1
|
Radermacher C, Rohde A, Kucikas V, Buhl EM, Wein S, Jonigk D, Jahnen-Dechent W, Neuss S. Various Hydrogel Types as a Potential In Vitro Angiogenesis Model. Gels 2024; 10:820. [PMID: 39727578 DOI: 10.3390/gels10120820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a fundamental process in both physiological repair mechanisms and pathological conditions, including cancer and chronic inflammation. Hydrogels are commonly used as in vitro models to mimic the extracellular matrix (ECM) and support endothelial cell behavior during angiogenesis. Mesenchymal stem cells further augment cell and tissue growth and are therefore widely used in regenerative medicine. Here we examined the combination of distinct hydrogel types-fibrin, collagen, and human platelet lysate (HPL)-on the formation of capillaries in a co-culture system containing human umbilical vein endothelial cells (HUVECs) and bone marrow-derived mesenchymal stem cells (BM-MSCs). The mechanical properties and structural changes of the hydrogels were characterized through scanning electron microscopy (SEM) and nanoindentation over 10 days. Fibrin and HPL gels sustained complex network formations, with HPL gels promoting even vascular tube formation of up to 10-fold capillary caliber. Collagen gels supported negligible angiogenesis. Our results suggest that HPL gels in combination with MSC-EC co-culture may be employed to obtain robust vascularization in tissue engineering. This study provides a comparative analysis of fibrin, collagen, and HPL hydrogels, focusing on their ability to support angiogenesis under identical conditions. Our findings demonstrate the superior performance of HPL gels in promoting robust vascular structures, highlighting their potential as a versatile tool for in vitro angiogenesis modeling.
Collapse
Affiliation(s)
- Chloé Radermacher
- Biointerface Laboratory, Helmholtz-Institut for Biomedical Engineering, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Annika Rohde
- Biointerface Laboratory, Helmholtz-Institut for Biomedical Engineering, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Vytautas Kucikas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Svenja Wein
- Biointerface Laboratory, Helmholtz-Institut for Biomedical Engineering, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage & Obstructive Lung Disease (BREATH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz-Institut for Biomedical Engineering, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Neuss
- Biointerface Laboratory, Helmholtz-Institut for Biomedical Engineering, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
2
|
Poma P, Rigogliuso S, Labbozzetta M, Carfì Pavia F, Carbone C, Ma J, Cusimano A, Notarbartolo M. Antimigratory effects of a new NF-κB inhibitor, (S)-b-salicyloylamino-a-exo-methylene-ƴ-butyrolactone, in 2D and 3D breast cancer models. Biomed Pharmacother 2024; 180:117552. [PMID: 39426283 DOI: 10.1016/j.biopha.2024.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
One of the pharmacological approaches to neoplastic disease aims to target the metastatic capacity of tumor cells to reduce their aggressive behavior. In this study, we analyzed the antimigratory capacity of the compound SEMBL, (S)-β-salicyloylamino-a-exo-methylene-ƴ-butyrolactone, a new analog of (-)-Dehydroxymethylepoxyquinomicin ((-)-DHMEQ), in three different breast cancer cell lines: MCF-7, MCF-7R and MDA-MB-231. This molecule is characterized by intense antiproliferative activity, evaluated by MTS assay, showing greater potency than DHMEQ. SEMBL was able to inhibit nuclear factor κappa B (NF-κB) activation observed through TransAM™ assay, while cell invasion and wound healing assays revealed a strong reduction in invasive capacity mediated by metalloproteinase 2 (MMP-2) and Vimentin decrease. These results, obtained in vitro, were corroborated on 3D systems made up of Poly-L-Lactic Acid (PLLA) scaffolds. In summary, SEMBL exerts interesting anti-tumor activities in preclinical breast cancer models and therefore it could be a promising new molecule to be studied also in other types of neoplastic disease.
Collapse
Affiliation(s)
- Paola Poma
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Salvatrice Rigogliuso
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Manuela Labbozzetta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | | | - Camilla Carbone
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Jun Ma
- Department of Research and Development, Shenzhen Wanhe Pharmaceutical Co., Ltd., Shenzhen, China
| | - Alessandra Cusimano
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Monica Notarbartolo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Liang X, Huang C, Liu H, Chen H, Shou J, Cheng H, Liu G. Natural hydrogel dressings in wound care: Design, advances, and perspectives. CHINESE CHEM LETT 2024; 35:109442. [DOI: 10.1016/j.cclet.2023.109442] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
4
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Li Z, Wang H, Li K, Wang W, Ma J, Liu Z, Li B, Li J, Han F, Xiao C. Combining "waste utilization" and "tissue to tissue" strategies to accelerate vascularization for bone repair. J Orthop Translat 2024; 47:132-143. [PMID: 39027342 PMCID: PMC11254838 DOI: 10.1016/j.jot.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 07/20/2024] Open
Abstract
Background A pivotal determinant for the success of tissue regeneration lies in the establishment of sufficient vasculature. Utilizing autologous tissue grafts from donors offers the dual advantage of mitigating the risk of disease transmission and circumventing the necessity for post-transplant immunosuppression, rendering it an exemplary vascularization strategy. Among the various potential autologous donors, adipose tissue emerges as a particularly auspicious source, being both widely available and compositionally rich. Notably, adipose-derived microvascular fragments (ad-MVFs) are a promising candidate for vascularization. ad-MVFs can be isolated from adipose tissue in a short period of time and show high vascularized capacity. In this study, we extracted ad-MVFs from adipose tissue and utilized their strong angiogenic ability to accelerate bone repair by promoting vascularization. Methods ad-MVFs were extracted from the rat epididymis using enzymatic hydrolysis. To preserve the integrity of the blood vessels, gelatin methacryloyl (GelMA) hydrogel was chosen as the carrier for ad-MVFs in three-dimensional (3D) culture. The ad-MVFs were cultured directly on the well plates for two-dimensional (2D) culture as a control. The morphology of ad-MVFs was observed under both 2D and 3D cultures, and the release levels of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) were assessed under both culture conditions. In vitro studies investigated the impact of ad-MVFs/GelMA hydrogel on the toxicity, osteoblastic activity, and mineralization of rat bone marrow mesenchymal stem cells (rBMSCs), along with the examination of osteogenic gene and protein expression. In vivo experiments involved implanting the ad-MVFs/GelMA hydrogel into critical-size skull defects in rats, and its osteogenic ability was evaluated through radiographic and histological methods. Results ad-MVFs were successfully isolated from rat adipose tissue. When cultured under 2D conditions, ad-MVFs exhibited a gradual disintegration and loss of their original vascular morphology. Compared with 2D culture, ad-MVFs can not only maintain the original vascular morphology, but also connect into a network in hydrogel under 3D culture condition. Moreover, the release levels of VEGF and BMP-2 were significantly higher than those in 2D culture. Moreover, the ad-MVFs/GelMA hydrogel exhibited superior osteoinductive activity. After implanting into the skull defect of rats, the ad-MVFs/GelMA hydrogel showed obvious effects for angiogenesis and osteogenesis. The translational potential of this article The utilization of autologous adipose tissue as a donor presents a more direct route toward clinical translation. Anticipated future clinical applications envision the transformation of discarded adipose tissue into a valuable resource for personalized tissue repair, thereby realizing a paradigm shift in the utilization of this abundant biological material.
Collapse
Affiliation(s)
- Zexi Li
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Kexin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jinjin Ma
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhao Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- National University of Singapore Suzhou Research Institute, Suzhou, People’s Republic of China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Fengxuan Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Can Xiao
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Qi B, Ding Y, Zhang Y, Kou L, Zhao YZ, Yao Q. Biomaterial-assisted strategies to improve islet graft revascularization and transplant outcomes. Biomater Sci 2024; 12:821-836. [PMID: 38168805 DOI: 10.1039/d3bm01295f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Islet transplantation holds significant promise as a curative approach for type 1 diabetes (T1D). However, the transition of islet transplantation from the experimental phase to widespread clinical implementation has not occurred yet. One major hurdle in this field is the challenge of insufficient vascularization and subsequent early loss of transplanted islets, especially in non-intraportal transplantation sites. The establishment of a fully functional vascular system following transplantation is crucial for the survival and secretion function of islet grafts. This vascular network not only ensures the delivery of oxygen and nutrients, but also plays a critical role in insulin release and the timely removal of metabolic waste from the grafts. This review summarizes recent advances in effective strategies to improve graft revascularization and enhance islet survival. These advancements include the local release and regulation of angiogenic factors (e.g., vascular endothelial growth factor, VEGF), co-transplantation of vascular fragments, and pre-vascularization of the graft site. These innovative approaches pave the way for the development of effective islet transplantation therapies for individuals with T1D.
Collapse
Affiliation(s)
- Boyang Qi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yang Ding
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
7
|
La Monica F, Campora S, Ghersi G. Collagen-Based Scaffolds for Chronic Skin Wound Treatment. Gels 2024; 10:137. [PMID: 38391467 PMCID: PMC10888252 DOI: 10.3390/gels10020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Chronic wounds, commonly known as ulcers, represent a significant challenge to public health, impacting millions of individuals every year and imposing a significant financial burden on the global health system. Chronic wounds result from the interruption of the natural wound-healing process due to internal and/or external factors, resulting in slow or nonexistent recovery. Conventional medical approaches are often inadequate to deal with chronic wounds, necessitating the exploration of new methods to facilitate rapid and effective healing. In recent years, regenerative medicine and tissue engineering have emerged as promising avenues to encourage tissue regeneration. These approaches aim to achieve anatomical and functional restoration of the affected area through polymeric components, such as scaffolds or hydrogels. This review explores collagen-based biomaterials as potential therapeutic interventions for skin chronic wounds, specifically focusing on infective and diabetic ulcers. Hence, the different approaches described are classified on an action-mechanism basis. Understanding the issues preventing chronic wound healing and identifying effective therapeutic alternatives could indicate the best way to optimize therapeutic units and to promote more direct and efficient healing.
Collapse
Affiliation(s)
- Francesco La Monica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
8
|
Meßner FC, Metzger W, Marschall JE, Bickelmann C, Menger MD, Laschke MW. Generation of Connective Tissue-Free Microvascular Fragment Isolates from Subcutaneous Fat Tissue of Obese Mice. Tissue Eng Regen Med 2023; 20:1079-1090. [PMID: 37783934 PMCID: PMC10645785 DOI: 10.1007/s13770-023-00571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Microvascular fragment (MVF) isolates are generated by short-term enzymatic digestion of adipose tissue and contain numerous vessel segments for the vascularization of tissue defects. Recent findings indicate that the functionality of these isolates is determined by the quality of the fat source. Therefore, we compared MVF isolates from subcutaneous adipose tissue of obese and lean mice. METHODS MVF isolates were generated from subcutaneous adipose tissue of donor mice, which received a high fat or control diet for 12 weeks. The isolates were analyzed in vitro and in vivo. RESULTS Feeding of mice with a high fat diet induced obesity with adipocyte hypertrophy, resulting in a significantly lower collagen fraction and microvessel density within the subcutaneous fat depots when compared to lean controls. Accordingly, MVF isolates from obese mice also contained a reduced number of MVF per mL adipose tissue. However, these MVF tended to be longer and, in contrast to MVF from lean mice, were not contaminated with collagen fibers. Hence, they could be freely seeded onto collagen-glycosaminoglycan scaffolds, whereas MVF from lean controls were trapped in between large amounts of collagen fibers that clogged the pores of the scaffolds. In line with these results, scaffolds seeded with MVF isolates from obese mice exhibited a significantly improved in vivo vascularization after implantation into full-thickness skin defects. CONCLUSION Subcutaneous adipose tissue from obese mice facilitates the generation of connective tissue-free MVF isolates. Translated to clinical conditions, these findings suggest that particularly obese patients may benefit from MVF-based vascularization strategies.
Collapse
Affiliation(s)
- Friederike C Meßner
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg, Germany
| | - Julia E Marschall
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Caroline Bickelmann
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
9
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
10
|
Nicosia A, Salamone M, Costa S, Ragusa MA, Ghersi G. Mimicking Molecular Pathways in the Design of Smart Hydrogels for the Design of Vascularized Engineered Tissues. Int J Mol Sci 2023; 24:12314. [PMID: 37569691 PMCID: PMC10418696 DOI: 10.3390/ijms241512314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Biomaterials are pivotal in supporting and guiding vascularization for therapeutic applications. To design effective, bioactive biomaterials, understanding the cellular and molecular processes involved in angiogenesis and vasculogenesis is crucial. Biomaterial platforms can replicate the interactions between cells, the ECM, and the signaling molecules that trigger blood vessel formation. Hydrogels, with their soft and hydrated properties resembling natural tissues, are widely utilized; particularly synthetic hydrogels, known for their bio-inertness and precise control over cell-material interactions, are utilized. Naturally derived and synthetic hydrogel bases are tailored with specific mechanical properties, controlled for biodegradation, and enhanced for cell adhesion, appropriate biochemical signaling, and architectural features that facilitate the assembly and tubulogenesis of vascular cells. This comprehensive review showcases the latest advancements in hydrogel materials and innovative design modifications aimed at effectively guiding and supporting vascularization processes. Furthermore, by leveraging this knowledge, researchers can advance biomaterial design, which will enable precise support and guidance of vascularization processes and ultimately enhance tissue functionality and therapeutic outcomes.
Collapse
Affiliation(s)
- Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy;
| | - Monica Salamone
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo la Malfa 153, 90146 Palermo, Italy;
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (S.C.); (M.A.R.); (G.G.)
| |
Collapse
|
11
|
Rigogliuso S, Campora S, Notarbartolo M, Ghersi G. Recovery of Bioactive Compounds from Marine Organisms: Focus on the Future Perspectives for Pharmacological, Biomedical and Regenerative Medicine Applications of Marine Collagen. Molecules 2023; 28:molecules28031152. [PMID: 36770818 PMCID: PMC9920902 DOI: 10.3390/molecules28031152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Marine environments cover more than 70% of the Earth's surface and are among the richest and most complex ecosystems. In terms of biodiversity, the ocean represents an important source, still not widely exploited, of bioactive products derived from species of bacteria, plants, and animals. However, global warming, in combination with multiple anthropogenic practices, represents a serious environmental problem that has led to an increase in gelatinous zooplankton, a phenomenon referred to as jellyfish bloom. In recent years, the idea of "sustainable development" has emerged as one of the essential elements of green-economy initiatives; therefore, the marine environment has been re-evaluated and considered an important biological resource. Several bioactive compounds of marine origin are being studied, and among these, marine collagen represents one of the most attractive bio-resources, given its use in various disciplines, such as clinical applications, cosmetics, the food sector, and many other industrial applications. This review aims to provide a current overview of marine collagen applications in the pharmacological and biomedical fields, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Salvatrice Rigogliuso
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence: (S.C.); (M.N.); Tel.: +39-091-238-62813 (S.C.); +39-091-238-97426 (M.N.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Abiel s.r.l., c/o Department STEBICEF, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
12
|
Co-transplantation of pancreatic islets and microvascular fragments effectively restores normoglycemia in diabetic mice. NPJ Regen Med 2022; 7:67. [PMCID: PMC9636251 DOI: 10.1038/s41536-022-00262-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractInsufficient revascularization of pancreatic islets is one of the major obstacles impairing the success of islet transplantation. To overcome this problem, we introduce in the present study a straightforward strategy to accelerate the engraftment of isolated islets. For this purpose, we co-transplanted 250 islets and 20,000 adipose tissue-derived microvascular fragments (MVF) from donor mice under the kidney capsule as well as 500 or 1000 islets with 40,000 MVF into the subcutaneous space of diabetic mice. We found that the co-transplantation of islets and MVF markedly accelerates the restoration of normoglycemia in diabetic recipients compared with the transplantation of islets alone. In fact, the transplantation of 250 islets with 20,000 MVF under the kidney capsule reversed diabetes in 88% of mice and the subcutaneous transplantation of 500 or 1000 islets with 40,000 MVF restored normoglycemia in 100% of mice. Moreover, diabetic mice receiving islets and MVF exhibited plasma insulin levels similar to nondiabetic control animals. Additional immunohistochemical analyses of the grafts revealed a significantly higher number of islet cells and microvessels in the co-transplantation groups. These findings demonstrate that the co-transplantation of islets and MVF is a promising strategy to improve the success rates of islet transplantation, which could be easily implemented into future clinical practice.
Collapse
|
13
|
Wang J, Hu J, Yuan X, Li Y, Song L, Xu F. Recombinant collagen hydrogels induced by disulfide bonds. J Biomed Mater Res A 2022; 110:1774-1785. [PMID: 35836355 PMCID: PMC9544300 DOI: 10.1002/jbm.a.37427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
With the characteristics of low toxicity and biodegradability, recombinant collagen‐like proteins have been chemically and genetically engineered as a scaffold for cell adhesion and proliferation. However, most of the existing hydrogels crosslinked with peptides or polymers are not pure collagen, limiting their utility as biomaterials. A major roadblock in the development of biomaterials is the need for high purity collagen that can self‐assemble into hydrogels under mild conditions. In this work, we designed a recombinant protein, S‐VCL‐S, by introducing cysteine residues into the Streptococcus pyogenes collagen‐like protein at both the N‐and C‐termini of the collagen with a trimerization domain (V) and a collagen domain (CL). The S‐VCL‐S protein was properly folded in complete triple helices and formed self‐supporting hydrogels without polymer modifications. In addition, the introduction of cysteines was found to play a key role in the properties of the hydrogels, including their microstructure, pore size, mechanical properties, and drug release capability. Moreover, two/three‐dimensional cell‐culture assays showed that the hydrogels are noncytotoxic and can promote long‐term cell viability. This study explored a crosslinking collagen hydrogel based on disulfide bonds and provides a design strategy for collagen‐based biomaterials.
Collapse
Affiliation(s)
- Jie Wang
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Jinyuan Hu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Xuan Yuan
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Yingnan Li
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control TechnologyJiangsu Institute of Parasitic DiseasesWuxiChina
| | - Fei Xu
- Ministry of Education Key Laboratory of Industrial Biotechnology, School of BiotechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
14
|
Acosta FM, Stojkova K, Zhang J, Garcia Huitron EI, Jiang JX, Rathbone CR, Brey EM. Engineering Functional Vascularized Beige Adipose Tissue from Microvascular Fragments of Models of Healthy and Type II Diabetes Conditions. J Tissue Eng 2022; 13:20417314221109337. [PMID: 35782994 PMCID: PMC9248044 DOI: 10.1177/20417314221109337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Engineered beige adipose tissues could be used for screening therapeutic strategies or as a direct treatment for obesity and metabolic disease. Microvascular fragments are vessel structures that can be directly isolated from adipose tissue and may contain cells capable of differentiation into thermogenic, or beige, adipocytes. In this study, culture conditions were investigated to engineer three-dimensional, vascularized functional beige adipose tissue using microvascular fragments isolated from both healthy animals and a model of type II diabetes (T2D). Vascularized beige adipose tissues were engineered and exhibited increased expression of beige adipose markers, enhanced function, and improved cellular respiration. While microvascular fragments isolated from both lean and diabetic models were able to generate functional tissues, differences were observed in regard to vessel assembly and tissue function. This study introduces an approach that could be employed to engineer vascularized beige adipose tissues from a single, potentially autologous source of cells.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Katerina Stojkova
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
| | - Jingruo Zhang
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Eric Ivan Garcia Huitron
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
| | - Jean X. Jiang
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Christopher R. Rathbone
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
| | - Eric M. Brey
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
| |
Collapse
|
15
|
Liu G, ZHOU YUAN, Zhang X, Guo S. Advances in Hydrogels for Stem Cell Therapy: Regulation Mechanisms and Tissue Engineering Applications. J Mater Chem B 2022; 10:5520-5536. [DOI: 10.1039/d2tb01044e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stem cell therapy has shown unparalleled potential in tissue engineering, but it still faces challenges in the regulation of stem cell fate. Inspired by the native stem cell niche, a...
Collapse
|
16
|
Laschke MW, Menger MD. Microvascular fragments in microcirculation research and regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1109-1120. [PMID: 34731017 DOI: 10.1089/ten.teb.2021.0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adipose tissue-derived microvascular fragments (MVF) are functional vessel segments, which rapidly reassemble into new microvasculatures under experimental in vitro and in vivo conditions. Accordingly, they have been used for many years in microcirculation research to study basic mechanisms of endothelial cell function, angiogenesis and microvascular network formation in two- and three-dimensional environments. Moreover, they serve as vascularization units for musculoskeletal regeneration and implanted biomaterials as well as for the treatment of myocardial infarction and the generation of prevascularized tissue organoids. Besides, multiple factors determining the vascularization capacity of MVF have been identified, including their tissue origin and cellular composition, the conditions for their short- and long-term storage as well as their implantation site and the general health status and medication of the recipient. The next challenging step is now the successful translation of all these promising experimental findings into clinical practice. If this succeeds, a multitude of future therapeutic applications may significantly benefit from the remarkable properties of MVF.
Collapse
Affiliation(s)
- Matthias W Laschke
- Saarland University, 9379, Institute for Clinical & Experimental Surgery, Kirrbergerstrasse 100, Homburg, Germany, 66421;
| | - Michael D Menger
- Saarland University, 9379, Institute for Clinical & Experimental Surgery, Homburg, Saarland, Germany;
| |
Collapse
|
17
|
Derakhshankhah H, Sajadimajd S, Jahanshahi F, Samsonchi Z, Karimi H, Hajizadeh-Saffar E, Jafari S, Razmi M, Sadegh Malvajerd S, Bahrami G, Razavi M, Izadi Z. Immunoengineering Biomaterials in Cell-Based Therapy for Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1053-1066. [PMID: 34696626 DOI: 10.1089/ten.teb.2021.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes (T1D) is caused by low insulin production and chronic hyperglycemia due to the destruction of pancreatic β-cells. Cell transplantation is an attractive alternative approach compared to insulin injection. However, cell therapy has been limited by major challenges including life-long requirements for immunosuppressive drugs in order to prevent host immune responses. Encapsulation of the transplanted cells can solve the problem of immune rejection, by providing a physical barrier between the transplanted cells and the recipient's immune cells. Despite current disputes in cell encapsulation approaches, thanks to recent advances in the fields of biomaterials and transplantation immunology, extensive effort has been dedicated to immunoengineering strategies in combination with encapsulation technologies to overcome the problem of the host's immune responses. The current review summarizes the most commonly used encapsulation and immunoengineering strategies combined with cell therapy which has been applied as a novel approach to improve cell replacement therapies for the management of T1D. Recent advances in the fields of biomaterial design, nanotechnology, as well as deeper knowledge about immune modulation had significantly improved cell encapsulation strategies. However, further progress requires the combined application of novel immunoengineering approaches and islet/ß-cell transplantation.
Collapse
Affiliation(s)
- Hossein Derakhshankhah
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | | | - Fatemeh Jahanshahi
- Iran University of Medical Sciences, 440827, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Zakieh Samsonchi
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Hassan Karimi
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Ensiyeh Hajizadeh-Saffar
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Samira Jafari
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | - Mahdieh Razmi
- University of Tehran Institute of Biochemistry and Biophysics, 441284, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Soroor Sadegh Malvajerd
- Tehran University of Medical Sciences, 48439, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Gholamreza Bahrami
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | - Mehdi Razavi
- University of Central Florida, 6243, Orlando, Florida, United States;
| | - Zhila Izadi
- Kermanshah University of Medical Sciences, 48464, Kermanshah,Iran, Kermanshah, Iran (the Islamic Republic of), 6715847141;
| |
Collapse
|