1
|
Jeon Y, Jeon S, Lim JY, Koh H, Choi CW, Seong SK, Cha B, Kim W. Monocyte activation test (MAT) as an ethical alternative to animal testing. BMB Rep 2025; 58:105-115. [PMID: 40058872 PMCID: PMC11955731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 04/01/2025] Open
Abstract
Ethical considerations surrounding the utilization of animals in scientific research have prompted a widespread search for alternative methodologies. This review explores the historical context and ethical dilemmas associated with traditional animal testing methods, before introducing the Monocyte Activation Test (MAT) as a promising alternative, and outlining its basic principles, historical development, and advantages over conventional animal testing. The role of monocytes in the immune system and the activation pathways utilized in MAT are elucidated, while regulatory acceptance and guidelines for MAT validation are introduced, alongside case studies proving its reliability and reproducibility. The applications of MAT in pharmaceutical and medical device testing are summarized, together with its potential future uses. Although the MAT faces limitations and challenges, the global perspective to reduce unnecessary animal tests has become a general concept in animal welfare and scientific research. [BMB Reports 2025; 58(3): 105-115].
Collapse
Affiliation(s)
- Yeram Jeon
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Hyungjung Koh
- Biopharmaceutical and Herbal Medicine Evaluation Department, National Institute of Food and Drug Safety Evaluation, Chungju 28159, Korea
| | - Chan Woong Choi
- Biopharmaceutical and Herbal Medicine Evaluation Department, National Institute of Food and Drug Safety Evaluation, Chungju 28159, Korea
| | - Su Kyoung Seong
- Biopharmaceutical and Herbal Medicine Evaluation Department, National Institute of Food and Drug Safety Evaluation, Chungju 28159, Korea
| | - Boksik Cha
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
2
|
Kim HS, Lee GR, Kim EY. Diagnostic Value of Endotoxin Activity for Acute Postoperative Complications: A Study in Major Abdominal Surgery Patients. Biomedicines 2024; 12:2701. [PMID: 39767608 PMCID: PMC11673740 DOI: 10.3390/biomedicines12122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Endotoxin, a component of lipopolysaccharide (LPS) from bacteria, disrupts the immune system, potentially leading to multiorgan failure. Unlike previous studies, we enrolled patients with mild clinical conditions after major abdominal surgery and assessed the predictive value of endotoxin activity (EA) levels for acute complications which occur within 7 days postoperatively. Also, the differential diagnostic value of EA was assessed in a subgroup of patients with abnormal liver function during the immediate postoperative period. Methods: Patients admitted to the surgical ICU of our institution following elective abdominal surgery were enrolled. Participants were classified into low/high postoperative EA groups based on EA cutoff values for predicting complications. Additionally, participants were categorized based on liver function assessed at ICU admission using total bilirubin (TB) levels. Abnormal liver function was defined as a TB level > 1.2 mg/dL. Results: 86 patients were analyzed. The EA cutoff for postoperative complications was 0.485, with 49 patients (57%) categorized in the low EA group (EA levels < 0.485) and 37 patients (43%) in the high EA group (EA levels ≥ 0.485). The high EA group experienced statistically worse outcomes, including longer ICU stays and higher mortality rates. Logistic regression analysis confirmed that EA levels and SOFA scores were significant predictors of postoperative complications. For patients with elevated TB, the EA cutoff value for postoperative complications was 0.515, which is higher than those obtained for the total patient cohort. Conclusions: EA level is a viable surveillance tool for detecting postoperative complications in the acute period among ICU patients undergoing major abdominal surgery, and must be interpreted carefully considering the patient's liver function.
Collapse
Affiliation(s)
| | | | - Eun Young Kim
- Division of Trauma and Surgical Critical Care, Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.S.K.)
| |
Collapse
|
3
|
Ab Aziz A, Mappiare S, Nam HY, Devi D, Johan MR, Kamarul T. Endotoxin Detection in Magnetic Resonance Imaging Contrast Agent Using Optimising Chromogenic Limulus Amebocyte Lysate Assay. Malays J Med Sci 2024; 31:284-291. [PMID: 39416745 PMCID: PMC11477474 DOI: 10.21315/mjms2024.31.5.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 10/19/2024] Open
Abstract
Endotoxin contamination in magnetic resonance imaging (MRI) contrast agents can pose a risk to patient safety causing immune reactions. Strict endotoxin limits are enforced for implants and catheters inserted into the body, but there are not clear rules for MRI contrast agents. Here, we investigated the efficacy of chromogenic LAL assay test for screening endotoxin activity in MRI contrast media manufactured in Malaysia. The powdered agent was dissolved in water for injection and endotoxin levels were measured. The coefficient of efficiency value for the standard curve, exhibiting r 2 ≥ 0.98, along with the absence of interfering substances and endotoxin activity below the regulatory threshold of 0.5 EU/mL, support the conclusion that the agent is unlikely to be pyrogenic or induce pyrogenic effect.
Collapse
Affiliation(s)
- Atiqah Ab Aziz
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sahrinanah Mappiare
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hui Yin Nam
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Durga Devi
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Kamoshida G, Yamaguchi D, Kaya Y, Yamakado T, Yamashita K, Aoyagi M, Nagai S, Yamada N, Kawagishi Y, Sugano M, Sakairi Y, Ueno M, Takemoto N, Morita Y, Ishizaka Y, Yahiro K. Development of a novel bacterial production system for recombinant bioactive proteins completely free from endotoxin contamination. PNAS NEXUS 2024; 3:pgae328. [PMID: 39161731 PMCID: PMC11331542 DOI: 10.1093/pnasnexus/pgae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Endotoxins, or lipopolysaccharides (LPS), are potent immunostimulatory molecules of critical concern in bacterial recombinant protein expression systems. The gram-negative bacterium Acinetobacter baumannii exhibits an interesting and unique phenotype characterized by the complete loss of LPS. In this study, we developed a novel system for producing recombinant proteins completely devoid of endotoxin contamination using LPS-deficient A. baumannii. We purified endotoxin-free functional green fluorescent protein, which reduced endotoxin contamination by approximately three orders of magnitude, and also purified the functional cytokine tumor necrosis factor (TNF)-α. Additionally, utilization of the Omp38 signal peptide of A. baumannii enabled the extracellular production of variable domain of heavy chain of heavy chain (VHH) antibodies. With these advantages, mNb6-tri-20aa, a multivalent VHH that specifically binds to the spike protein of severe acute respiratory syndrome coronavirus 2, was purified from the culture supernatant, and endotoxin contamination was reduced by a factor of approximately 2 × 105 compared with that in conventional expression systems. A virus neutralization assay demonstrated the functionality of the purified antibody in suppressing viral infections. Moreover, we applied our system to produce ozoralizumab, a multispecific VHH that binds to human TNF-α and albumin and are marketed as a rheumatoid arthritis drug. We successfully purified a functional antibody from endotoxin contamination. This system establishes a new, completely endotoxin-free platform for the expression of recombinant proteins, which distinguishes it from other bacterial expression systems, and holds promise for future applications.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuki Kaya
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiki Yamakado
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kenta Yamashita
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Moe Aoyagi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Saaya Nagai
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yu Kawagishi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mizuki Sugano
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yoshiaki Sakairi
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Mikako Ueno
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
5
|
Dardelle F, Phelip C, Darabi M, Kondakova T, Warnet X, Combret E, Juranville E, Novikov A, Kerzerho J, Caroff M. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int J Mol Sci 2024; 25:3927. [PMID: 38612737 PMCID: PMC11011966 DOI: 10.3390/ijms25073927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.
Collapse
Affiliation(s)
- Flavien Dardelle
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Capucine Phelip
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Maryam Darabi
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Tatiana Kondakova
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Xavier Warnet
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Edyta Combret
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Eugenie Juranville
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Martine Caroff
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| |
Collapse
|
6
|
Solano G, Ainsworth S, Sánchez A, Villalta M, Sánchez P, Durán G, Gutiérrez JM, León G. Analysis of commercially available snake antivenoms reveals high contents of endotoxins in some products. Toxicon X 2024; 21:100187. [PMID: 38404947 PMCID: PMC10884770 DOI: 10.1016/j.toxcx.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024] Open
Abstract
As injectable therapeutics, snake antivenoms must meet specifications for endotoxin content. The Limulus amebocyte lysate (LAL) test was used to evaluate the endotoxin content in several commercially available antivenoms released for clinical use. It was found that some products have endotoxin concentrations higher than the accepted limit for these contaminants. These results emphasize the need to include endotoxin determination as part of the routine evaluation of antivenoms by manufacturers and regulatory agencies.
Collapse
Affiliation(s)
- Gabriela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Stuart Ainsworth
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Adriana Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paola Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
7
|
He Q, Yu CF, Wu G, Wang KQ, Ni YB, Guo X, Fu ZH, Wang L, Tan DJ, Gao H, Wang C, Chen G, Chen XH, Chen B, Wang JZ. A novel alternative for pyrogen detection based on a transgenic cell line. Signal Transduct Target Ther 2024; 9:33. [PMID: 38369543 PMCID: PMC10874988 DOI: 10.1038/s41392-024-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Pyrogen, often as a contaminant, is a key indicator affecting the safety of almost all parenteral drugs (including biologicals, chemicals, traditional Chinese medicines and medical devices). It has become a goal to completely replace the in vivo rabbit pyrogen test by using the in vitro pyrogen test based on the promoted 'reduction, replacement and refinement' principle, which has been highly considered by regulatory agencies from different countries. We used NF-κB, a central signalling molecule mediating inflammatory responses, as a pyrogenic marker and the monocyte line THP-1 transfected with a luciferase reporter gene regulated by NF-κB as an in vitro model to detect pyrogens by measuring the intensity of a fluorescence signal. Here, we show that this test can quantitatively and sensitively detect endotoxin (lipopolysaccharide from different strains) and nonendotoxin (lipoteichoic acid, zymosan, peptidoglycan, lectin and glucan), has good stability in terms of NF-κB activity and cell phenotypes at 39 cell passages and can be applied to detect pyrogens in biologicals (group A & C meningococcal polysaccharide vaccine; basiliximab; rabies vaccine (Vero cells) for human use, freeze-dried; Japanese encephalitis vaccine (Vero cells), inactivated; insulin aspart injection; human albumin; recombinant human erythropoietin injection (CHO Cell)). The within-laboratory reproducibility of the test in three independent laboratories was 85%, 80% and 80% and the interlaboratory reproducibility among laboratories was 83.3%, 95.6% and 86.7%. The sensitivity (true positive rate) and specificity (true negative rate) of the test were 89.9% and 90.9%, respectively. In summary, the test provides a novel alternative for pyrogen detection.
Collapse
Affiliation(s)
- Qing He
- National Institutes for Food and Drug Control, Beijing, China
| | - Chuan-Fei Yu
- National Institutes for Food and Drug Control, Beijing, China
| | - Gang Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai-Qin Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Yong-Bo Ni
- National Institutes for Food and Drug Control, Beijing, China
| | - Xiao Guo
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhi-Hao Fu
- National Institutes for Food and Drug Control, Beijing, China
| | - Lan Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - De-Jiang Tan
- National Institutes for Food and Drug Control, Beijing, China
| | - Hua Gao
- National Institutes for Food and Drug Control, Beijing, China
| | - Can Wang
- Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Gang Chen
- Shanghai Institute for Food and Drug Control, Shanghai, China
| | | | - Bo Chen
- KeyMed Biosciences Inc., Chengdu, China
| | - Jun-Zhi Wang
- National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
8
|
Harm S, Schildböck C, Cont D, Weber V. Heparin enables the reliable detection of endotoxin in human serum samples using the Limulus amebocyte lysate assay. Sci Rep 2024; 14:2410. [PMID: 38287051 PMCID: PMC10825173 DOI: 10.1038/s41598-024-52735-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
The determination of lipopolysaccharide (endotoxin) in serum or plasma samples using Limulus amebocyte lysate (LAL)-based assays is currently not sufficiently reliable in clinical diagnostics due to numerous interfering factors that strongly reduce the recovery of LPS in clinical samples. The specific plasma components responsible for the endotoxin neutralizing capacity of human blood remain to be identified. There are indications that certain endotoxin-neutralizing proteins or peptides, which are part of the host defense peptides/proteins of the innate immune system may be responsible for this effect. Based on our finding that several antimicrobial peptides can be neutralized by the polyanion heparin, we developed a heparin-containing diluent for serum and plasma samples, which enables reliable quantification of LPS measurement in clinical samples using the LAL assay. In a preclinical study involving 40 donors, this improved protocol yielded an over eightfold increase in LPS recovery in serum samples, as compared to the standard protocol. This modified protocol of sample pretreatment could make LPS measurement a valuable tool in medical diagnostics.
Collapse
Affiliation(s)
- Stephan Harm
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria.
| | - Claudia Schildböck
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Denisa Cont
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
- Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University, Krems, Austria
| | - Viktoria Weber
- Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
9
|
Pisarev VM, Rey SI, Kulabukhov VV, Popov AY. If EAA Test Versus LAL Test is Always Clinically Better and Whether Any Test Always Relates to the Therapeutic Value of Hemoperfusion in Septic Shock Patients? Shock 2023; 60:725-726. [PMID: 37549019 DOI: 10.1097/shk.0000000000002201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
|
10
|
Kimoto H, Takahashi M, Masuko M, Sato K, Hirahara Y, Iiyama M, Suzuki Y, Hashimoto T, Hayashita T. High-Throughput Analysis of Bacterial Toxic Lipopolysaccharide in Water by Dual-Wavelength Monitoring Using a Ratiometric Fluorescent Chemosensor. Anal Chem 2023; 95:12349-12357. [PMID: 37524054 PMCID: PMC10448884 DOI: 10.1021/acs.analchem.3c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Lipopolysaccharide (LPS) is a bacterial toxin that causes fever in humans. Our small-molecule chemosensor named Zn-dpa-C2OPy shows rapid ratiometric fluorescence response to LPS in water with a detection limit of 11 pM, which is lower than that of our previously reported sensor. Spectroscopic measurements (fluorescence, absorbance, 1H NMR, and fluorescence lifetime), dynamic light scattering measurements, and transmission electron microscopy observations revealed that the fluorescence response was induced by the changes in the aggregation state via multi-point recognition of LPS through hydrophobic and electrostatic interactions, in addition to the coordination between the zinc(II)-dipicolylamine moiety of the chemosensor and the phosphate group of LPS. The proposed Zn-dpa-C2OPy chemosensor was applied to an original flow injection analysis (FIA) system with a self-developed dual-wavelength fluorophotometer, and a high throughput of 36 samples per hour was achieved. These results demonstrate the feasibility of this unique methodology combining a ratiometric fluorescent chemosensor and FIA for continuous online monitoring of LPS in water.
Collapse
Affiliation(s)
- Hiroshi Kimoto
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Moeka Takahashi
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Masakage Masuko
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
| | - Kai Sato
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
| | - Yuya Hirahara
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Masamitsu Iiyama
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Takeshi Hashimoto
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
11
|
Lei Y, Yong Z, Junzhi W. Development and application of potency assays based on genetically modified cells for biological products. J Pharm Biomed Anal 2023; 230:115397. [PMID: 37079933 DOI: 10.1016/j.jpba.2023.115397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023]
Abstract
Potency assays are key to the development, registration, and quality control of biological products. Although previously preferred for clinical relevance, in vivo bioassays have greatly diminished with the advent of dependent cell lines as well as due to ethical concerns. However, for some products, the development of in vitro cell-based assay is challenging, or existing method has limitations such as tedious procedure or low sensitivity. The generation of genetically modified (GM) cell line with improved response to the analyte provides a scientific and promising solution. Potency assays based on GM cell lines are currently used for the quality control of biological products including cytokines, hormones, therapeutic antibodies, vaccines and gene therapy products. In this review, we have discussed the general principles of designing and developing GM cells-based potency assays, including identification of cellular signaling pathways and detectable biological effects, generation of responsive cell lines and constitution of test systems, based on the current research progress. In addition, the applications of some novel technologies and the common concerns regarding GM cells have also been discussed. The research presented in this review provides insights for the development and application of novel GM cells-based potency assays for biological products.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Zhou Yong
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China
| | - Wang Junzhi
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing 100050, China.
| |
Collapse
|
12
|
Hatlem D, Christensen M, Broeker NK, Kristiansen PE, Lund R, Barbirz S, Linke D. A trimeric coiled-coil motif binds bacterial lipopolysaccharides with picomolar affinity. Front Cell Infect Microbiol 2023; 13:1125482. [PMID: 36875521 PMCID: PMC9978483 DOI: 10.3389/fcimb.2023.1125482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
α-helical coiled-coils are ubiquitous protein structures in all living organisms. For decades, modified coiled-coils sequences have been used in biotechnology, vaccine development, and biochemical research to induce protein oligomerization, and form self-assembled protein scaffolds. A prominent model for the versatility of coiled-coil sequences is a peptide derived from the yeast transcription factor, GCN4. In this work, we show that its trimeric variant, GCN4-pII, binds bacterial lipopolysaccharides (LPS) from different bacterial species with picomolar affinity. LPS molecules are highly immunogenic, toxic glycolipids that comprise the outer leaflet of the outer membrane of Gram-negative bacteria. Using scattering techniques and electron microscopy, we show how GCN4-pII breaks down LPS micelles in solution. Our findings suggest that the GCN4-pII peptide and derivatives thereof could be used for novel LPS detection and removal solutions with high relevance to the production and quality control of biopharmaceuticals and other biomedical products, where even minuscule amounts of residual LPS can be lethal.
Collapse
Affiliation(s)
- Daniel Hatlem
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| | | | - Nina K. Broeker
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | | | - Reidar Lund
- Kjemisk Institutt, Universitetet i Oslo, Oslo, Norway
| | - Stefanie Barbirz
- Department Humanmedizin, HMU Health and Medical University, Potsdam, Germany
| | - Dirk Linke
- Institutt for Biovitenskap, Universitetet i Oslo, Oslo, Norway
| |
Collapse
|
13
|
Moriyama A, Ogura I, Fujita K. Potential issues specific to cytotoxicity tests of cellulose nanofibrils. J Appl Toxicol 2023; 43:195-207. [PMID: 36065078 PMCID: PMC10087788 DOI: 10.1002/jat.4390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Cellulose nanofibrils (also called cellulose nanofibers or nanofibrillated cellulose [CNFs]) are novel polymers derived from biomass with excellent physicochemical properties and various potential applications. However, the introduction of such new materials into the market requires thorough safety studies to be conducted. Recently, toxicity testing using cultured cells has attracted attention as a safety assessment that does not rely on experimental animals. This article reviews recent information regarding the cytotoxicity testing of CNFs and highlights the issues relevant to evaluating tests. In the literature, we found that a variety of cell lines and CNF exposure concentrations was evaluated. Furthermore, the results of cytotoxicity results tests differed and were not necessarily consistent. Numerous reports that we examined had not evaluated endotoxin/microbial contamination or the interaction of CNFs with the culture medium used in the tests. The following potential specific issues involved in CNF in vitro testing, were discussed: (1) endotoxin contamination, (2) microbial contamination, (3) adsorption of culture medium components to CNFs, and (4) changes in aggregation/agglomeration and dispersion states of CNFs resulting from culture medium components. In this review, the available measurement methods and solutions for these issues are also discussed. Addressing these points will lead to a better understanding of the cellular effects of CNFs and the development of safer CNFs.
Collapse
Affiliation(s)
- Akihiro Moriyama
- Research Institute of Science and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Isamu Ogura
- Research Institute of Science and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Katsuhide Fujita
- Research Institute of Science and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
14
|
Wang C, Wang M, Liu L, Li G, Wu Y, Wang Z, Duan X, Shao H, Chen G. Development and validation of a novel luciferase reporter gene assay to detect pyrogen. Biologicals 2022; 77:16-23. [PMID: 35729037 DOI: 10.1016/j.biologicals.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Abstract
To develop and validate a novel reporter gene assay (RGA) to detect pyrogen, HL60 cells were transfected with an NF-κB-RE plasmid containing the luciferase gene to generate stably transfected cells. Through stimulation with pyrogens, a signal was obtained that was dose-dependent with the concentration of pyrogen. Using the cells, we selected and optimized the parameters and found that the optimal conditions may be with 5 × 105/ml cells that were seeded and incubated with pyrogen for 3-6 h in IMDM medium with 2% FBS. Based on the optimized parameters, a novel RGA was developed. Then, the RGA was validated and the results showed that the linearity was greater than 0.95 between the signals and the concentrations of pyrogen, the recoveries of pyrogen were all between 50% and 200%, and the precision was less than 35%. There was no difference in the sensitivity, specificity or reproducibility between RGA and BET, and the results from RGA and MAT and RPT were consistent. Furthermore, the RGA can be applied to the pyrogen detection of monoclonal antibodies. Due to its advantages including a fast detection speed, high sensitivity, convenient mode of operation and wide-pyrogen spectrum detection, RGA is promising as a supplementary method to detect pyrogen.
Collapse
Affiliation(s)
- Can Wang
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Mingren Wang
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Lizhen Liu
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China; School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Gaomin Li
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Yimei Wu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Zhangjiang Biotechnology Co. Ltd, 201203, PR China
| | - Ziqiang Wang
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Xuhua Duan
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Hong Shao
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China
| | - Gang Chen
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai Institute for Food and Drug Control, Shanghai, 201203, PR China.
| |
Collapse
|
15
|
Zhao J, Wei Q, Guo S, Wang H, Zhao C, Hu C, Liu C, Dai Q, Wang R. Efficacy of Oxymatrine Plus Antiviral in the Treatment of Sepsis and Its Effect on the Levels of Endotoxin and Inflammatory Factors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1938325. [PMID: 35656463 PMCID: PMC9155921 DOI: 10.1155/2022/1938325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Objective To assess the clinical efficacy of oxymatrine plus antiviral therapy in the treatment of sepsis and its effects on the levels of endotoxin and inflammatory factors. Methodology. 90 patients with sepsis were selected for retrospective analysis and were assigned to receive either conventional treatment (control group) or oxymatrine plus antiviral treatment (study group). The clinical endpoint was treatment efficacy. Results There were no significant differences in baseline patient profile between the two groups (P > 0.05). The study group showed a higher efficiency versus the control group (P < 0.05). Patients in the study group had a significantly shorter mechanical ventilation duration and ICU stay versus those in the control group (P < 0.05). Both groups had reduced Acute Physiology and Chronic Health Evaluation II (APACHE II) score, Marshall score, levels of endotoxin, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, C-reactive protein (CRP), and procalcitonin (PCT) after treatment, with lower results in the study group versus the control group (P < 0.05). Conclusion Oxymatrine plus antiviral therapy effectively improves clinical efficacy, reduces the levels of endotoxin and inflammatory factors, protects organ function, and boosts recovery. Further clinical trials are, however, required prior to general application in clinical practice.
Collapse
Affiliation(s)
- Jinglin Zhao
- Department of Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qi Wei
- Department of Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Shengchao Guo
- Department II of Hepatobiliary and Pancreatic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hao Wang
- Department of Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Chao Zhao
- Department of Pharmacology, Cangzhou Medical College, Cangzhou, Hebei, China
| | - Caihong Hu
- Department of Pharmacology, Cangzhou Medical College, Cangzhou, Hebei, China
| | - Cuicui Liu
- Department of Pharmacology, Cangzhou Medical College, Cangzhou, Hebei, China
| | - Qingchun Dai
- Department of Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rui Wang
- Department of Critical Care Medicine, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
16
|
Diagnostic Challenge and Therapeutic Approaches in Human Sepsis Based on the Appearance of Endotoxemia and Beta-d-Glucanemia. Int J Mol Sci 2021; 22:ijms222312900. [PMID: 34884705 PMCID: PMC8657591 DOI: 10.3390/ijms222312900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
|
17
|
Cao Y, Zhang Y, Qiu F. Low endotoxin recovery and its impact on endotoxin detection. Biopolymers 2021; 112:e23470. [PMID: 34407207 DOI: 10.1002/bip.23470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Endotoxin exists on the outer membrane of Gram-negative bacteria and poses risks to human health by triggering a series of immune responses. Therefore, its accurate detection is essential. The Limulus amoebocyte lysate (LAL) test is the most pharmacopeia-recognized and popular technique for endotoxin detection. Despite its wide industry adoption, the low endotoxin recovery (LER) phenomenon can compromise the LAL test's reliability. This review summarizes the possible reasons attributing to the LER phenomenon from three different perspectives: the endotoxin standards used in hold time study, protein active pharmaceutical ingredients, and excipients. Potential mechanisms and strategies to mitigate the LER phenomenon are also discussed as presented by different research groups.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Yujie Zhang
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| | - Frank Qiu
- Department of Process Development, BeiGene Guangzhou Biologics Manufacturing Co., Ltd., Guangzhou, China
| |
Collapse
|