuan University, Taoyuan 33300, Taiwan
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
| | - Mao-Hung Liao
- Superintendent Office, Yonghe Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Yao-Chin Wang
- Department of Emergency, Min-Sheng General Hospital, Taoyuan 33044, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
38
|
Rivera FB, Cu MVV, Cua SJ, De Luna DV, Lerma EV, McCullough PA, Kazory A, Collado FMS. Aortic Stenosis and Aortic Valve Replacement among Patients with Chronic Kidney Disease: A Narrative Review. Cardiorenal Med 2023; 13:74-90. [PMID: 36812906 DOI: 10.1159/000529543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Aortic stenosis (AS) can present with dyspnea, angina, syncope, and palpitations, and this presents a diagnostic challenge as chronic kidney disease (CKD) and other commonly found comorbid conditions may present similarly. While medical optimization is an important aspect in management, aortic valve replacement (AVR) by surgical aortic valve replacement (SAVR) or transcatheter aortic valve replacement (TAVR) is the definitive treatment. Patients with concomitant CKD and AS require special consideration as it is known that CKD is associated with progression of AS and poor long-term outcomes. AIMS AND OBJECTIVES The aim of the study was to summarize and review the current existing literature on patients with both CKD and AS regarding disease progression, dialysis methods, surgical intervention, and postoperative outcomes. CONCLUSION The incidence of AS increases with age but has also been independently associated with CKD and furthermore with hemodialysis (HD). Regular dialysis with HD versus peritoneal dialysis (PD) and female gender have been associated with progression of AS. Management of AS is multidisciplinary and requires planning and interventions by the heart-kidney team to decrease the risk of further inducing kidney injury among high-risk population. Both TAVR and SAVR are effective interventions for patients with severe symptomatic AS, but TAVR has been associated with better short-term renal and cardiovascular outcomes. IMPLICATIONS FOR PRACTICE Special consideration must be given to patients with both CKD and AS. The choice of whether to undergo HD versus PD among patients with CKD is multifactorial, but studies have shown benefit regarding AS progression among those who undergo PD. The choice regarding AVR approach is likewise the same. TAVR has been associated with decreased complications among CKD patients, but the decision is multifactorial and requires a comprehensive discussion with the heart-kidney team as many other factors play a role in the decision including preference, prognosis, and other risk factors.
Collapse
Affiliation(s)
| | | | | | | | - Edgar V Lerma
- Section of Nephrology, University of Illinois at Chicago College of Medicine/ Advocate Christ Medical Center, Oak Lawn, Illinois, USA
| | | | - Amir Kazory
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
39
|
Kanbay M, Copur S, Tanriover C, Yavuz F, Galassi A, Ciceri P, Cozzolino M. The pathophysiology and management of vascular calcification in chronic kidney disease patients. Expert Rev Cardiovasc Ther 2023; 21:75-85. [PMID: 36716079 DOI: 10.1080/14779072.2023.2174525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Vascular calcification (VC) which is the pathological mineral deposition in the vascular system, predominantly at the intimal and medial layer of the vessel wall, is an important comorbidity in patients with chronic kidney disease (CKD) leading to significant morbidity and mortality while necessitating appropriate treatment. Our review aims to provide an in-depth analysis of the current understanding of VC. AREAS COVERED In this review, we first discuss the pathophysiology of VC in CKD patients, then we explain the methods to predict and assess VC. Afterwards, we provide the currently available as well as the potential therapeutic approaches of VC. We finally discuss our understanding regarding the current situation surrounding VC in our expert opinion section. EXPERT OPINION Predicting, assessing and treating VC is crucial and the future advances in the field of research surrounding VC will potentially occur in one or more of these three areas of clinical management. There is a current lack of evidence and consensus regarding specific therapeutic options for alleviating VC and this situation may not necessitate VC to be determined, detected, and documented before the available options are implemented. Regardless, the prediction and assessment of VC is still important and requires further improvement together with the developments in therapeutic alternatives. The future has the potential to bring better research which would guide and improve the management of this patient group. A more specialized approach consisting of targeted therapies and more tailored management plans for patients with CKD and VC is on the horizon.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.,Department of Health Sciences, Renal Division, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Andrea Galassi
- Department of Health Sciences, Renal Division, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, ASST Santi Paolo e Carlo, 20142 Milan, Italy
| |
Collapse
|
40
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
41
|
The association between weight-adjusted-waist index and abdominal aortic calcification in adults aged ≥ 40 years: results from NHANES 2013-2014. Sci Rep 2022; 12:20354. [PMID: 36437292 PMCID: PMC9701694 DOI: 10.1038/s41598-022-24756-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
The negative effects of obesity on the cardiovascular health have drawn much attention. Weight-adjusted-waist index (WWI) has been proved to reflect weight-independent centripetal obesity. However, the association between WWI and abdominal aortic calcification (AAC) has not been reported before. Using data from National Health and Nutrition Examination Survey 2013-2014, we aimed to determine the relationship of WWI and AAC in adults aged ≥ 40 years. WWI was determined by dividing waist circumference by the square root of weight. AAC was measured by dual-energy X-ray absorptiometry and quantified by Kauppila scores. Severe AAC (SAAC) was defined as an AAC score > 6. We utilized weighed multivariable logistic regression and generalized additive model to explore the independent association between WWI and AAC. Threshold effects were further calculated by two-piecewise linear regression model. 3082 participants were enrolled in our analysis, of which 48.2% were male. WWI was positively associated with AAC scores (β = 0.34, 95% CI 0.05-0.63) and exhibited a nonlinear relationship with SAAC. On the left of the breakpoint (WWI = 11.11), WWI and SAAC were positively associated (OR = 2.86, 95% CI 1.40-5.84), while no such relationship was found on the right (OR = 1.07, 95% CI 0.77-1.48). Our findings indicated that WWI may serve as a simple biomarker of AAC in US adults aged ≥ 40 years.
Collapse
|
42
|
Ceccherini E, Cecchettini A, Gisone I, Persiani E, Morales MA, Vozzi F. Vascular Calcification: In Vitro Models under the Magnifying Glass. Biomedicines 2022; 10:biomedicines10102491. [PMID: 36289753 DOI: 10.3390/biomedicines10102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular calcification is a systemic disease contributing to cardiovascular morbidity and mortality. The pathophysiology of vascular calcification involves calcium salt deposition by vascular smooth muscle cells that exhibit an osteoblast-like phenotype. Multiple conditions drive the phenotypic switch and calcium deposition in the vascular wall; however, the exact molecular mechanisms and the connection between vascular smooth muscle cells and other cell types are not fully elucidated. In this hazy landscape, effective treatment options are lacking. Due to the pathophysiological complexity, several research models are available to evaluate different aspects of the calcification process. This review gives an overview of the in vitro cell models used so far to study the molecular processes underlying vascular calcification. In addition, relevant natural and synthetic compounds that exerted anticalcifying properties in in vitro systems are discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Gisone
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Elisa Persiani
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Maria Aurora Morales
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
43
|
Sarma H, Kashyap P, Zothantluanga JH, Devi R. Nanotherapeutics of Phytoantioxidants for Cardiovascular Diseases. PHYTOANTIOXIDANTS AND NANOTHERAPEUTICS 2022:405-431. [DOI: 10.1002/9781119811794.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
44
|
Poznyak AV, Sadykhov NK, Kartuesov AG, Borisov EE, Sukhorukov VN, Orekhov AN. Atherosclerosis Specific Features in Chronic Kidney Disease (CKD). Biomedicines 2022; 10:biomedicines10092094. [PMID: 36140195 PMCID: PMC9495595 DOI: 10.3390/biomedicines10092094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Atherosclerosis is the major cause of cardiovascular disease, leading to a high mortality rate worldwide. Several risk factors are known to favor atherogenesis, among which are high blood pressure, smoking, diabetes mellitus, and others. Chronic kidney disease is another serious health problem associated with significant health care costs, morbidity, and mortality. Chronic kidney disease shares several risk factors with atherosclerosis and cardiovascular diseases, such as hypertension and diabetes mellitus. Additional risk factors for cardiovascular disease development should be considered in patients with chronic kidney disease. Interestingly, patients suffering from chronic kidney disease are more prone to cardiovascular problems than the general population. Moreover, chronic kidney disease is characterized by an increased atherosclerotic burden from the very early stages. The purpose of this review was to summarize data on atherosclerosis in chronic kidney disease, highlighting the specific features of the disease combination.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Andrey G. Kartuesov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Evgeny E. Borisov
- Petrovsky National Research Centre of Surgery, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Vasily N. Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Petrovsky National Research Centre of Surgery, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Petrovsky National Research Centre of Surgery, Abrikosovsky Lane, 119991 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
45
|
Lu J, Li H, Wang S. The kidney reabsorption-related Magnesium Depletion Score is associated with increased likelihood of abdominal aortic calcification among US adults. Nephrol Dial Transplant 2022; 38:1421-1429. [PMID: 35881469 DOI: 10.1093/ndt/gfac218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Kidney reabsorption has a vital role in magnesium homeostasis. This study aimed to determine the relationship between the kidney reabsorption-related magnesium depletion score (MDS) and abdominal aortic calcification (AAC). METHODS We obtained the data of 2640 individuals from the National Health and Nutrition Examination Survey (NHANES) database and analyzed the relationship between MDS and AAC scores. MDS is a scoring system developed to predict status of magnesium deficiency that fully considered the pathophysiological factors influencing the kidneys' reabsorption capability. AAC was quantified by the Kauppila score system based on dual-energy X-ray absorptiometry. We performed stratified analysis and multiple equation regression analysis. R and EmpowerStats were used for data analysis. RESULTS A total of 2640 participants were included with the mean AAC score of 1.47 ± 0.07. Participants in higher MDS tended to have higher AAC scores (MDS scored 0: 0.75 (0.56, 0.93), MDS scored 1: 1.02 (0.84, 1.21), MDS scored 2: 2.34 (1.80, 2.87), MDS scored 3: 3.19 (2.46, 3.92), MDS ≥ 4: 4.99 (3.49, 6.49)). Compared with those in the lowest MDS scored 0, the highest subgroup (MDS ≥ 4) was associated with a higher AAC score (β = 4.24, 95% CI: 2.78-5.70, p < 0.001), and the association was not altered (β = 1.81, 95% CI: 0.54-3.09, p = 0.002) after adjusting for numerous covariates. Subgroup analyses showed that stronger associations between MDS and AAC score were detected in adults with lower levels of magnesium intake and older (all p for interaction < 0.05). CONCLUSIONS The MDS is a promising tool for identifying individuals with magnesium deficiency status who may benefit from dietary magnesium supplementation to reduce the risks of AAC.
Collapse
Affiliation(s)
- Jian Lu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Stevens TW, Khalaf FK, Soehnlen S, Hegde P, Storm K, Meenakshisundaram C, Dworkin LD, Malhotra D, Haller ST, Kennedy DJ, Dube P. Dirty Jobs: Macrophages at the Heart of Cardiovascular Disease. Biomedicines 2022; 10:1579. [PMID: 35884884 PMCID: PMC9312498 DOI: 10.3390/biomedicines10071579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the greatest public health concerns and is the leading cause of morbidity and mortality in the United States and worldwide. CVD is a broad yet complex term referring to numerous heart and vascular conditions, all with varying pathologies. Macrophages are one of the key factors in the development of these conditions. Macrophages play diverse roles in the maintenance of cardiovascular homeostasis, and an imbalance of these mechanisms contributes to the development of CVD. In the current review, we provide an in-depth analysis of the diversity of macrophages, their roles in maintaining tissue homeostasis within the heart and vasculature, and the mechanisms through which imbalances in homeostasis may lead to CVD. Through this review, we aim to highlight the potential importance of macrophages in the identification of preventative, diagnostic, and therapeutic strategies for patients with CVD.
Collapse
Affiliation(s)
- Travis W. Stevens
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Fatimah K. Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Sophia Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Prajwal Hegde
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Kyle Storm
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Chandramohan Meenakshisundaram
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Lance D. Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| |
Collapse
|
47
|
Exogenous BMP7 administration attenuated vascular calcification and improved bone disorders in chronic uremic rats. Biochem Biophys Res Commun 2022; 621:8-13. [DOI: 10.1016/j.bbrc.2022.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
|
48
|
Machado SE, Spangler D, Black LM, Traylor AM, Balla J, Zarjou A. A Reproducible Mouse Model of Moderate CKD With Early Manifestations of Osteoblastic Transition of Cardiovascular System. Front Physiol 2022; 13:897179. [PMID: 35574469 PMCID: PMC9099146 DOI: 10.3389/fphys.2022.897179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant public health challenge with a substantial associated risk of mortality, morbidity, and health care expenditure. Culprits that lead to development and progression of CKD are multifaceted and heterogenous in nature. This notion underscores the need for diversification of animal models to investigate its pathophysiology, related complications, and to subsequently enable discovery of novel therapeutics. Importantly, animal models that could recapitulate complications of CKD in both genders are desperately needed. Cardiovascular disease is the most common cause of death in CKD patients that may be due in part to high prevalence of vascular calcification (VC). Using DBA/2 mice that are susceptible to development of VC, we sought to investigate the feasibility and reproducibility of a unilateral ischemia-reperfusion model followed by contralateral nephrectomy (UIRI/Nx) to induce CKD and its related complications in female and male mice. Our results demonstrate that irrespective of gender, mice faithfully displayed complications of moderate CKD following UIRI/Nx as evidenced by significant rise in serum creatinine, albuminuria, higher degree of collagen deposition, elevated expression of classic fibrotic markers, higher circulating levels of FGF-23, PTH and hepcidin. Moreover, we corroborate the osteoblastic transition of aortic smooth muscle cells and cardiomyocytes based on higher levels of osteoblastic markers namely, Cbfa-1, osteopontin, osteocalcin, and osterix. Our data confirms a viable, and consistent model of moderate CKD and its associated complications in both male and female mice. Furthermore, early evidence of osteoblastic transition of cardiovascular system in this model confirms its suitability for studying and implementing potential preventive and/or therapeutic approaches that are urgently needed in this field.
Collapse
Affiliation(s)
- Sarah E Machado
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Daryll Spangler
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Laurence M. Black
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - Amie M. Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary
| | - József Balla
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Division of Nephrology, Department of Medicine, Faculty of Medicine, Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Hungary,*Correspondence: Abolfazl Zarjou,
| |
Collapse
|
49
|
Kim JS, Hwang HS. Vascular Calcification in Chronic Kidney Disease: Distinct Features of Pathogenesis and Clinical Implication. Korean Circ J 2021; 51:961-982. [PMID: 34854578 PMCID: PMC8636761 DOI: 10.4070/kcj.2021.0995] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with a higher prevalence of vascular calcification (VC) and cardiovascular disease. VC in CKD patients showed different pathophysiological features from those of the general population. The pathogenesis of VC in CKD is a highly organized process, and prior studies have suggested that patients with CKD have their own specific contributors to the phenotypic change of vascular smooth muscle cells (VSMCs), including uremic toxins, CKD-mineral and bone disease (CKD-MBD), inflammation, and oxidative stress. For the diagnosis and monitoring of VC in CKD, several imaging modalities, including plain radiography, ultrasound, and computed tomography have been utilized. VC in CKD patients has distinct clinical features and implications. CKD patients revealed a more intense and more prevalent calcification on the intimal and medial layers, whereas intimal calcification is predominantly observed in the general population. While a higher VC score is clearly associated with a higher risk of all-cause mortality and cardiovascular events, a greater VC score in CKD patients does not fully reflect the burden of atherosclerosis, because they have more calcification at equal volumes of atheromatous plaques. The primary goal of VC treatment in CKD is the prevention of VC progression, and the main management is to control the biochemical components of CKD-MBD. Cinacalcet and non-calcium-containing phosphate binders are the mainstay of VC prevention in CKD-MBD management. VC in patients with CKD is an ongoing area of research and is expected to advance soon.
Collapse
Affiliation(s)
- Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
50
|
Toxic Effects of Indoxyl Sulfate on Osteoclastogenesis and Osteoblastogenesis. Int J Mol Sci 2021; 22:ijms222011265. [PMID: 34681927 PMCID: PMC8538618 DOI: 10.3390/ijms222011265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Uremic toxins, such as indoxyl sulfate (IS) and kynurenine, accumulate in the blood in the event of kidney failure and contribute to further bone damage. To maintain the homeostasis of the skeletal system, bone remodeling is a persistent process of bone formation and bone resorption that depends on a dynamic balance of osteoblasts and osteoclasts. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates the toxic effects of uremic toxins. IS is an endogenous AhR ligand and is metabolized from tryptophan. In osteoclastogenesis, IS affects the expression of the osteoclast precursor nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) through AhR signaling. It is possible to increase osteoclast differentiation with short-term and low-dose IS exposure and to decrease differentiation with long-term and/or high-dose IS exposure. Coincidentally, during osteoblastogenesis, through the AhR signaling pathway, IS inhibits the phosphorylation of ERK, and p38 reduces the expression of the transcription factor 2 (Runx2), disturbing osteoblastogenesis. The AhR antagonist resveratrol has a protective effect on the IS/AhR pathway. Therefore, it is necessary to understand the multifaceted role of AhR in CKD, as knowledge of these transcription signals could provide a safe and effective method to prevent and treat CKD mineral bone disease.
Collapse
|