1
|
Singh M, Tiwari PK, Kashyap V, Kumar S. Proteomics of Extracellular Vesicles: Recent Updates, Challenges and Limitations. Proteomes 2025; 13:12. [PMID: 40137841 PMCID: PMC11944546 DOI: 10.3390/proteomes13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles secreted by cells, including exosomes, microvesicles, and apoptotic bodies. Proteomic analyses of EVs, particularly in relation to cancer, reveal specific biomarkers crucial for diagnosis and therapy. However, isolation techniques such as ultracentrifugation, size-exclusion chromatography, and ultrafiltration face challenges regarding purity, contamination, and yield. Contamination from other proteins complicates downstream processing, leading to difficulties in identifying biomarkers and interpreting results. Future research will focus on refining EV characterization for diagnostic and therapeutic applications, improving proteomics tools for greater accuracy, and exploring the use of EVs in drug delivery and regenerative medicine. In this review, we provide a bird's eye view of various challenges, starting with EV isolation methods, yield, purity, and limitations in the proteome analysis of EVs for identifying protein targets.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Prashant Kumar Tiwari
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Vivek Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
- Division of Nephrology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Wang M, Yang X, Ye Y, Fan K, Chen C, Zheng L, Li X, Dong C, Li C, Dong N. Anti-inflammatory and Restorative effects of milk exosomes and Dexamethasone-Loaded exosomes in a corneal alkali burn model. Int J Pharm 2024; 666:124784. [PMID: 39357813 DOI: 10.1016/j.ijpharm.2024.124784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Corneal alkali burn is a common and challenging ocular trauma, necessitating the use of dexamethasone (DXMS) as a therapeutic agent. However, prolonged and frequent administration of this drug can lead to undesirable side effects, limiting its clinical application. This study aimed to investigate the role and mechanism of action of exosomes as drug carriers in corneal alkali burn repair. We employed centrifugation to isolate milk exosomes (EXO) as nanocarriers. We observed that EXO enhanced the activity and migration of corneal epithelial cells, expediting the repair process following corneal injury. Additionally, a nano-drug delivery model (DXMS@EXO) was designed using ultrasound to load DXMS into exosomes, thus enabling targeted delivery to inflammatory cells and enhancing drug efficacy. DXMS@EXO inhibited the inflammatory processes in the corneal alkali burn model by modulating the classical Wnt signaling pathway, thereby promoting corneal re-epithelialization and wound healing and accelerating the repair process of corneal alkali burn. Neither EXO nor DXMS@EXO exhibited significant side effects during the course of treatment. This study highlighted the substantial potential of EXO and DXMS@EXO in improving drug efficacy and facilitating the repair of corneal alkali burn.
Collapse
Affiliation(s)
- Mengyuan Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Fujian, China
| | - Xiuqin Yang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Fujian, China
| | - Yingyue Ye
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Fujian, China
| | - Kai Fan
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Fujian, China
| | - Cuiting Chen
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Fujian, China
| | - Lan Zheng
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Fujian, China
| | - Xiang Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Fujian, China
| | - Chenyu Dong
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Fujian, China.
| | - Nuo Dong
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine & School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China; Xiamen Clinical Research Center for Eye Diseases, Xiamen, Fujian, China; Xiamen Key Laboratory of Ophthalmology, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Ocular Surface and Corneal Disease, Xiamen, Fujian, China; Xiamen Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, Fujian, China; Translational Medicine Institute of Xiamen Eye Center of Xiamen University, Xiamen, Fujian, China; Huaxia Eye Hospital of Quanzhou, Quanzhou, Fujian, China; Department of Ophthalmology, Affiliated People's Hospital & Zhenjiang Kangfu Eye Hospital, Zhenjiang College, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Henmi T, Matsuoka H, Katayama N, Saito M. Suppression of Metastasis of Colon Cancer to Liver in Mouse Models by Pretreatment with Extracellular Vesicles Derived from Nanog-Overexpressing Colon-26 Cancer Cells. Int J Mol Sci 2024; 25:12794. [PMID: 39684502 DOI: 10.3390/ijms252312794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
It has been demonstrated that cancer cells that have survived cancer treatment may be more malignant than the original cancer cells. These cells are considered the main cause of metastasis in prognosis. A Nanog-overexpressing colon-26 (Nanog+colon26) was generated to obtain such a malignant cancer cell model, which was confirmed by enhancement of metastatic potential by in vivo tests using mice. Extracellular vesicles (EVs) secreted from Nanog+colon26 cells (Nanog+colon26EVs) were administered to mice three times per week for three weeks. Subsequently, Nanog+colon26 cells were administered, and metastatic colonies were analyzed two weeks later. The results demonstrated that the administration of EVs suppressed metastasis. Nanog+colon26EVs enhanced phagocytic activity and M1 marker CD80 of a macrophage cell line J774.1. These suggested the enforcement of tumor-suppressive properties of macrophages and their contribution to the in vivo suppression of metastasis. Small RNA sequencing was conducted to identify Nanog-dependent miRNAs that exhibited significant changes (Fc ≥ 1.5 or Fc ≤ 1/1.5; p < 0.05) in Nanog+colon26EVs relative to colon26EVs. Nine miRNAs (up-regulated: four, down-regulated: five) were identified, and 623 genes were predicted to be their target genes. Of the 623 genes identified, nine genes were predicted to be highly relevant to macrophage functions such as phagocytosis.
Collapse
Affiliation(s)
- Takuya Henmi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Hideaki Matsuoka
- Bioresource Laboratories, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Noa Katayama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Mikako Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Tokyo, Japan
- Bioresource Laboratories, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
4
|
Park JH, Kim SJ, Kim OH, Kim DJ. Enhanced Efficacy of Gastric Cancer Treatment through Targeted Exosome Delivery of 17-DMAG Anticancer Agent. Int J Mol Sci 2024; 25:8762. [PMID: 39201449 PMCID: PMC11354984 DOI: 10.3390/ijms25168762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
In this study, we explored the potential of genetically engineered exosomes as vehicles for precise drug delivery in gastric cancer therapy. A novel antitumor strategy using biocompatible exosomes (Ex) was devised by genetically engineering adipose-derived stem cells to express an MKN45-binding peptide (DE532) on their surfaces. 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) was encapsulated in engineered exosomes, resulting in 17-DMAG-loaded DE532 exosomes. In both in vitro and in vivo experiments using mouse gastric cancer xenograft models, we demonstrated that 17-DMAG-loaded DE532 Ex exhibited superior targetability over DE532 Ex, 17-DMAG-loaded Ex, and Ex. Administration of the 17-DMAG-loaded DE532 Ex yielded remarkable antitumor effects, as evidenced by the smallest tumor size, lowest tumor growth rate, and lowest excised tumor weight. Further mechanistic examinations revealed that the 17-DMAG-loaded DE532 Ex induced the highest upregulation of the pro-apoptotic marker B-cell lymphoma-2-like protein 11 and the lowest downregulation of the anti-apoptotic marker B-cell lymphoma-extra large. Concurrently, the 17-DMAG-loaded DE532 Ex demonstrated the lowest suppression of antioxidant enzymes, such as superoxide dismutase 2 and catalase, within tumor tissues. These findings underscore the potential of 17-DMAG-loaded DE532 exosomes as a potent therapeutic strategy for gastric cancer, characterized by precise targetability and the potential to minimize adverse effects.
Collapse
Affiliation(s)
- Jung Hyun Park
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea;
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea; (S.-J.K.); (O.-H.K.)
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Translational Research Team, Surginex Co., Ltd., Seoul 06591, Republic of Korea
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea; (S.-J.K.); (O.-H.K.)
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Dong Jin Kim
- Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea;
- Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| |
Collapse
|
5
|
Batochir C, Kim IA, Jo EJ, Kim EB, Kim HJ, Hur JY, Kim DW, Park HK, Lee KY. Discrimination of Lung Cancer and Benign Lung Diseases Using BALF Exosome DNA Methylation Profile. Cancers (Basel) 2024; 16:2765. [PMID: 39123492 PMCID: PMC11311347 DOI: 10.3390/cancers16152765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Benign lung diseases are common and often do not require specific treatment, but they pose challenges in the distinguishing of them from lung cancer during low-dose computed tomography (LDCT). This study presents a comprehensive methylation analysis using real-time PCR for minimally invasive diagnoses of lung cancer via employing BALF exosome DNA. A panel of seven epigenetic biomarkers was identified, exhibiting specific methylation patterns in lung cancer BALF exosome DNA. This panel achieved an area under the curve (AUC) of 0.97, with sensitivity and specificity rates of 88.24% and 97.14%, respectively. Each biomarker showed significantly higher mean methylation levels (MMLs) in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) compared to non-cancer groups, with fold changes from 1.7 to 13.36. The MMLs of the biomarkers were found to be moderately elevated with increasing patient age and smoking history, regardless of sex. A strong correlation was found between the MMLs and NSCLC stage progression, with detection sensitivities of 79% for early stages and 92% for advanced stages. In the validation cohort, the model demonstrated an AUC of 0.95, with 94% sensitivity and specificity. Sensitivity for early-stage NSCLC detection improved from 88.00% to 92.00% when smoking history was included as an additional risk factor.
Collapse
Affiliation(s)
- Chinbayar Batochir
- Seasun Biomaterials, Inc., Daejeon 34015, Republic of Korea; (C.B.); (E.J.J.); (E.-B.K.); (D.W.K.); (H.K.P.)
| | - In Ae Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Republic of Korea; (I.A.K.); (H.J.K.); (J.Y.H.)
| | - Eun Ji Jo
- Seasun Biomaterials, Inc., Daejeon 34015, Republic of Korea; (C.B.); (E.J.J.); (E.-B.K.); (D.W.K.); (H.K.P.)
| | - Eun-Bi Kim
- Seasun Biomaterials, Inc., Daejeon 34015, Republic of Korea; (C.B.); (E.J.J.); (E.-B.K.); (D.W.K.); (H.K.P.)
| | - Hee Joung Kim
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Republic of Korea; (I.A.K.); (H.J.K.); (J.Y.H.)
| | - Jae Young Hur
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Republic of Korea; (I.A.K.); (H.J.K.); (J.Y.H.)
| | - Do Won Kim
- Seasun Biomaterials, Inc., Daejeon 34015, Republic of Korea; (C.B.); (E.J.J.); (E.-B.K.); (D.W.K.); (H.K.P.)
| | - Hee Kyung Park
- Seasun Biomaterials, Inc., Daejeon 34015, Republic of Korea; (C.B.); (E.J.J.); (E.-B.K.); (D.W.K.); (H.K.P.)
| | - Kye Young Lee
- Precision Medicine Lung Cancer Center, Konkuk University Medical Center, Seoul 05030, Republic of Korea; (I.A.K.); (H.J.K.); (J.Y.H.)
| |
Collapse
|
6
|
Zhao B, Lin H, Jiang X, Li W, Gao Y, Li M, Yu Y, Chen N, Gao J. Exosome-like nanoparticles derived from fruits, vegetables, and herbs: innovative strategies of therapeutic and drug delivery. Theranostics 2024; 14:4598-4621. [PMID: 39239509 PMCID: PMC11373634 DOI: 10.7150/thno.97096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024] Open
Abstract
Over the past ten years, significant advancements have been made in exploring plant-derived exosome-like nanoparticles (PELNs) for disease therapeutics and drug delivery. PELNs, as inherent nanoscale particles comprised of proteins, lipids, nucleic acids, and secondary metabolites, exhibit the capacity for cellular uptake by human cells. This intercellular interaction transcends biological boundaries, effectively influencing biological functions in animals. PELNs have outstanding biocompatibility, low immunogenicity, enhanced safety, and environmentally friendly sustainability. This article summarized the preparation methods and characteristics of PELNs. It provided a systematic review of the varied roles of PELNs derived from fruits, vegetables, and herbs in disease therapeutics and drug delivery. The challenges in their production and application were discussed, and future prospects in this rapidly evolving field were explored.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Yuli Gao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Minghui Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Yanan Yu
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Ninggang Chen
- Department of Dermatology Medical Cosmetology Center, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315016, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Hirano SI, Takefuji Y. Molecular Hydrogen Protects against Various Tissue Injuries from Side Effects of Anticancer Drugs by Reducing Oxidative Stress and Inflammation. Biomedicines 2024; 12:1591. [PMID: 39062164 PMCID: PMC11274581 DOI: 10.3390/biomedicines12071591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
While drug therapy plays a crucial role in cancer treatment, many anticancer drugs, particularly cytotoxic and molecular-targeted drugs, cause severe side effects, which often limit the dosage of these drugs. Efforts have been made to alleviate these side effects by developing derivatives, analogues, and liposome formulations of existing anticancer drugs and by combining anticancer drugs with substances that reduce side effects. However, these approaches have not been sufficiently effective in reducing side effects. Molecular hydrogen (H2) has shown promise in this regard. It directly reduces reactive oxygen species, which have very strong oxidative capacity, and indirectly exerts antioxidant, anti-inflammatory, and anti-apoptotic effects by regulating gene expression. Its clinical application in various diseases has been expanded worldwide. Although H2 has been reported to reduce the side effects of anticancer drugs in animal studies and clinical trials, the underlying molecular mechanisms remain unclear. Our comprehensive literature review revealed that H2 protects against tissue injuries induced by cisplatin, oxaliplatin, doxorubicin, bleomycin, and gefitinib. The underlying mechanisms involve reductions in oxidative stress and inflammation. H2 itself exhibits anticancer activity. Therefore, the combination of H2 and anticancer drugs has the potential to reduce the side effects of anticancer drugs and enhance their anticancer activities. This is an exciting prospect for future cancer treatments.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Independent Researcher, 5-8-1-207 Honson, Chigasaki 253-0042, Japan
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-Ku, Tokyo 135-8181, Japan
| |
Collapse
|
8
|
Dabral P, Bhasin N, Ranjan M, Makhlouf MM, Abd Elmageed ZY. Tumor-Derived Extracellular Vesicles as Liquid Biopsy for Diagnosis and Prognosis of Solid Tumors: Their Clinical Utility and Reliability as Tumor Biomarkers. Cancers (Basel) 2024; 16:2462. [PMID: 39001524 PMCID: PMC11240796 DOI: 10.3390/cancers16132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Early cancer detection and accurate monitoring are crucial to ensure increased patient survival. Recent research has focused on developing non-invasive biomarkers to diagnose cancer early and monitor disease progression at low cost and risk. Extracellular vesicles (EVs), nanosized particles secreted into extracellular spaces by most cell types, are gaining immense popularity as novel biomarker candidates for liquid cancer biopsy, as they can transport bioactive cargo to distant sites and facilitate intercellular communications. A literature search was conducted to discuss the current approaches for EV isolation and the advances in using EV-associated proteins, miRNA, mRNA, DNA, and lipids as liquid biopsies. We discussed the advantages and challenges of using these vesicles in clinical applications. Moreover, recent advancements in machine learning as a novel tool for tumor marker discovery are also highlighted.
Collapse
Affiliation(s)
- Prerna Dabral
- Vitalant Research Institute, University of California San Francisco, San Francisco, CA 94105, USA;
| | - Nobel Bhasin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Manish Ranjan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Maysoon M. Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| |
Collapse
|
9
|
Kaur P, Singh SK, Mishra MK, Singh S, Singh R. Promising Combinatorial Therapeutic Strategies against Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:2205. [PMID: 38927911 PMCID: PMC11201636 DOI: 10.3390/cancers16122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) presents a complex and diverse disease, exhibiting variations at individuals' cellular and histological levels. This complexity gives rise to different subtypes and genetic mutations, posing challenges for accurate diagnosis and effective treatment. Nevertheless, continuous progress in medical research and therapies is continually shaping the landscape of NSCLC diagnosis and management. The treatment of NSCLC has undergone significant advancements in recent years, especially with the emergence of targeted therapies that have shown remarkable efficacy in patients with actionable mutations. This has ushered in the era of personalized medicine in NSCLC treatment, with improvements in molecular and immunohistochemical techniques contributing to enhanced progression-free survival. This review focuses on the latest progress, challenges, and future directions in developing targeted therapies for NSCLC, including tyrosine kinase inhibitors (TKIs), DNA-damaging agents, immunotherapy regimens, natural drug therapy, and nanobodies. Furthermore, recent randomized studies have demonstrated enhanced overall survival in patients receiving different targeted and natural drug therapies.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
| | - Manoj K. Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36014, USA;
| | - Shailesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (P.K.); (S.K.S.); (S.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
10
|
Kumar Tiwari P, Chouhan M, Mishra R, Gupta S, Chaudhary AA, Al-Zharani M, Ahmed Qurtam A, Nasr FA, Jha NK, Pant K, Kumar M, Kumar S. Structure-based virtual screening methods for the identification of novel phytochemical inhibitors targeting furin protease for the management of COVID-19. Front Cell Infect Microbiol 2024; 14:1391288. [PMID: 38919703 PMCID: PMC11196402 DOI: 10.3389/fcimb.2024.1391288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, is a highly contagious respiratory disease with widespread societal impact. The symptoms range from cough, fever, and pneumonia to complications affecting various organs, including the heart, kidneys, and nervous system. Despite various ongoing efforts, no effective drug has been developed to stop the spread of the virus. Although various types of medications used to treat bacterial and viral diseases have previously been employed to treat COVID-19 patients, their side effects have also been observed. The way SARS-CoV-2 infects the human body is very specific, as its spike protein plays an important role. The S subunit of virus spike protein cleaved by human proteases, such as furin protein, is an initial and important step for its internalization into a human host. Keeping this context, we attempted to inhibit the furin using phytochemicals that could produce minimal side effects. For this, we screened 408 natural phytochemicals from various plants having antiviral properties, against furin protein, and molecular docking and dynamics simulations were performed. Based on the binding score, the top three compounds (robustaflavone, withanolide, and amentoflavone) were selected for further validation. MM/GBSA energy calculations revealed that withanolide has the lowest binding energy of -57.2 kcal/mol followed by robustaflavone and amentoflavone with a binding energy of -45.2 kcal/mol and -39.68 kcal/mol, respectively. Additionally, ADME analysis showed drug-like properties for these three lead compounds. Hence, these natural compounds robustaflavone, withanolide, and amentoflavone, may have therapeutic potential for the management of SARS-CoV-2 by targeting furin.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-computational Lab, Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-computational Lab, Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Ashraf Ahmed Qurtam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
11
|
Tiwari PK, Shanmugam P, Karn V, Gupta S, Mishra R, Rustagi S, Chouhan M, Verma D, Jha NK, Kumar S. Extracellular Vesicular miRNA in Pancreatic Cancer: From Lab to Therapy. Cancers (Basel) 2024; 16:2179. [PMID: 38927885 PMCID: PMC11201547 DOI: 10.3390/cancers16122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Pancreatic cancer is a prevalent lethal gastrointestinal cancer that generally does not show any symptoms until it reaches advanced stages, resulting in a high mortality rate. People at high risk, such as those with a family history or chronic pancreatitis, do not have a universally accepted screening protocol. Chemotherapy and radiotherapy demonstrate limited effectiveness in the management of pancreatic cancer, emphasizing the urgent need for innovative therapeutic strategies. Recent studies indicated that the complex interaction among pancreatic cancer cells within the dynamic microenvironment, comprising the extracellular matrix, cancer-associated cells, and diverse immune cells, intricately regulates the biological characteristics of the disease. Additionally, mounting evidence suggests that EVs play a crucial role as mediators in intercellular communication by the transportation of different biomolecules, such as miRNA, proteins, DNA, mRNA, and lipids, between heterogeneous cell subpopulations. This communication mediated by EVs significantly impacts multiple aspects of pancreatic cancer pathogenesis, including proliferation, angiogenesis, metastasis, and resistance to therapy. In this review, we delve into the pivotal role of EV-associated miRNAs in the progression, metastasis, and development of drug resistance in pancreatic cancer as well as their therapeutic potential as biomarkers and drug-delivery mechanisms for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Poojhaa Shanmugam
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Vamika Karn
- Amity Institute of Biotechnology, Amity University, Mumbai 410206, Maharashtra, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Sarvesh Rustagi
- School of Applied and Life science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
12
|
Gebeyehu GM, Rashidiani S, Farkas B, Szabadi A, Brandt B, Pap M, Rauch TA. Unveiling the Role of Exosomes in the Pathophysiology of Sepsis: Insights into Organ Dysfunction and Potential Biomarkers. Int J Mol Sci 2024; 25:4898. [PMID: 38732114 PMCID: PMC11084308 DOI: 10.3390/ijms25094898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are tools for intercellular communication, mediating molecular transport processes. Emerging studies have revealed that EVs are significantly involved in immune processes, including sepsis. Sepsis, a dysregulated immune response to infection, triggers systemic inflammation and multi-organ dysfunction, posing a life-threatening condition. Although extensive research has been conducted on animals, the complex inflammatory mechanisms that cause sepsis-induced organ failure in humans are still not fully understood. Recent studies have focused on secreted exosomes, which are small extracellular vesicles from various body cells, and have shed light on their involvement in the pathophysiology of sepsis. During sepsis, exosomes undergo changes in content, concentration, and function, which significantly affect the metabolism of endothelia, cardiovascular functions, and coagulation. Investigating the role of exosome content in the pathogenesis of sepsis shows promise for understanding the molecular basis of human sepsis. This review explores the contributions of activated immune cells and diverse body cells' secreted exosomes to vital organ dysfunction in sepsis, providing insights into potential molecular biomarkers for predicting organ failure in septic shock.
Collapse
Affiliation(s)
- Gizaw Mamo Gebeyehu
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - Shima Rashidiani
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - Benjámin Farkas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| | - András Szabadi
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Barbara Brandt
- Hungary Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.B.); (M.P.)
| | - Marianna Pap
- Hungary Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.B.); (M.P.)
| | - Tibor A. Rauch
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.M.G.); (S.R.); (B.F.)
| |
Collapse
|
13
|
Harrell CR, Djonov V, Volarevic A, Arsenijevic A, Volarevic V. Molecular Mechanisms Responsible for the Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Lung Fibrosis. Int J Mol Sci 2024; 25:4378. [PMID: 38673961 PMCID: PMC11050301 DOI: 10.3390/ijms25084378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are nano-sized extracellular vesicles which contain various MSC-sourced anti-fibrotic, immunoregulatory and angio-modulatory proteins (growth factors, immunoregulatory cytokines, chemokines), lipids, and nucleic acids (messenger RNA and microRNAs). Due to their lipid envelope, MSC-Exos easily by-pass all barriers in the body and deliver their cargo directly in target cells, modulating their viability, proliferation, phenotype and function. The results obtained in recently published experimental studies demonstrated beneficial effects of MSC-Exos in the treatment of lung fibrosis. MSC-Exos reduced activation of fibroblasts and prevented their differentiation in myofibroblasts. By delivering MSC-sourced immunoregulatory factors in lung-infiltrated monocytes and T cells, MSC-Exos modulate their function, alleviating on-going inflammation and fibrosis. MSC-Exos may also serve as vehicles for the target delivery of anti-fibrotic and immunomodulatory agents, enabling enhanced attenuation of lung fibrosis. Although numerous pre-clinical studies have demonstrated the therapeutic potential of MSC-Exos in the treatment of pulmonary fibrosis, there are several challenges that currently hinder their clinical implementation. Therefore, in this review article, we summarized current knowledge and we discussed future perspectives regarding molecular and cellular mechanisms which were responsible for the anti-fibrotic, anti-inflammatory and immunoregulatory properties of MSC-Exos, paving the way for their clinical use in the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Ana Volarevic
- Department of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
14
|
El Safadi D, Mokhtari A, Krejbich M, Lagrave A, Hirigoyen U, Lebeau G, Viranaicken W, Krejbich-Trotot P. Exosome-Mediated Antigen Delivery: Unveiling Novel Strategies in Viral Infection Control and Vaccine Design. Vaccines (Basel) 2024; 12:280. [PMID: 38543914 PMCID: PMC10974137 DOI: 10.3390/vaccines12030280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
Exosomes are small subtypes of extracellular vesicles (EVs) naturally released by different types of cells into their environment. Their physiological roles appear to be multiple, yet many aspects of their biological activities remain to be understood. These vesicles can transport and deliver a variety of cargoes and may serve as unconventional secretory vesicles. Thus, they play a crucial role as important vectors for intercellular communication and the maintenance of homeostasis. Exosome production and content can vary under several stresses or modifications in the cell microenvironment, influencing cellular responses and stimulating immunity. During infectious processes, exosomes are described as double-edged swords, displaying both beneficial and detrimental effects. Owing to their tractability, the analysis of EVs from multiple biofluids has become a booming tool for monitoring various pathologies, from infectious to cancerous origins. In this review, we present an overview of exosome features and discuss their particular and ambiguous functions in infectious contexts. We then focus on their properties as diagnostic or therapeutic tools. In this regard, we explore the capacity of exosomes to vectorize immunogenic viral antigens and their function in mounting adaptive immune responses. As exosomes provide interesting platforms for antigen presentation, we further review the available data on exosome engineering, which enables peptides of interest to be exposed at their surface. In the light of all these data, exosomes are emerging as promising avenues for vaccine strategies.
Collapse
Affiliation(s)
- Daed El Safadi
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| | - Alexandre Mokhtari
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| | - Morgane Krejbich
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers, CRCI2NA, INSERM U1307, CNRS UMR 6075, Université de Nantes, Université d’Angers, 8 Quai Moncousu, P.O. Box 70721, Cedex 1, 44007 Nantes, France; (M.K.); (U.H.)
| | - Alisé Lagrave
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- National Reference Center for Arboviruses, Institut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Ugo Hirigoyen
- Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers, CRCI2NA, INSERM U1307, CNRS UMR 6075, Université de Nantes, Université d’Angers, 8 Quai Moncousu, P.O. Box 70721, Cedex 1, 44007 Nantes, France; (M.K.); (U.H.)
| | - Grégorie Lebeau
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- Unité Mixte Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM U1188, Campus Santé de Terre Sainte, 97410 Saint-Pierre, La Réunion, France
| | - Wildriss Viranaicken
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
- Unité Mixte Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, INSERM U1188, Campus Santé de Terre Sainte, 97410 Saint-Pierre, La Réunion, France
| | - Pascale Krejbich-Trotot
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France; (D.E.S.); (A.M.); (G.L.); (W.V.)
| |
Collapse
|
15
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
16
|
Mester P, Räth U, Schmid S, Amend P, Keller D, Krautbauer S, Bondarenko S, Müller M, Buechler C, Pavel V. Serum Insulin-like Growth Factor-Binding Protein-2 as a Prognostic Factor for COVID-19 Severity. Biomedicines 2024; 12:125. [PMID: 38255230 PMCID: PMC10813598 DOI: 10.3390/biomedicines12010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Insulin-like growth factor-binding protein (IGFBP)-2 is a regulator of anabolic pathways, which become inactivated in severe illness. Here, we measured the serum IGFBP-2 levels of COVID-19 patients with moderate and severe disease as well as healthy controls to identify the associations of serum IGFBP-2 levels with disease severity. Patients with severe COVID-19 had higher serum IGFBP-2 levels than those with moderate disease and healthy controls, who had similar levels. Non-survivors of COVID-19 tended to have elevated serum IGFBP-2 levels compared to survivors. Increased serum IGFBP-2 levels were observed in patients requiring dialysis and vasopressor therapy. Serum IGFBP-2 was positively correlated with procalcitonin in both patient groups. Bacterial co-infection in severe COVID-19 patients did not influence serum IGFBP-2 levels. Patients with liver cirrhosis and obesity, showing increased and decreased serum IGFBP-2 levels, respectively, were excluded from the study. The present analysis showed that higher serum IGFBP-2 levels are associated with increased disease severity in COVID-19 patients. The similarity in serum IGFBP-2 levels between patients with moderate COVID-19 and healthy controls suggests that elevated IGFBP-2 is associated with critical illness rather than SARS-CoV-2 infection itself.
Collapse
Affiliation(s)
- Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (U.R.); (S.S.); (P.A.); (D.K.); (M.M.); (V.P.)
| | - Ulrich Räth
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (U.R.); (S.S.); (P.A.); (D.K.); (M.M.); (V.P.)
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (U.R.); (S.S.); (P.A.); (D.K.); (M.M.); (V.P.)
| | - Pablo Amend
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (U.R.); (S.S.); (P.A.); (D.K.); (M.M.); (V.P.)
| | - Dennis Keller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (U.R.); (S.S.); (P.A.); (D.K.); (M.M.); (V.P.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (S.B.)
| | - Sofiia Bondarenko
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany; (S.K.); (S.B.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (U.R.); (S.S.); (P.A.); (D.K.); (M.M.); (V.P.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (U.R.); (S.S.); (P.A.); (D.K.); (M.M.); (V.P.)
| | - Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (P.M.); (U.R.); (S.S.); (P.A.); (D.K.); (M.M.); (V.P.)
| |
Collapse
|
17
|
Xiang Z, Xie Q, Yu Z. Exosomal DNA: Role in Reflecting Tumor Genetic Heterogeneity, Diagnosis, and Disease Monitoring. Cancers (Basel) 2023; 16:57. [PMID: 38201485 PMCID: PMC10778000 DOI: 10.3390/cancers16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs), with exosomes at the forefront, are key in transferring cellular information and assorted biological materials, including nucleic acids. While exosomal RNA has been thoroughly examined, exploration into exosomal DNA (exoDNA)-which is stable and promising for cancer diagnostics-lags behind. This hybrid genetic material, combining contributions from both nuclear and mitochondrial DNA (mtDNA), is rooted in the cytoplasm. The enigmatic process concerning its cytoplasmic encapsulation continues to captivate researchers. Covering the entire genetic landscape, exoDNA encases significant oncogenic alterations in genes like TP53, ALK, and IDH1, which is vital for clinical assessment. This review delves into exosomal origins, the ins and outs of DNA encapsulation, and exoDNA's link to tumor biology, underscoring its superiority to circulating tumor DNA in the biomarker arena for both detection and therapy. Amidst scientific progress, there are complexities in the comprehension and practical application of the exoDNA surface. Reflecting on these nuances, we chart the prospective research terrain and potential pitfalls, forging a path for future inquiry. By illuminating both the known and unknown facets of exoDNA, the objective of this review is to provide guidance to the field of liquid biopsy (LB) while minimizing the occurrence of avoidable blind spots and detours.
Collapse
Affiliation(s)
- Ziyi Xiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Qihui Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Zili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
18
|
Lim Y, Kim HY, Han D, Choi B. Proteome and immune responses of extracellular vesicles derived from macrophages infected with the periodontal pathogen Tannerella forsythia. J Extracell Vesicles 2023; 12:e12381. [PMID: 38014595 PMCID: PMC10682907 DOI: 10.1002/jev2.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontal pathogens in subgingival plaque and is associated with systemic inflammatory diseases. Extracellular vesicles (EVs) released from host cells and pathogens carry a variety of biological molecules and are of interest for their role in disease progression and as diagnostic markers. In the present study, we analysed the proteome and inflammatory response of EVs derived from macrophages infected with Tannerella forsythia, a periodontal pathogen. The EVs isolated from the cell conditioned medium of T. forsythia-infected macrophages were divided into two distinct vesicles, macrophage-derived EVs and T. forsythia-derived OMVs, by size exclusion chromatography combined with density gradient ultracentrifugation. Proteome analysis showed that in T. forsythia infection, macrophage-derived EVs were enriched with pro-inflammatory cytokines and inflammatory mediators associated with periodontitis progression. T. forsythia-derived OMVs harboured several known virulence factors, including BspA, sialidase, GroEL and various bacterial lipoproteins. T. forsythia-derived OMVs induced pro-inflammatory responses via TLR2 activation. In addition, we demonstrated that T. forsythia actively released OMVs when T. forsythia encountered macrophage-derived soluble molecules. Taken together, our results provide insight into the characterisation of EVs derived from cells infected with a periodontal pathogen.
Collapse
Affiliation(s)
- Younggap Lim
- Department of Oral Microbiology and Immunology, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, School of DentistrySeoul National UniversitySeoulRepublic of Korea
- Dental Research Institute, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced TechnologySeoul National University HospitalSeoulRepublic of Korea
- Proteomics Core Facility, Biomedical Research InstituteSeoul National University HospitalSeoulRepublic of Korea
- Department of MedicineSeoul National University College of MedicineSeoulRepublic of Korea
| | - Bong‐Kyu Choi
- Department of Oral Microbiology and Immunology, School of DentistrySeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
19
|
Singh M, Lo SH, Dubey R, Kumar S, Chaubey KK, Kumar S. Plant-Derived Natural Compounds as an Emerging Antiviral in Combating COVID-19. Indian J Microbiol 2023; 63:429-446. [PMID: 38031604 PMCID: PMC10682353 DOI: 10.1007/s12088-023-01121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a human virus that burst at Wuhan in China and spread quickly over the world, leading to millions of deaths globally. The journey of this deadly virus to different mutant strains is still ongoing. The plethora of drugs and vaccines have been tested to cope up this pandemic. The herbal plants and different spices have received great attention during pandemic, because of their anti-inflammatory, and immunomodulatory properties in treating viruses and their symptoms. Also, it has been shown that nano-formulation of phytochemicals has potential therapeutic effect against COVID-19. Furthermore, the plant derived compound nano-formulation specifically increases its antiviral property by enhancing its bioavailability, solubility, and target-specific delivery system. This review highlights the potentiality of herbal plants and their phytochemical against SARS-CoV-2 utilizing different mechanisms such as blocking the ACE-2 receptors, inhibiting the main proteases, binding spike proteins and reducing the cytokine storms.
Collapse
Affiliation(s)
- Mansi Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, UP 281406 India
| | - Shih-Hsiu Lo
- Department of Urology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, No. 252, Wuxing Street, Taipei, 11031 Taiwan
| | - Sudhashekhar Kumar
- Department of Physiology, School of Medical Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand 248007 India
- School of Basic and Applied Sciences, Sanskriti University, Mathura, UP 281401 India
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
20
|
Jiang W, Yu Y, Ou J, Li Y, Zhu N. Exosomal circRNA RHOT1 promotes breast cancer progression by targeting miR-204-5p/ PRMT5 axis. Cancer Cell Int 2023; 23:260. [PMID: 37924099 PMCID: PMC10623849 DOI: 10.1186/s12935-023-03111-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Circular RNA RHOT1 (circRHOT1) plays crucial roles in tumorigenesis by competing with microRNAs. It is largely abundant in tumor cell-derived exosomes. Meanwhile, cancer-derived exosomes participate in diverse biological processes. However, the expression patterns and functions of exosomal circRHOT1 in breast cancer remain unknown. This study is aimed to investigate and elucidate the exosomal circRHOT1/miR-204-5p/PRMT5 axis in breast cancer. METHODS The exosomes derived from serum samples of breast cancer patients and breast cancer cell lines were characterized using transmission electron microscopy and Western blot. MTT, colony formation, wound healing, and transwell assays were utilized to analyze cell proliferation, migration, and invasion of breast cancer cells. Flow cytometry was used for apoptosis analysis. The bioinformatics method was employed to screen differentially expressed novel circRNAs and predict the microRNA targets of circRHOT1. Dual-luciferase reporter gene assays were performed to verify their direct interaction. Finally, Xenograft experiments were used to investigate the effect of exosomal circRHOT1 on tumor growth in vivo. RESULTS CircRHOT1 exhibited significantly high expression in exosomes derived from the serum of breast cancer patients and breast cancer cell lines, which suggested its potential diagnostic value. Breast cancer-derived exosomes promoted the cell proliferation, migration, invasion, and epithelial-mesenchymal transition of breast cancer cells while inhibiting apoptosis. However, exosomes with downregulated circRHOT1 inhibited the growth of co-cultured cells. Mechanistically, circRHOT1 acted as a sponge of miR-204-5p and promoted protein arginine methyltransferase 5 (PRMT5) expression. Moreover, miR-204-5p inhibitor and pcPRMT5 could reverse the tumor suppressive effects mediated by circRHOT1-knockdown. Furthermore, treatment with exosomes derived from breast cancer cells with circRHOT1 knockdown attenuated tumor growth in tumor-bearing nude mice, which was accompanied by a reduction in PRMT5 expression and an enhancement of miR-204-5p expression. CONCLUSION The exosomal circRHOT1 may promote breast cancer progression by regulating the miR-204-5p/PRMT5 axis. The current study strengthens the role of circRHOT1, miR-204-5p, and PRMT5 in breast cancer development and provides a potential treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Weihua Jiang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - YinPing Yu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Jianghua Ou
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Yongtao Li
- Department of Breast Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Ning Zhu
- Medical School, Hunan University of Medicine, No. 492, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan, China.
| |
Collapse
|
21
|
Morini M, Raggi F, Bartolucci M, Petretto A, Ardito M, Rossi C, Segalerba D, Garaventa A, Eva A, Cangelosi D, Bosco MC. Plasma-Derived Exosome Proteins as Novel Diagnostic and Prognostic Biomarkers in Neuroblastoma Patients. Cells 2023; 12:2516. [PMID: 37947594 PMCID: PMC10649754 DOI: 10.3390/cells12212516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor during infancy, causing up to 10% of mortality in children; thus, identifying novel early and accurate diagnostic and prognostic biomarkers is mandatory. NB-derived exosomes carry proteins (Exo-prots) reflecting the status of the tumor cell of origin. The purpose of this study was to characterize, for the first time, the Exo-prots specifically expressed in NB patients associated with tumor phenotype and disease stage. We isolated exosomes from plasma specimens of 24 HR-NB patients and 24 low-risk (LR-NB) patients at diagnosis and of 24 age-matched healthy controls (CTRL). Exo-prot expression was measured by liquid chromatography-mass spectrometry. The data are available via ProteomeXchange (PXD042422). The NB patients had a different Exo-prot expression profile compared to the CTRL. The deregulated Exo-prots in the NB specimens acted mainly in the tumor-associated pathways. The HR-NB patients showed a different Exo-prot expression profile compared to the LR-NB patients, with the modulation of proteins involved in cell migration, proliferation and metastasis. NCAM, NCL, LUM and VASP demonstrated a diagnostic value in discriminating the NB patients from the CTRL; meanwhile, MYH9, FN1, CALR, AKAP12 and LTBP1 were able to differentiate between the HR-NB and LR-NB patients with high accuracy. Therefore, Exo-prots contribute to NB tumor development and to the aggressive metastatic NB phenotype.
Collapse
Affiliation(s)
- Martina Morini
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Federica Raggi
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.B.); (A.P.)
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.B.); (A.P.)
| | - Martina Ardito
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Chiara Rossi
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| | - Daniela Segalerba
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (M.A.); (D.S.)
| | - Alberto Garaventa
- Pediatric Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Alessandra Eva
- Scientific Directorate, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Davide Cangelosi
- Clinical Bioinfomatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Maria Carla Bosco
- Unit of Autoinflammatory Diseases and Immunodeficiencies, Pediatric Rheumatology Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (C.R.); (M.C.B.)
| |
Collapse
|
22
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Vasileiadi S, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Papageorgiou EG, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:15563. [PMID: 37958547 PMCID: PMC10649642 DOI: 10.3390/ijms242115563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 115 27 Athens, Greece;
| | - Sofia Vasileiadi
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (V.L.T.); (A.T.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.-M.T.); (S.P.F.); (E.G.P.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, Vasilissis Sofias Avenue Str., 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
23
|
Procópio de Oliveira C, Frigieri BM, Fukumasu H, Chuffa LGDA, Novais AA, Zuccari DAPDC. Potential Protective Role of Melatonin in Benign Mammary Cells Reprogrammed by Extracellular Vesicles from Malignant Cells. Biomedicines 2023; 11:2837. [PMID: 37893209 PMCID: PMC10604164 DOI: 10.3390/biomedicines11102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Mammary neoplasms in female dogs share many similarities with the same tumor class in humans, rendering these animals a valuable preclinical model for studying novel therapies against breast cancer. The intricate role of extracellular vesicles (EVs), particularly exosomes, in breast carcinogenesis, by transferring specific proteins to recipient cells within the tumor microenvironment, underscores their significance. Melatonin, a hormone recognized for its antitumor effects, adds another layer of intrigue. (2) Methods: EVs obtained from the plasma of dogs diagnosed with mammary tumors were co cultivated with the benign epithelial lineage E-20 using DMEM. The experiment comprised four 24 h treatment groups: control, EVs, melatonin, and EVs + melatonin. A series of assays were conducted, including colony formation, proliferation, and cellular migration assessments. Furthermore, we conducted colony formation, proliferation, and cellular migration assays. We performed immunohistochemistry for proteins of the mTOR pathway, including mTOR and AKT. (3) Results: Exosomes alone significantly increased proliferation, migration, and colony formation rates and, upregulated the expression of mTOR and AKT proteins. However, when melatonin was added, a protective effect was observed. (4) Conclusions: These findings contributed to the use of melatonin to modulate EV-mediated signaling in the clinical veterinary oncology of mammary tumors.
Collapse
Affiliation(s)
- Caroline Procópio de Oliveira
- Cancer Molecular Research Laboratory (LIMC), Faculdade de Medicina de São José do Rio Preto—FAMERP, Av. Brigadeiro Faria Lima, São José do Rio Preto 15090-000, SP, Brazil; (C.P.d.O.); (B.M.F.)
- Postgraduate Program in Health Sciences, Faculdade de Medicina de São José do Rio Preto—FAMERP, Av. Brigadeiro Faria Lima, 5416, São José do Rio Preto 15090-000, SP, Brazil
| | - Barbara Maria Frigieri
- Cancer Molecular Research Laboratory (LIMC), Faculdade de Medicina de São José do Rio Preto—FAMERP, Av. Brigadeiro Faria Lima, São José do Rio Preto 15090-000, SP, Brazil; (C.P.d.O.); (B.M.F.)
- Institute of Biosciences, Letters and Exact Sciences (IBILCE) UNESP, São José do Rio Preto 15054-000, SP, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil;
| | - Adriana Alonso Novais
- Institute of Health Sciences (ICS), Federal University of Mato Grosso (UFMT), Sinop 78550-728, RS, Brazil;
| | - Debora Aparecida Pires de Campos Zuccari
- Cancer Molecular Research Laboratory (LIMC), Faculdade de Medicina de São José do Rio Preto—FAMERP, Av. Brigadeiro Faria Lima, São José do Rio Preto 15090-000, SP, Brazil; (C.P.d.O.); (B.M.F.)
- Institute of Biosciences, Letters and Exact Sciences (IBILCE) UNESP, São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
24
|
Mann BJ, Chhabra P, Ma M, Brovero SG, Hannan RT, Sturek JM, Jones MK, Linden J, Brayman KL. Improved survival of SARS COV-2-infected K18- hACE2 mice treated with adenosine A 2AR agonist. Heliyon 2023; 9:e19226. [PMID: 37664715 PMCID: PMC10469936 DOI: 10.1016/j.heliyon.2023.e19226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
A life-threatening manifestation of Covid-19 infection is a cytokine storm that requires hospitalization and supplemental oxygen. Various strategies to reduce inflammatory cytokines have had some success in limiting cytokine storm and improving survival. Agonists of adenosine A2A receptors (A2AR) reduce cytokine release from most immune cells. Apadenoson is a potent and selective anti-inflammatory adenosine analog that reduces inflammation. When administered by subcutaneous osmotic pumps to mice infected with SARS CoV-2, Apadenoson was found to improve the outcomes of infection as measured by a decrease in weight loss, improved clinical symptoms, reduced levels of proinflammatory cytokines and chemokines in bronchial lavage (BAL) fluid, and enhanced survival of K18-hACE2 transgenic mice. These results support further examination of A2AR agonists as therapies for treating cytokine storm due to COVID-19.
Collapse
Affiliation(s)
- Barbara J. Mann
- Department of Medicine, Division of Infectious Diseases, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Preeti Chhabra
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mingyang Ma
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Savannah G. Brovero
- Department of Medicine, Division of Infectious Diseases, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Riley T. Hannan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeffrey M. Sturek
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Marieke K. Jones
- Claude Moore Health Sciences Library, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joel Linden
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kenneth L. Brayman
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
25
|
Tsilingiris D, Vallianou NG, Karampela I, Christodoulatos GS, Papavasileiou G, Petropoulou D, Magkos F, Dalamaga M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int J Mol Sci 2023; 24:10458. [PMID: 37445634 PMCID: PMC10341908 DOI: 10.3390/ijms241310458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece;
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece;
| | | | - Georgios Papavasileiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Dimitra Petropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| |
Collapse
|
26
|
Popovic M, Martin JH, Head RJ. COVID infection in 4 steps: Thermodynamic considerations reveal how viral mucosal diffusion, target receptor affinity and furin cleavage act in concert to drive the nature and degree of infection in human COVID-19 disease. Heliyon 2023; 9:e17174. [PMID: 37325453 PMCID: PMC10259165 DOI: 10.1016/j.heliyon.2023.e17174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
We have developed a mechanistic model of SARS-CoV-2 and SARS-CoV infection, exploring the relationship between the viral diffusion in the mucosa and viral affinity for the angiotensin converting enzyme 2 (ACE2) target. Utilising the structural similarity of SARS-CoV and SARS-CoV-2 and a shared viral target receptor (ACE2), but a dramatic difference in upper or lower respiratory tract infectivity, we were able to generate insights into the linkage of mucosal diffusion and target receptor affinity in determining the pathophysiological pathways of these two viruses. Our analysis reveals that for SARS-CoV-2 the higher affinity of ACE2 binding, the faster and more complete the mucosal diffusion in its transport from the upper airway to the region of the ACE2 target on the epithelium. This diffusional process is essential for the presentation of this virus to the furin catalysed highly efficient entry and infection process in the upper respiratory tract epithelial cells. A failure of SARS-CoV to follow this path is associated with lower respiratory tract infection and decreased infectivity. Thus, our analysis supports the view that through tropism SARS-CoV-2 has evolved a highly efficient membrane entry process that can act in concert with a high binding affinity of this virus and its variants for its ACE2 which in turn promotes enhanced movement of the virus from airway to epithelium. In this way ongoing mutations yielding higher affinities of SARS-CoV-2 for the ACE2 target becomes the basis for higher upper respiratory tract infectivity and greater viral spread. It is concluded that SARS-CoV-2 is constrained in the extent of its activities by the fundamental laws of physics and thermodynamics. Laws that describe diffusion and molecular binding. Moreover it can be speculated that the very earliest contact of this virus with the human mucosa defines the pathogenesis of this infection.
Collapse
Affiliation(s)
- Marko Popovic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Jennifer H Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, Newcastle 2305, Australia
| | - Richard J Head
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Turner S, Khan MA, Putrino D, Woodcock A, Kell DB, Pretorius E. Long COVID: pathophysiological factors and abnormalities of coagulation. Trends Endocrinol Metab 2023; 34:321-344. [PMID: 37080828 PMCID: PMC10113134 DOI: 10.1016/j.tem.2023.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction). These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.
Collapse
Affiliation(s)
- Simone Turner
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - M Asad Khan
- North West Lung Centre, Manchester University Hospitals, Manchester, M23 9LT, UK
| | - David Putrino
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashley Woodcock
- The University of Manchester, Oxford Road, Manchester, M13 9PL, UK; Manchester Academic Health Science Centre, CityLabs, Manchester, M13 9NQ, UK
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Kemitorvet, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
28
|
Thakur A. Shedding Lights on the Extracellular Vesicles as Functional Mediator and Therapeutic Decoy for COVID-19. Life (Basel) 2023; 13:life13030840. [PMID: 36983995 PMCID: PMC10052528 DOI: 10.3390/life13030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
COVID-19 is an infectious disease caused by the novel coronavirus (SARS-CoV-2) that first appeared in late 2019 and has since spread across the world. It is characterized by symptoms such as fever, cough, and shortness of breath and can lead to death in severe cases. To help contain the virus, measures such as social distancing, handwashing, and other public health measures have been implemented. Vaccine and drug candidates, such as those developed by Pfizer/BioNTech, AstraZeneca, Moderna, Novavax, and Johnson & Johnson, have been developed and are being distributed worldwide. Clinical trials for drug treatments such as remdesivir, dexamethasone, and monoclonal antibodies are underway and have shown promising results. Recently, exosomes have gained attention as a possible mediator of the COVID-19 infection. Exosomes, small vesicles with a size of around 30-200 nm, released from cells, contain viral particles and other molecules that can activate the immune system and/or facilitate viral entry into target cells. Apparently, the role of exosomes in eliciting various immune responses and causing tissue injury in COVID-19 pathogenesis has been discussed. In addition, the potential of exosomes as theranostic and therapeutic agents for the treatment of COVID-19 has been elaborated.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Pordanjani PM, Bolhassani A, Milani A, Pouriayevali MH. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
30
|
Targeting the Variants of COVID-19 via the Unlimited Approach. Indian J Microbiol 2023; 63:152-154. [PMID: 36714462 PMCID: PMC9854402 DOI: 10.1007/s12088-023-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
Coronavirus has continued to evolve and has thus caused unprecedented challenges for human society. Multiple nations have fully or partially relied on the limited approach against the COVID-19 variants, which includes not wearing face masks, vaccine hesitancy, and political conflicts. For effective pandemic management, all nations still need to adhere to the unlimited approach, which includes wearing face masks, vaccination, and risk-oriented strategies. Despite many people's resistance to these relatively restrictive measures, the society could not only reduce physical impacts but also social impacts of COVID-19 variants in time, in particular without flexibly relying on the unlimited approach.
Collapse
|
31
|
The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci 2023; 24:ijms24021337. [PMID: 36674857 PMCID: PMC9865891 DOI: 10.3390/ijms24021337] [Citation(s) in RCA: 218] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Exosomes are a subtype of membrane-contained vesicles 40-200 nm in diameter that are secreted by cells into their surroundings. By transporting proteins, lipids, mRNA, miRNA, lncRNA, and DNA, exosomes are able to perform such vital functions as maintaining cellular homeostasis, removing cellular debris, and facilitating intercellular and interorgan communication. Exosomes travel in all body fluids and deliver their molecular messages in autocrine, paracrine as well as endocrine manners. In recent years, there has been an increased interest in studying exosomes as diagnostic markers and therapeutic targets, since in many disease conditions this machinery becomes dysregulated or hijacked by pathological processes. Additionally, delivery of exosomes and exosomal miRNA has already been shown to improve systemic metabolism and inhibit progression of cancer development in mice. However, the subcellular machinery of exosomes, including their biogenesis, release and uptake, remains largely unknown. This review will bring molecular details of these processes up to date with the goal of expanding the knowledge basis for designing impactful exosome experiments in the future.
Collapse
|
32
|
Ambrosino P, Moretta P, Lanzillo A, Formisano R, Maniscalco M. Implementing Translational Research to Understand the Future of COVID-19 and Its Long-Term Consequences: A Degrowth Perspective or the Transformation of a Global Emergency? Biomedicines 2023; 11:117. [PMID: 36672625 PMCID: PMC9855765 DOI: 10.3390/biomedicines11010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
It has now been three years since the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first gave rise to a global health crisis [...].
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Pasquale Moretta
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Anna Lanzillo
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| |
Collapse
|
33
|
Approximations to Diagnosis and Therapy of COVID-19 in Nervous Systems Using Extracellular Vesicles. Pathogens 2022; 11:pathogens11121501. [PMID: 36558835 PMCID: PMC9782638 DOI: 10.3390/pathogens11121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 virus was first identified at the end of December 2019, causing the disease known as COVID-19, which, due to the high degree of contagion, was declared a global pandemic as of 2020. The end of the isolation was in 2022, thanks to the global multidisciplinary work of the massive vaccination campaigns. Even with the current knowledge about this virus and the COVID-19 disease, there are many questions and challenges regarding diagnosis and therapy in the fight against this virus. One of the big problems is the so-called "long COVID", prolonged symptomatology characterized as a multiorgan disorder manifested as brain fog, fatigue, and shortness of breath, which persist chronically after the disease resolution. Therefore, this review proposes using extracellular vesicles (EVs) as a therapeutic or diagnostic option to confront the sequelae of the disease at the central nervous system level. Development: the review of updated knowledge about SARS-CoV-2 and COVID-19 is generally addressed as well as the current classification of extracellular vesicles and their proposed use in therapy and diagnosis. Through an analysis of examples, extracellular vesicles are highlighted to learn what happens in the central nervous system during and after COVID-19 and as a therapeutic option. Conclusions: even though there are limitations in the knowledge of the neurological manifestations of COVID-19, it is possible to observe the potential use of extracellular vesicles in therapy or as a diagnostic method and even the importance of their study for the knowledge of the pathophysiology of the disease.
Collapse
|
34
|
Raghav A, Giri R, Agarwal S, Kala S, Jeong GB. Protective role of engineered extracellular vesicles loaded quercetin nanoparticles as anti-viral therapy against SARS-CoV-2 infection: A prospective review. Front Immunol 2022; 13:1040027. [PMID: 36569877 PMCID: PMC9773252 DOI: 10.3389/fimmu.2022.1040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Quercetin (QCT) is a naturally occurring phenolic flavonoid compound with inbuilt characteristics of antioxidant, anti-inflammatory, and immune protection. Several recent studies have shown that QCT and QCTits nanoparticles have therapeutic potential against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Novel therapeutics also include the implication of extracellular vesicles (EVs) to protect from SARS-CoV-2 viral infection. This article highlighted the therapeutic/prophylactic potential of engineered EVs loaded with QCT against SARS-CoV-2 infection. Several biotechnological engineering approaches are available to deliver EVs loaded with QCT nanoparticles. Among these biotechnological advances, a specific approach with significantly higher efficiency and yield has to be opted to fabricate such drug delivery of nano molecules, especially to combat SARS-CoV-2 infection. The current treatment regime protects the human body from virus infection but has some limitations including drugs and long-term steroid side effects. However, the vaccine strategy is somehow effective in inhibiting the spread of coronavirus disease-19 (COVID-19) infection. Moreover, the proposed exosomal therapy met the current need to repair the damaged tissue along with inhibition of COVID-19-associated complications at the tissue level. These scientific findings expand the possibilities and predictability of developing a novel and cost-effective therapeutic approach that combines the dual molecule, EVs and QCT nanoparticles, to treat SARS-CoV-2 infection. Therefore, the most suitable engineering method to fabricate such a drug delivery system should be better understood before developing novel therapeutics for clinical purposes.
Collapse
Affiliation(s)
- Alok Raghav
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea,Multidisciplinary Research Unit, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Richa Giri
- Kailashpat Singhania (KPS), Institute of Medicine, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Saurabh Agarwal
- Kailashpat Singhania (KPS), Institute of Medicine, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Sanjay Kala
- Department of Surgery, GSVM Medical College, Kanpur, Uttar Pradesh, India
| | - Goo-Bo- Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea,*Correspondence: Goo-Bo- Jeong,
| |
Collapse
|
35
|
Mustajab T, Kwamboka MS, Choi DA, Kang DW, Kim J, Han KR, Han Y, Lee S, Song D, Chwae YJ. Update on Extracellular Vesicle-Based Vaccines and Therapeutics to Combat COVID-19. Int J Mol Sci 2022; 23:ijms231911247. [PMID: 36232549 PMCID: PMC9569487 DOI: 10.3390/ijms231911247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
The COVID-19 pandemic has had a deep impact on people worldwide since late 2019 when SARS-CoV-2 was first identified in Wuhan, China. In addition to its effect on public health, it has affected humans in various aspects of life, including social, economic, cultural, and political. It is also true that researchers have made vigorous efforts to overcome COVID-19 throughout the world, but they still have a long way to go. Accordingly, innumerable therapeutics and vaccine candidates have been studied for their efficacies and have been tried clinically in a very short span of time. For example, the versatility of extracellular vesicles, which are membrane-bound particles released from all types of cells, have recently been highlighted in terms of their effectiveness, biocompatibility, and safety in the fight against COVID-19. Thus, here, we tried to explain the use of extracellular vesicles as therapeutics and for the development of vaccines against COVID-19. Along with the mechanisms and a comprehensive background of their application in trapping the coronavirus or controlling the cytokine storm, we also discuss the obstacles to the clinical use of extracellular vesicles and how these could be resolved in the future.
Collapse
Affiliation(s)
- Tamanna Mustajab
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Moriasi Sheba Kwamboka
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Da Ae Choi
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Dae Wook Kang
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Junho Kim
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Kyu Ri Han
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Yujin Han
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Sorim Lee
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Dajung Song
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Yong-Joon Chwae
- Department of Microbiology, School of Medicine, Ajou University, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-031-219-5073
| |
Collapse
|
36
|
Sbarigia C, Vardanyan D, Buccini L, Tacconi S, Dini L. SARS-CoV-2 and extracellular vesicles: An intricate interplay in pathogenesis, diagnosis and treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.987034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are widely recognized as intercellular communication mediators. Among the different biological processes, EVs play a role in viral infections, supporting virus entrance and spread into host cells and immune response evasion. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an urgent public health issue with significant morbidity and mortality worldwide, being responsible for the current COVID-19 pandemic. Since EVs are implicated in SARS-CoV-2 infection in a morphological and functional level, they have gained growing interest for a better understanding of SARS-CoV-2 pathogenesis and represent possible diagnostic tools to track the disease progression. Furthermore, thanks to their biocompatibility and efficient immune activation, the use of EVs may also represent a promising strategy for the development of new therapeutic strategies against COVID-19. In this review, we explore the role of EVs in viral infections with a focus on SARS-CoV-2 biology and pathogenesis, considering recent morphometric studies. The common biogenesis aspects and structural similarities between EVs and SARS-CoV-2 will be examined, offering a panoramic of their multifaceted interplay and presenting EVs as a machinery supporting the viral cycle. On the other hand, EVs may be exploited as early diagnostic biomarkers and efficient carriers for drug delivery and vaccination, and ongoing studies will be reviewed to highlight EVs as potential alternative therapeutic strategies against SARS-CoV-2 infection.
Collapse
|
37
|
Tahyra ASC, Calado RT, Almeida F. The Role of Extracellular Vesicles in COVID-19 Pathology. Cells 2022; 11:cells11162496. [PMID: 36010572 PMCID: PMC9406571 DOI: 10.3390/cells11162496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
Extracellular vesicles (EVs) have become a trending topic in recent years; they constitute a new intercellular communication paradigm. Extracellular vesicles are 30–4000 nanometers in diameter particles that are limited by a phospholipid bilayer and contain functional biomolecules, such as proteins, lipids, and nucleic acids. They are released by virtually all types of eukaryotic cells; through their cargoes, EVs are capable of triggering signaling in recipient cells. In addition to their functions in the homeostatic state, EVs have gained attention because of their roles in pathological contexts, eventually contributing to disease progression. In the Coronavirus disease 2019 (COVID-19) pandemic, aside from the scientific race for the development of preventive and therapeutic interventions, it is critical to understand the pathological mechanisms involved in SARS-CoV-2 infection. In this sense, EVs are key players in the main processes of COVID-19. Thus, in this review, we highlight the role of EVs in the establishment of the viral infection and in the procoagulant state, cytokine storm, and immunoregulation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Aline Seiko Carvalho Tahyra
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
- Correspondence:
| |
Collapse
|
38
|
Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022; 346:260-274. [PMID: 35469984 PMCID: PMC9045711 DOI: 10.1016/j.jconrel.2022.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 01/09/2023]
Abstract
Growing evidence indicates that hyperinflammatory syndrome and cytokine storm observed in COVID-19 severe cases are narrowly associated with the disease's poor prognosis. Therefore, targeting the inflammatory pathways seems to be a rational therapeutic strategy against COVID-19. Many anti-inflammatory agents have been proposed; however, most of them suffer from poor bioavailability, instability, short half-life, and undesirable biodistribution resulting in off-target effects. From a pharmaceutical standpoint, the implication of COVID-19 inflammation can be exploited as a therapeutic target and/or a targeting strategy against the pandemic. First, the drug delivery systems can be harnessed to improve the properties of anti-inflammatory agents and deliver them safely and efficiently to their therapeutic targets. Second, the drug carriers can be tailored to develop smart delivery systems able to respond to the microenvironmental stimuli to release the anti-COVID-19 therapeutics in a selective and specific manner. More interestingly, some biosystems can simultaneously repress the hyperinflammation due to their inherent anti-inflammatory potency and endow their drug cargo with a selective delivery to the injured sites.
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
39
|
Jing W, Wang H, Zhan L, Yan W. Extracellular Vesicles, New Players in Sepsis and Acute Respiratory Distress Syndrome. Front Cell Infect Microbiol 2022; 12:853840. [PMID: 35463634 PMCID: PMC9021632 DOI: 10.3389/fcimb.2022.853840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Sepsis refers to a complex syndrome associated with physiological, pathological, and biochemical abnormalities resulted from infection. Sepsis is the major cause of acute respiratory distress syndrome (ARDS). Extracellular vesicles (EVs) are serving as new messengers to mediate cell-cell communication in vivo. Non-coding RNAs, proteins and metabolites encapsulated by EVs could result in either pro-inflammatory or anti-inflammatory effects in the recipient cells. Pathogens or host cells derived EVs play an important role in pathogens infection during the occurrence and development of sepsis and ARDS. Additionally, we summarize the potential application for EVs in diagnosis, prevention and treatment for sepsis and ARDS.
Collapse
Affiliation(s)
- Wenqiang Jing
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huijuan Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Liying Zhan, ; Wei Yan,
| | - Wei Yan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Liying Zhan, ; Wei Yan,
| |
Collapse
|
40
|
Wang C, Yu C, Jing H, Wu X, Novakovic VA, Xie R, Shi J. Long COVID: The Nature of Thrombotic Sequelae Determines the Necessity of Early Anticoagulation. Front Cell Infect Microbiol 2022; 12:861703. [PMID: 35449732 PMCID: PMC9016198 DOI: 10.3389/fcimb.2022.861703] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Many discharged COVID-19 patients affected by sequelae experience reduced quality of life leading to an increased burden on the healthcare system, their families and society at large. Possible pathophysiological mechanisms of long COVID include: persistent viral replication, chronic hypoxia and inflammation. Ongoing vascular endothelial damage promotes platelet adhesion and coagulation, resulting in the impairment of various organ functions. Meanwhile, thrombosis will further aggravate vasculitis contributing to further deterioration. Thus, long COVID is essentially a thrombotic sequela. Unfortunately, there is currently no effective treatment for long COVID. This article summarizes the evidence for coagulation abnormalities in long COVID, with a focus on the pathophysiological mechanisms of thrombosis. Extracellular vesicles (EVs) released by various types of cells can carry SARS-CoV-2 through the circulation and attack distant tissues and organs. Furthermore, EVs express tissue factor and phosphatidylserine (PS) which aggravate thrombosis. Given the persistence of the virus, chronic inflammation and endothelial damage are inevitable. Pulmonary structural changes such as hypertension, embolism and fibrosis are common in long COVID. The resulting impaired lung function and chronic hypoxia again aggravates vascular inflammation and coagulation abnormalities. In this article, we also summarize recent research on antithrombotic therapy in COVID-19. There is increasing evidence that early anticoagulation can be effective in improving outcomes. In fact, persistent systemic vascular inflammation and dysfunction caused by thrombosis are key factors driving various complications of long COVID. Early prophylactic anticoagulation can prevent the release of or remove procoagulant substances, thereby protecting the vascular endothelium from damage, reducing thrombotic sequelae, and improving quality of life for long-COVID patients.
Collapse
Affiliation(s)
- Chengyue Wang
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
| | - Chengyuan Yu
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Geriatric, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Rujuan Xie
- Department of Nephrology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- *Correspondence: Rujuan Xie, ; Jialan Shi,
| | - Jialan Shi
- Department of Hematology, The First Hospital of Harbin, Harbin Medical University, Harbin, China
- Department of Research, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rujuan Xie, ; Jialan Shi,
| |
Collapse
|
41
|
Zhou XH, Xu H, Xu C, Yan YC, Zhang LS, Sun Q, Wang WL, Shi YJ. Hepatocellular carcinoma-derived exosomal miRNA-761 regulates the tumor microenvironment by targeting the SOCS2/JAK2/STAT3 pathway. World J Emerg Med 2022; 13:379-385. [PMID: 36119773 PMCID: PMC9420661 DOI: 10.5847/wjem.j.1920-8642.2022.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Exosomes and exosomal microRNAs have been implicated in tumor occurrence and metastasis. Our previous study showed that microRNA-761 (miR-761) is overexpressed in hepatocellular carcinoma (HCC) tissues and that its inhibition affects mitochondrial function and inhibits HCC metastasis. The mechanism by which exosomal miR-761 modulates the tumor microenvironment has not been elucidated. METHODS Exosomal miR-761 was detected in six cell lines. Cell counting kit-8 (CCK-8) and transwell migration assays were performed to determine the function of exosomal miR-761 in HCC cells. The luciferase reporter assay was used to analyze miR-761 target genes in normal fibroblasts (NFs). The inhibitors AZD1480 and C188-9 were employed to determine the role of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in the transformation of cancer-associated fibroblasts (CAFs). RESULTS In this study, we characterized the mechanism by which miR-761 reprogrammed the tumor microenvironment. We found that HCC-derived exosomal miR-761 was taken up by NFs. Moreover, HCC exosomes affected the tumor microenvironment by activating NFs via suppressor of cytokine signaling 2 (SOCS2) and the JAK2/STAT3 signaling pathway. CONCLUSIONS These results demonstrated that exosomal miR-761 modulated the tumor microenvironment via SOCS2/JAK2/STAT3 pathway-dependent activation of CAFs. Our findings may inspire new strategies for HCC prevention and therapy.
Collapse
Affiliation(s)
- Xiao-hu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chang Xu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying-cai Yan
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lin-shi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei-lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan-jun Shi
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
42
|
Mouzarou A, Ioannou M, Leonidou E, Chaziri I. Pulmonary Embolism in Post-CoviD-19 Patients, a Literature Review: Red Flag for Increased Awareness? SN COMPREHENSIVE CLINICAL MEDICINE 2022; 4:190. [PMID: 35999860 PMCID: PMC9389494 DOI: 10.1007/s42399-022-01273-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Although COVID-19 was primarily considered a respiratory illness, rapidly accumulating data suggest that COVID-19 is associated with a high incidence of venous thromboembolic complications. The primary objective of this review article was to reveal whether we need to increase awareness of pulmonary embolism in the period following the COVID-19 infection given that the epidemiologic facts are still poor. A literature search and a critical review of the collected studies were conducted. An electronic search of PubMed, Science Direct Scopus, Google Scholar, and Excerpta Medica Database (EMBASE) from June 2020 until June 2022. The long-term health consequences of COVID-19 remain largely unclear. This review highlights the importance of awareness of the potentially increased incidence of venous thromboembolism in post-COVID-19 patients, even those with mild or asymptomatic disease. Further research is required to establish appropriate clinical management guidelines for the prevention of thromboembolic complications in the post-COVID-19 period.
Collapse
Affiliation(s)
- Angeliki Mouzarou
- Critical Care Unit COVID-19, General Hospital Limassol, State Health Organization Services, 4131 Limassol, Cyprus
| | - Maria Ioannou
- Department of Cardiology, General Hospital Limassol, State Health Organization Services, Limassol, Cyprus
| | - Elena Leonidou
- Department of Cardiology, General Hospital Limassol, State Health Organization Services, Limassol, Cyprus
| | - Ioanna Chaziri
- Department of Pneumonology, Northern Älvborg County Hospital, Trollhättan, Sweden
| |
Collapse
|
43
|
COVID-19 and Post-Acute COVID-19 Syndrome: From Pathophysiology to Novel Translational Applications. Biomedicines 2021; 10:biomedicines10010047. [PMID: 35052727 PMCID: PMC8773283 DOI: 10.3390/biomedicines10010047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
|