1
|
Lee FS, Cruz CJ, Allen KD, Wachs RA. Gait assessment in a female rat Sprague Dawley model of disc-associated low back pain. Connect Tissue Res 2024; 65:407-420. [PMID: 39287332 PMCID: PMC11533987 DOI: 10.1080/03008207.2024.2395287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Gait disturbances are common in human low back pain (LBP) patients, suggesting potential applicability to rodent LBP models. This study aims to assess the influence of disc-associated LBP on gait in female Sprague Dawley rats and explore the utility of the open-source Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) suite as a potential alternative tool for spontaneous pain assessment in a previously established LBP model. MATERIALS AND METHODS Disc degeneration was surgically induced using a one-level disc scrape injury method, and microcomputed tomography was used to assess disc volume loss. After disc injury, axial hypersensitivity was evaluated using the grip strength assay, and an open field test was used to detect spontaneous pain-like behavior. RESULTS Results demonstrated that injured animals exhibit a significant loss in disc volume and reduced grip strength. Open field test did not detect significant differences in distance traveled between sham and injured animals. Concurrently, animals with injured discs did not display significant gait abnormalities in stance time imbalance, temporal symmetry, spatial symmetry, step width, stride length, and duty factor compared to sham. However, comparisons with reference values of normal gait reported in prior literature reveal that injured animals exhibit mild deviations in forelimb and hindlimb stance time imbalance, forelimb temporal symmetry, and hindlimb spatial symmetry at some time points. CONCLUSIONS This study concludes that the disc injury may have very mild effects on gait in female rats within 9 weeks post-injury and recommends future in depth dynamic gait analysis and longer studies beyond 9 weeks to potentially detect gait.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Carlos J Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Rebecca A Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|
2
|
Yang C, Xu T, Lu Y, Liu J, Chen C, Wang H, Chen X. Quercetin-loaded Human Umbilical cord Mesenchymal Stem Cell-derived sEVs for Spinal Cord Injury Recovery. Neuroscience 2024; 552:14-28. [PMID: 38806069 DOI: 10.1016/j.neuroscience.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Following spinal cord injury, the inflammatory environment at the injury site causes local microglia and astrocytes to activate, which worsens the nerve damage in the affected area. Quercetin, an anti-inflammatory agent, has been limited in spinal cord injury due to its poor water solubility and easy degradation. Stem cell-derived extracellular vesicles can go through the blood-brain barrier and are an ideal drug delivery system. In this study, umbilical cord mesenchymal stem cell-derived extracellular vesicles were used to load quercetin to prevent its degradation and allow it to accumulate at the site of spinal cord injury. Our results showed that quercetin-loaded extracellular vesicles could inhibit the activation of microglia to M1 phenotype through the TLR4/NF-κB pathway, and the activation of astrocytes to A1 phenotype through the JAK2/STAT3 pathway. This reduced the production of inflammatory factors, mitigated neuronal damage, and inhibited the growth of astroglial scar, but promoted the recovery of motor function in rats with spinal cord injury.
Collapse
Affiliation(s)
- Changwei Yang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Tao Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jianhang Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cheng Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Heng Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Miao X, Lin J, Li A, Gao T, Liu T, Shen J, Sun Y, Wei J, Bao B, Zheng X. AAV-mediated VEGFA overexpression promotes angiogenesis and recovery of locomotor function following spinal cord injury via PI3K/Akt signaling. Exp Neurol 2024; 375:114739. [PMID: 38401852 DOI: 10.1016/j.expneurol.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Spinal cord injury (SCI) is a disorder of the central nervous system resulting from various factors such as trauma, inflammation, tumors, and other etiologies. This condition leads to impairment in motor, sensory, and autonomic functions below the level of injury. Limitations of current therapeutic approaches prompt an investigation into therapeutic angiogenesis through persistent local expression of proangiogenic factors. Here, we investigated whether overexpression of adeno-associated virus (AAV)-mediated vascular endothelial growth factor A (VEGFA) in mouse SCI promoted locomotor function recovery, and whether the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was mechanistically involved. Three weeks before SCI, AAV-VEGFA was injected at the T10 level to induce VEGFA overexpression. Neurofunctional, histological, and biochemical assessments were done to determine tissue damage and/or recovery of neuromuscular and behavioral impairments. Daily injections of the PI3K/Akt pathway inhibitor LY294002 were made to assess a possible mechanism. AAV-VEGFA overexpression dramatically improved locomotor function and ameliorated pathological injury caused by SCI. Improved motor-evoked potentials in hindlimbs and more spinal CD31-positive microvessels were observed in AAV-VEGFA-overexpressing mice. LY294002 reduced PI3K and Akt phosphorylation levels and attenuated AAV-VEGFA-related improvements. In conclusion, sustained local AAV-mediated VEGFA overexpression in spinal cord can significantly promote angiogenesis and ameliorate locomotor impairment after SCI in a contusion mouse model through activation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xin Miao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Junqing Lin
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Ang Li
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Tao Gao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Tiexin Liu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Junjie Shen
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Yi Sun
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Jiabao Wei
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Bingbo Bao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China
| | - Xianyou Zheng
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Orthopaedics, Shanghai, China.
| |
Collapse
|
4
|
Lopes B, Coelho A, Alvites R, Sousa AC, Sousa P, Moreira A, Atayde L, Salgado A, Geuna S, Maurício AC. Animal models in peripheral nerve transection studies: a systematic review on study design and outcomes assessment. Regen Med 2024; 19:189-203. [PMID: 37855207 DOI: 10.2217/rme-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aim: Peripheral nerve injury regeneration studies using animal models are crucial to different pre-clinical therapeutic approaches efficacy evaluation whatever the surgical technique explored. Materials & methods: A 944 articles systematic review on 'peripheral nerve injury in animal models' over the last 9 years was carried out. Results: It was found that 91% used rodents, and only 9% employed large animals. Different nerves are studied, with generated gaps (10,78 mm) and methods applied for regeneration evaluation uniformed. Sciatic nerve was the most used (88%), followed by median and facial nerves (2.6%), significantly different. Conclusion: There has not been a significant scale-up of the in vivo testing to large animal models (anatomically/physiologically closer to humans), allowing an improvement in translational medicine for clinical cases.
Collapse
Affiliation(s)
- Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, Gandra, Paredes, 4585-116, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Alícia Moreira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - Luís Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| | - António Salgado
- Life & Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stefano Geuna
- Department of Clinical & Biological Sciences, & Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, Orbassano, Turin, 10043, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, Porto, 4050-313, Portugal
- Associate Laboratory for Animal & Veterinary Science (AL4AnimalS), Lisboa, 1300-477, Portugal
| |
Collapse
|
5
|
Gouveia D, Cardoso A, Carvalho C, Oliveira AC, Almeida A, Gamboa Ó, Lopes B, Coelho A, Alvites R, Varejão AS, Maurício AC, Ferreira A, Martins Â. Early Intensive Neurorehabilitation in Traumatic Peripheral Nerve Injury-State of the Art. Animals (Basel) 2024; 14:884. [PMID: 38539981 PMCID: PMC10967370 DOI: 10.3390/ani14060884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 02/24/2025] Open
Abstract
Traumatic nerve injuries are common lesions that affect several hundred thousand humans, as well as dogs and cats. The assessment of nerve regeneration through animal models may provide information for translational research and future therapeutic options that can be applied mutually in veterinary and human medicine, from a One Health perspective. This review offers a hands-on vision of the non-invasive and conservative approaches to peripheral nerve injury, focusing on the role of neurorehabilitation in nerve repair and regeneration. The peripheral nerve injury may lead to hypersensitivity, allodynia and hyperalgesia, with the possibility of joint contractures, decreasing functionality and impairing the quality of life. The question remains regarding how to improve nerve repair with surgical possibilities, but also considering electrical stimulation modalities by modulating sensory feedback, upregulation of BDNF, GFNF, TrKB and adenosine monophosphate, maintaining muscle mass and modulating fatigue. This could be improved by the positive synergetic effect of exercises and physical activity with locomotor training, and other physical modalities (low-level laser therapy, ultrasounds, pulsed electromagnetic fields, electroacupuncture and others). In addition, the use of cell-based therapies is an innovative treatment tool in this field. These strategies may help avoid situations of permanent monoplegic limbs that could lead to amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
| | - Ana Catarina Oliveira
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| |
Collapse
|
6
|
Liu S, Wu Q, Wang L, Xing C, Guo J, Li B, Ma H, Zhong H, Zhou M, Zhu S, Zhu R, Ning G. Coordination function index: A novel indicator for assessing hindlimb locomotor recovery in spinal cord injury rats based on catwalk gait parameters. Behav Brain Res 2024; 459:114765. [PMID: 37992973 DOI: 10.1016/j.bbr.2023.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
In preclinical studies of spinal cord injury (SCI), behavioral assessments are crucial for evaluating treatment effectiveness. Commonly used methods include Basso, Beattie, Bresnahan (BBB) score and the Louisville swim scale (LSS), relying on subjective observations. The CatWalk automated gait analysis system is also widely used in SCI studies, providing extensive gait parameters from footprints. However, these parameters are often used independently or combined simply without utilizing the vast amount of data provided by CatWalk. Therefore, it is necessary to develop a novel approach encompassing multiple CatWalk parameters for a comprehensive and objective assessment of locomotor function. In this work, we screened 208 CatWalk XT gait parameters and identified 38 suitable for assessing hindlimb motor function recovery in a rat thoracic contusion SCI model. Exploratory factor analysis was used to reveal structural relationships among these parameters. Weighted scores for Coordination effectively differentiated hindlimb motor function levels, termed as the Coordinated Function Index (CFI). CFI showed high reliability, exhibiting high correlations with BBB scores, LSS, and T2WI lesion area. Finally, we simplified CFI based on factor loadings and correlation analysis, obtaining a streamlined version with reliable assessment efficacy. In conclusion, we developed a systematic assessment indicator utilizing multiple CatWalk parameters to objectively evaluate hindlimb motor function recovery in rats after thoracic contusion SCI.
Collapse
Affiliation(s)
- Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Junrui Guo
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Baicao Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Hao Zhong
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mi Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shibo Zhu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord lnjury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.
| |
Collapse
|
7
|
Fernandes MS, Viterbo F, Rodrigues LD, di Luccas CB, de Menezes Neto BF. Nerve Injury and Peripheral Nerve Functional Loss From Injection and Suture Needles: An Experimental Study on Rats. Aesthet Surg J 2023; 43:NP949-NP955. [PMID: 37606256 DOI: 10.1093/asj/sjad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND During invasive procedures involving needles, there is a chance of damage to peripheral nerves. Therefore, a method for experimentally simulating these situations is needed. OBJECTIVES In this study we aimed to evaluate peripheral nerve lesions caused by the entry and exit of an injection needle, nerve transfixion through a suture stitch, and the injection of saline solution and lidocaine into the nerve. METHODS After obtaining approval from the Animal Ethics Committee, we randomly divided 36 Wistar rats, weighing approximately 250 g each, into 6 groups (control, sham, suture, needle, saline, and lidocaine groups), with 6 animals in each group. All procedures were performed on the left paws of the rats. After the procedure, walking track analysis was performed to assess the walking function of rats for 8 weeks. Four months after the procedures, we performed bilateral electrophysiological studies (measuring the latency and amplitude of the electrical impulse in the peroneal nerve). Subsequently, the rats were euthanized, and bilateral tissue samples were collected from the peroneal nerve and tibialis cranialis muscle for morphometric histological analysis. RESULTS In the walking track analysis, all groups showed normalization of walking functionality after 13 days. There was little histological change between the groups, and no functional loss related to the procedures was observed. CONCLUSIONS Procedures involving the infusion of local anesthetic or saline solution, or suture needles, are safe with regard to peripheral nerve function loss. Accidents tend not to cause nerve impairment.
Collapse
|
8
|
Thurlow NA, Chan KM, Yeater TD, Allen KD. Effects of Repeat Test Exposure on Gait Parameters in Naïve Lewis Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537488. [PMID: 37131645 PMCID: PMC10153156 DOI: 10.1101/2023.04.19.537488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rodent gait analysis has emerged as a powerful, quantitative behavioral assay to characterize the pain and disability associated with movement-related disorders. In other behavioral assays, the importance of acclimation and the effect of repeated testing have been evaluated. However, for rodent gait analysis, the effects of repeated gait testing and other environmental factors have not been thoroughly characterized. In this study, fifty-two naïve male Lewis rats ages 8 to 42 weeks completed gait testing at semi-random intervals for 31 weeks. Gait videos and force plate data were collected and processed using a custom MATLAB suite to calculate velocity, stride length, step width, percentage stance time (duty factor), and peak vertical force data. Exposure was quantified as the number of gait testing sessions. Linear mixed effects models were used to evaluate the effects of velocity, exposure, age, and weight on animal gait patterns. Relative to age and weight, repeated exposure was the dominant parameter affecting gait variables with significant effects on walking velocity, stride length, fore and hind limb step width, fore limb duty factor, and peak vertical force. From exposure 1 to 7, average velocity increased by approximately 15 cm/s. Together, these data indicate arena exposure had large effects on gait parameters and should be considered in acclimation protocols, experimental design, and subsequent data analysis of rodent gait data.
Collapse
Affiliation(s)
- Nat A. Thurlow
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Kinesiology, Indiana University, Bloomington, IN, USA
| | - Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopedics and Sports Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Kabakov SA, Crary E, Menna V, Razo ER, Eickhoff JC, Dulaney NR, Drew JR, Bach KM, Poole AM, Stumpf M, Mitzey AM, Malicki KB, Schotzko ML, Pickett KA, Schultz-Darken NJ, Emborg ME, O'Connor DH, Golos TG, Mohr EL, Ausderau KK. Quantification of early gait development: Expanding the application of Catwalk technology to an infant rhesus macaque model. J Neurosci Methods 2023; 388:109811. [PMID: 36739916 PMCID: PMC10191118 DOI: 10.1016/j.jneumeth.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Understanding gait development is essential for identifying motor impairments in neurodevelopmental disorders. Defining typical gait development in a rhesus macaque model is critical prior to characterizing abnormal gait. The goal of this study was to 1) explore the feasibility of using the Noldus Catwalk to assess gait in infant rhesus macaques and 2) provide preliminary normative data of gait development during the first month of life. NEW METHOD The Noldus Catwalk was used to assess gait speed, dynamic and static paw measurements, and interlimb coordination in twelve infant rhesus macaques at 14, 21, and 28 days of age. All macaque runs were labeled as a diagonal or non-diagonal walking pattern. RESULTS Infant rhesus macaques primarily used a diagonal (mature) walking pattern as early as 14 days of life. Ten infant rhesus macaques (83.3%) were able to successfully walk across the Noldus Catwalk at 28 days of life. Limited differences in gait parameters were observed between timepoints because of the variability within the group at 14, 21, and 28 days. COMPARISON WITH EXISTING METHODS No prior gait analysis system has been used to provide objective quantification of gait parameters for infant macaques. CONCLUSIONS The Catwalk system can be utilized to quantify gait in infant rhesus macaques less than 28 days old. Future applications to infant rhesus macaques could provide a better understanding of gait development and early differences within various neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sabrina A Kabakov
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emma Crary
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Viktorie Menna
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elaina R Razo
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Natalie R Dulaney
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John R Drew
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kathryn M Bach
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aubreonna M Poole
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Madison Stumpf
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ann M Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, 53715, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kerri B Malicki
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, 53715, USA
| | - Michele L Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, 53715, USA
| | - Kristen A Pickett
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nancy J Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, 53715, USA
| | - Marina E Emborg
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, 53715, USA; Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, 53715, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thaddeus G Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, 53715, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emma L Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Karla K Ausderau
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
10
|
Strontium ion attenuates osteoarthritis through inhibiting senescence and enhancing autophagy in fibroblast-like synoviocytes. Mol Biol Rep 2023; 50:1437-1446. [PMID: 36472726 DOI: 10.1007/s11033-022-08112-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) mainly occurs in the elderly population and seriously affects their quality of life (QOL). Strontium (Sr) ions have shown positive effects on bone tissue and are promising for OA treatment. However, the adequate treatment dosage and underlying mechanisms are unclear. This study investigated the effects and underlying mechanisms of different concentrations of Sr ions in a mouse model of OA induced by destabilization of the medial meniscus (DMM) surgery. DMM-induced OA mice received intra-articular injections of different concentrations of Sr ions, and a suitable concentration of Sr ions was found to improve OA. Furthermore, we investigated the mechanism by which Sr ions mediate senescence and autophagy in fibroblast-like synoviocytes (FLSs) in the synovial tissues of DMM-induced OA mice. OA mice treated with 10 µl of 5 mmol/L SrCl2 showed the greatest improvement in pain-related behavior and cartilage damage. In addition, in vivo and in vitro experiments revealed that Sr ions inhibit senescence and improve the autophagic function of FLSs. We also found that enhancement of the autophagic function of FLSs could effectively slow down senescence. Therefore, we show that Sr ions through the AMPK/mTOR/LC3B-II signal axis improve FLSs autophagy function and delay FLSs senescence, and furthermore, improve OA. These results suggest that senescence and autophagy function of FLSs may serve as promising targets for OA treatment, and that Sr ions may inhibit OA progression through these two targets.
Collapse
|
11
|
Allgood JE, Roballo KCS, Sparks BB, Bushman JS. The effects of graft source and orientation on outcomes after ablation of a branched peripheral nerve. Front Cell Neurosci 2022; 16:1055490. [PMID: 36451654 PMCID: PMC9701849 DOI: 10.3389/fncel.2022.1055490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Segmental peripheral nerve injuries (PNI) are the most common cause of enduring nervous system dysfunction. The peripheral nervous system (PNS) has an extensive and highly branching organization. While much is known about the factors that affect regeneration through sharp bisections and linear ablations of peripheral nerves, very little has been investigated or documented about PNIs that ablate branch points. Such injuries present additional complexity compared to linear segmental defects. This study compared outcomes following ablation of a branch point with branched grafts, specifically examining how graft source and orientation of the branched graft contributed to regeneration. The model system was Lewis rats that underwent a 2.5 cm ablation that started in the sciatic nerve trunk and included the peroneal/tibial branch point. Rats received grafts that were rat sciatic autograft, inbred sciatic allograft, and inbred femoral allograft, each of which was a branched graft of 2.5 cm. Allografts were obtained from Lewis rats, which is an inbred strain. Both branches of the sciatic grafts were mixed motor and sensory while the femoral grafts were smaller in diameter than sciatic grafts and one branch of the femoral graft is sensory and the other motor. All branched grafts were sutured into the defect in two orientations dictated by which branch in the graft was sutured to the tibial vs peroneal stumps in recipients. Outcome measures include compound muscle action potentials (CMAPs) and CatWalk gait analysis throughout the recovery period, with toluidine blue for intrinsic nerve morphometry and retrograde labeling conducted at the 36-week experimental end point. Results indicate that graft source and orientation does play a significant role earlier in the regenerative process but by 36 weeks all groups showed very similar indications of regeneration across multiple outcomes.
Collapse
Affiliation(s)
| | | | | | - Jared S. Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
12
|
Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, Atayde LM, Luís AL, Varejão ASP, Maurício AC. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int J Mol Sci 2022; 23:ijms23020918. [PMID: 35055104 PMCID: PMC8779751 DOI: 10.3390/ijms23020918] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injuries (PNI) can have several etiologies, such as trauma and iatrogenic interventions, that can lead to the loss of structure and/or function impairment. These changes can cause partial or complete loss of motor and sensory functions, physical disability, and neuropathic pain, which in turn can affect the quality of life. This review aims to revisit the concepts associated with the PNI and the anatomy of the peripheral nerve is detailed to explain the different types of injury. Then, some of the available therapeutic strategies are explained, including surgical methods, pharmacological therapies, and the use of cell-based therapies alone or in combination with biomaterials in the form of tube guides. Nevertheless, even with the various available treatments, it is difficult to achieve a perfect outcome with complete functional recovery. This review aims to enhance the importance of new therapies, especially in severe lesions, to overcome limitations and achieve better outcomes. The urge for new approaches and the understanding of the different methods to evaluate nerve regeneration is fundamental from a One Health perspective. In vitro models followed by in vivo models are very important to be able to translate the achievements to human medicine.
Collapse
Affiliation(s)
- Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Carla Mendonça
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Luís Miguel Atayde
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Lúcia Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Artur S. P. Varejão
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (P.S.); (R.A.); (M.B.); (A.C.S.); (C.M.); (L.M.A.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-91-9071286
| |
Collapse
|