1
|
Zhang X, Zhang Y, Peng X, Yang L, Miao J, Yue Y, Wang Y, Wang X, Zhu C, Song J. Targeting Neuroinflammation in Preterm White Matter Injury: Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes. Cell Mol Neurobiol 2025; 45:23. [PMID: 40072734 PMCID: PMC11903990 DOI: 10.1007/s10571-025-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
Neuroinflammation is a key factor in the development of preterm white matter injury (PWMI), leading to glial cell dysfunction, arrest of oligodendrocyte maturation, and long-term neurological damage. As a potential therapeutic strategy, mesenchymal stem cells (MSCs) exhibit significant immunomodulatory and regenerative potential. Recent studies suggest that the primary mechanism of MSC action is their paracrine effects, particularly mediated by extracellular vesicles, with MSC-derived exosomes (MSC-Exos) being the key mediators. MSC-Exos, enriched with lipids, proteins, and nucleic acids, regulate neuroinflammation by modulating glial cell activity and influencing signaling pathways associated with inflammation and repair. Preclinical evidence has indicated that MSC-Exos can suppress the activation of microglia and astrocytes, promote oligodendrocyte maturation, and enhance myelination, highlighting their potential as a cell-free treatment for PWMI. However, there are a paucity of comprehensive reviews on how MSC-Exos regulate neuroinflammation in PWMI through specific signaling pathways. This review aims to summarize the key signaling pathways through which MSC-Exos modulate neuroinflammation in PWMI and discuss the challenges associated with the clinical application of MSC-Exos-based therapies.
Collapse
Affiliation(s)
- Xinling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yuhang Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Xirui Peng
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Luxiang Yang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Jingwen Miao
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yuyang Yue
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Yong Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China
- Center for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.
- Department of Women's and Children's Health, Karolinska Institutet, 17176, Stockholm, Sweden.
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 436, 405 30, Gothenburg, Sweden.
| | - Juan Song
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street 7, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Salarian M, Liu S, Tsai HM, Leslie SN, Hayes T, Lo ST, Szardenings AK, Zhang W, Chen G, Sandiego C, Wells L, Nair DG, Kolb HC, Xia CA. Evaluation of [ 18F]JNJ-CSF1R-1 as a Positron Emission Tomography Ligand Targeting Colony-Stimulating Factor 1 Receptor. Mol Imaging Biol 2025:10.1007/s11307-025-01991-9. [PMID: 40009327 DOI: 10.1007/s11307-025-01991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Colony-stimulating factor 1 receptor (CSF1R) signaling plays a pivotal role in neuroinflammation, driving microglia proliferation and activation. CSF1R is considered a hallmark of inflammation in many neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Our study aims to evaluate the potential value of 5-cyano-N-(4-(4-(2-([18F]fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([18F]JNJ-CSF1R-1) as a positron emission tomography (PET) ligand targeting CSF1R in preclinical models of neuroinflammation. PROCEDURES A cell-based MSD assay was used to measure the IC50 of 5-cyano-N-(4-(4-(2-(fluoro)ethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide (JNJ-CSF1R-1). JNJ-CSF1R-1 was radiolabeled with fluorine-18. PET imaging was used to evaluate brain uptake, and target engagement of [18F]JNJ-CSF1R-1 in two neuroinflammation mouse models, including systemic lipopolysaccharide (LPS) and AppSAA knock in (KI). CSF1R protein levels in brain tissue were determined by western blot and ELISA assays. [18F]JNJ-CSF1R-1 brain uptake was also measured in a non-human primate (NHP) PET study. RESULTS JNJ-CSF1R-1 is a 12 nM (IC50) inhibitor of CSF1R. [18F]JNJ-CSF1R-1 demonstrated significantly higher brain uptake in both LPS and AD mouse models as measured by the area under the time activity curves (AUC) compared to control animals. In the AppSAA KI model, CSF1R levels increased near amyloid plaques as detected by IHC. [18F]JNJ-CSF1R-1 PET imaging signal showed a good correlation with CSF1R expression levels measured by western blot and ELISA. In an NHP study, [18F]JNJ-CSF1R-1 readily entered the brain and demonstrated reversible kinetics. CONCLUSION [18F]JNJ-CSF1R-1 is a potent and promising CSF1R PET tracer with translational potential for measuring microglia-based neuroinflammatory processes and for tracking the impact of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Mani Salarian
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shuanglong Liu
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hsiu-Ming Tsai
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Shannon N Leslie
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Thomas Hayes
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Su-Tang Lo
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RayzeBio a Bristol Myers Squibb's Company, San Diego, CA, USA
| | | | - Wei Zhang
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- RemeGen Biosciences, Inc, San Francisco, CA, USA
| | - Gang Chen
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- US Rad Bio LLC, San Diego, CA, USA
| | | | | | - Dileep G Nair
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Institute of Molecular Pathobiochemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Hartmuth C Kolb
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA
- Enigma Biomedical Group, Knoxville, TN, USA
| | - Chunfang A Xia
- Johnson & Johnson, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
3
|
de Donato MH, Kouchaeknejad A, de Donato A, Van Der Walt G, Puighermanal E. Streamlined Quantification of Microglial Morphology in Mouse Brains Using 3D Immunofluorescence Analysis. Bio Protoc 2025; 15:e5218. [PMID: 40034468 PMCID: PMC11873448 DOI: 10.21769/bioprotoc.5218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 03/05/2025] Open
Abstract
Microglial cells are crucial patrolling immune cells in the brain and pivotal contributors to neuroinflammation during pathogenic or degenerative stress. Microglia exhibit a heterogeneous "dendrite-like" dense morphology that is subject to change depending on inflammatory status. Understanding the association between microglial morphology, reactivity, and neuropathology is key to informing treatment design in diverse neurodegenerative conditions from inherited encephalopathies to traumatic brain injuries. However, existing protocols for microglial morphology analyses lack standardization and are too complex and time-consuming for widescale adoption. Here, we describe a customized pipeline to quantitatively assess intricate microglial architecture in three dimensions under various conditions. This user-friendly workflow, comprising standard immunofluorescence staining, built-in functions of standard microscopy image analysis software, and custom Python scripts for data analysis, allows the measurement of important morphological parameters such as soma and dendrite volumes and branching levels for users of all skill levels. Overall, this protocol aims to simplify the quantification of the continuum of microglial pathogenic morphologies in biological and pharmacological studies, toward standardization of microglial morphometrics and improved inter-study comparability. Key features • Comparison of 3D microglial architecture between physiological and pathological conditions. • Quantitative assessment of critical microglial morphological features, including soma volume, dendrite volume, branch level, and filament length. • Simplified, semi-automated data export and analysis through simple Python scripts. Graphical overview.
Collapse
Affiliation(s)
| | - Armin Kouchaeknejad
- Neuroscience Institute, Autonomous University of Barcelona, Bellaterra, Spain
| | - Andreu de Donato
- Department of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Spain
| | - Gunter Van Der Walt
- Neuroscience Institute, Autonomous University of Barcelona, Bellaterra, Spain
| | - Emma Puighermanal
- Neuroscience Institute, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
4
|
Pakula A, El Nagar S, Bayin NS, Christensen JB, Stephen DN, Reid AJ, Koche R, Joyner AL. An increase in reactive oxygen species underlies neonatal cerebellum repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.14.618368. [PMID: 39464104 PMCID: PMC11507802 DOI: 10.1101/2024.10.14.618368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The neonatal mouse cerebellum shows remarkable regenerative potential upon injury at birth, wherein a subset of Nestin-expressing progenitors (NEPs) undergoes adaptive reprogramming to replenish granule cell progenitors that die. Here, we investigate how the microenvironment of the injured cerebellum changes upon injury and contributes to the regenerative potential of normally gliogenic - NEPs and their adaptive reprogramming. Single cell transcriptomic and bulk chromatin accessibility analyses of the NEPs from injured neonatal cerebella compared to controls show a temporary increase in cellular processes involved in responding to reactive oxygen species (ROS), a known damage-associated molecular pattern. Analysis of ROS levels in cerebellar tissue confirm a transient increased one day after injury at postanal day 1, overlapping with the peak cell death in the cerebellum. In a transgenic mouse line that ubiquitously overexpresses human mitochondrial catalase (mCAT), ROS is reduced 1 day after injury to the granule cell progenitors, and we demonstrate that several steps in the regenerative process of NEPs are curtailed leading to reduced cerebellar growth. We also provide preliminary evidence that microglia are involved in one step of adaptive reprogramming by regulating NEP replenishment of the granule cell precursors. Collectively, our results highlight that changes in the tissue microenvironment regulate multiple steps in adaptative reprogramming of NEPs upon death of cerebellar granule cell progenitors at birth, highlighting the instructive roles of microenvironmental signals during regeneration of the neonatal brain.
Collapse
|
5
|
Alaei M, Koushki K, Taebi K, Yousefi Taba M, Keshavarz Hedayati S, Keshavarz Shahbaz S. Metal nanoparticles in neuroinflammation: impact on microglial dynamics and CNS function. RSC Adv 2025; 15:5426-5451. [PMID: 39967886 PMCID: PMC11833603 DOI: 10.1039/d4ra07798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Microglia, the primary immune cells of the central nervous system (CNS), are crucial in maintaining brain homeostasis and responding to pathological changes. While they play protective roles, their activation can lead to neuroinflammation and the progression of neurodegenerative diseases. Metal nanoparticles (NPs), due to their unique ability to cross the blood-brain barrier (BBB), have emerged as promising agents for drug delivery to the CNS. In this way, we aim to review the dual role of metal-containing NPs, gold (AuNPs), silver (AgNPs), iron oxide (IONPs), zinc oxide (ZnONPs), cobalt (CoNPs), titanium dioxide (TiO2NPs), and silica (SiO2NPs) in modulating microglial activity. Some NPs promote anti-inflammatory effects, while others exacerbate neuroinflammation. We examine how these NPs influence microglial activation, focusing on their potential therapeutic benefits and risks. A deeper understanding of NP-microglia interactions is crucial for developing safe and efficient treatments for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Masood Alaei
- Student Research Committee, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, University of Texas Houston Health Science Center (UTHealth) Houston TX USA
| | - Kimia Taebi
- Student Research Committee, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Mahdieh Yousefi Taba
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | | | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences Qazvin 34197-59811 Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| |
Collapse
|
6
|
Minasyan A, Pires V, Gondcaille C, Ginovyan M, Mróz M, Savary S, Cherkaoui-Malki M, Kusznierewicz B, Bartoszek A, Andreoletti P, Sahakyan N. Ribes nigrum leaf extract downregulates pro-inflammatory gene expression and regulates redox balance in microglial cells. BMC Complement Med Ther 2025; 25:49. [PMID: 39939952 PMCID: PMC11823126 DOI: 10.1186/s12906-025-04780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND This study focuses on the investigation of the antioxidant and anti-inflammatory activities of alcohol extracts from Ribes nigrum leaves on murine BV-2 microglial Wt and Acyl-CoA oxidase 1 deficient (Acox1-/-) cell line models, useful for the investigation of some neurodegenerative disorders. METHODS The extract chemical composition was analyzed via LC-Q-Orbitrap HRMS. Various assays, including DPPH, MTT, and H2DCFDA, were used to assess the extract's antioxidant capacity, cell viability, and reactive oxygen species (ROS) production. Immunoblotting and RT-qPCR techniques were employed to measure protein expression and gene transcription in treated cells. Statistical analysis was conducted using GraphPad Prism, with significance determined at p < 0.05. RESULTS Investigations showed the presence of phenolic compounds in this extract, among which flavan-3-ols, flavonols, furanocoumarins, hydroxycinnamates were major components, which are known for their biological activity in various test systems. The MTT test revealed a concentration of 0.125 mg/mL of R. nigrum extract as the highest non-toxic. The investigated extract showed high antioxidant activity in chemical-based tests. The antioxidant potential of the R. nigrum leaf extract was furtherly explored using the BV-2 microglial cell line models. Moreover, the extract was found to alter the activity of the main antioxidant enzyme, catalase and fatty acid oxidation enzyme, Acyl-CoA oxidase 1 (ACOX1) as well as the expression of appropriate genes in Wt and Acox1-/- BV-2 microglial cells such as Cat, iNos, Il-1β, Tnf-α, and Abcd1. In Wt cells, after the 24-hour treatment with R. nigrum leaf extract, ACOX1 activity was downregulated, meanwhile the catalase activity remains unchanged. Further treatment led to the downregulation of catalase and the upregulation of ACOX1 activity. However, in Acox1-/- cells, which represent a model of oxidative stress, an increase in catalase activity was observed only after 48 h of treatment. It was also observed the reduced ROS and NO formation in cells, showing the pronounced antioxidant capacity of R. nigrum extract in the investigated cell-models. CONCLUSION Our study demonstrated the protective effects of R. nigrum leaf extracts on BV-2 microglial cells by reducing oxidative and nitrosative stress, decreasing pro-inflammatory gene expression, and normalizing peroxisomal function, highlighting the potential of these extracts as therapeutic agents for managing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Alvard Minasyan
- Research Institute of Biology, Department of Biochemistry, Microbiology & Biotechnology, Yerevan State University, 1 A. Manoogian Str., Yerevan, 0025, Armenia
| | - Vivien Pires
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro, CNRS, INRAE, Université de Bourgogne, Dijon, F-21000, France
| | - Catherine Gondcaille
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro, CNRS, INRAE, Université de Bourgogne, Dijon, F-21000, France
| | - Mikayel Ginovyan
- Research Institute of Biology, Department of Biochemistry, Microbiology & Biotechnology, Yerevan State University, 1 A. Manoogian Str., Yerevan, 0025, Armenia
| | - Marika Mróz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Stéphane Savary
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro, CNRS, INRAE, Université de Bourgogne, Dijon, F-21000, France
| | - Mustapha Cherkaoui-Malki
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro, CNRS, INRAE, Université de Bourgogne, Dijon, F-21000, France
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Pierre Andreoletti
- Centre des Sciences du Goût et de l'Alimentation, Institut Agro, CNRS, INRAE, Université de Bourgogne, Dijon, F-21000, France
| | - Naira Sahakyan
- Research Institute of Biology, Department of Biochemistry, Microbiology & Biotechnology, Yerevan State University, 1 A. Manoogian Str., Yerevan, 0025, Armenia.
| |
Collapse
|
7
|
Shah S, Mansour HM, Lucke-Wold B. Advances in Stem Cell Therapy for Huntington's Disease: A Comprehensive Literature Review. Cells 2025; 14:42. [PMID: 39791743 PMCID: PMC11719515 DOI: 10.3390/cells14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.6 per 100,000 people worldwide, and the mean prevalence rate among all published studies, reviews, and genetic HD registries is 5.7 per 100,000. A key feature of HD is the loss of striatal neurons and cortical atrophy. Although there is no cure at present, the discovery of the gene causing HD has brought us into a new DNA era and therapeutic advances for several neurological disorders. PubMed was systematically searched using three search strings: '"Huntington disease" + "stem cell"', '"Huntington disease" + Mesenchymal stromal cell', and '"Huntington disease" + "induced pluripotent stem cell"'. For each string, the search results were categorized based on cell type, and papers that included a clinical analysis were categorized as well. The data were extracted up to 2024. We did not include other databases in our search to have a comparable and systematic review of the literature on the topic. The collected data were analyzed and used for critical interpretation in the present review. Data are presented chronologically as clinical studies were published. Therapeutic strategies based on stem cells have drawn a lot of interest as possible HD therapies. Recent research indicates that NSCs have been the most often utilized stem cell type for treating HD. NSCs have been generated and extracted from a variety of sources, including HD patients' somatic cells and the brain itself. There is strong evidence supporting the transplantation of stem cells or their derivatives in HD animal models, even if stem-cell-based preclinical and clinical trials are still in their early stages. Current treatment only aims at relieving the symptoms rather than treating the pathogenesis of the disease. Although preclinical trials in HD models have shown promise in improving cognitive and motor functions, stem cell therapy still faces many challenges and disadvantages including immunosuppression and immunorejection as well as ethical, technical, and safety concerns. Further research is required for a definitive conclusion.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA (B.L.-W.)
| | | | | |
Collapse
|
8
|
Siddeeque N, Hussein MH, Abdelmaksoud A, Bishop J, Attia AS, Elshazli RM, Fawzy MS, Toraih EA. Neuroprotective effects of GLP-1 receptor agonists in neurodegenerative Disorders: A Large-Scale Propensity-Matched cohort study. Int Immunopharmacol 2024; 143:113537. [PMID: 39486172 DOI: 10.1016/j.intimp.2024.113537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND GLP-1 receptor agonists, traditionally used for treating type 2 diabetes mellitus and obesity, have demonstrated anti-inflammatory properties. However, their potential neuroprotective effects in neurodegenerative disorders remain unclear. OBJECTIVE To evaluate the impact of GLP-1 receptor agonists on the risk of developing various neurodegenerative conditions in obese patients. METHODS This comprehensive retrospective cohort study analyzed data from 5,307,845 obese adult patients across 73 healthcare organizations in 17 countries. Propensity score matching was performed, resulting in 102,935 patients in each cohort. We compared the risk of developing neurodegenerative disorders between obese patients receiving GLP-1 receptor agonist therapy and those who were not. RESULTS Obese patients treated with GLP-1 receptor agonists showed significantly lower risks of developing Alzheimer's disease (RR = 0.627, 95 %CI = 0.481-0.817), Lewy body dementia (RR = 0.590, 95 %CI = 0.462-0.753), and vascular dementia (RR = 0.438, 95 %CI = 0.327-0.588). The risk reduction for Parkinson's disease was not statistically significant overall (RR = 0.784, 95 %CI = 0.580-1.058) but was significant for semaglutide users (RR = 0.574, 95 %CI = 0.369-0.893). Semaglutide consistently showed the most pronounced protective effects across all disorders. Additionally, a significant reduction in all-cause mortality was observed (HR = 0.525, 95 %CI = 0.493-0.558). CONCLUSION This study provides evidence that the effects of GLP-1 receptor agonists may extend beyond their known metabolic and cardioprotective benefits to include neuroprotection, associated with a decreased risk of developing various neurodegenerative disorders. These findings suggest the potential for expanding the therapeutic applications of GLP-1 receptor agonists to improve neurocognitive outcomes. Further research is warranted to elucidate the mechanisms underlying these neuroprotective effects and to explore their clinical applications in neurodegenerative disease prevention and treatment.
Collapse
Affiliation(s)
| | | | - Ahmed Abdelmaksoud
- Department of Internal Medicine, University of California, Riverside, CA 92521, USA
| | - Julia Bishop
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Abdallah S Attia
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Rami M Elshazli
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; Biochemistry and Molecular Genetic Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta 34517, Egypt; Department of Biological Sciences, Faculty of Science, New Mansoura University, New Mansoura City 35742, Egypt
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia; Center for Health Research, Northern Border University, Arar 1321, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
9
|
Wang X, Su L, Liu S, He Z, Li J, Zong Y, Chen W, Du R. Paeoniflorin Inhibits the Activation of Microglia and Alleviates Depressive Behavior by Regulating SIRT1-NF-kB-NLRP3/Pyroptosis Pathway. Int J Mol Sci 2024; 25:12543. [PMID: 39684254 DOI: 10.3390/ijms252312543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation assumes a vital role in the pathogenesis of depression and in antidepressant treatment. Paeoniflorin (PF), a monoterpene glycoside analog possessing anti-inflammatory attributes, exhibits therapeutic efficacy on depression-like behavior in mice. The objective of this study was to evaluate the antidepressant effects of PF on depression elicited by the chronic unpredictable mild stress (CUMS) model and the precise neural sequence associated with the inflammatory process. In this study, we established an in vivo mouse model induced by CUMS and an in vitro BV2 cell model induced by LPS+ATP. The mechanism of PF for depression was assessed by the SIRT1 selective inhibitor EX-527. The findings demonstrated that PF significantly alleviated the damage of BV2 cells treated with LPS and ATP, inhibited the generation of ROS, up-regulated the expression of SIRT1 mRNA, and down-regulated the expression of nuclear NF-κB, p65, NLRP3, Caspase-1 and GSDMD-N in vitro. In vivo, PF mitigated the depressive-like behavior induced by CUMS, reduced the number of neurons, and decreased the secretion of pro-inflammatory factors IL-1β, IL-6, and TNF-α in the hippocampus. Immunohistochemical results indicated that PF attenuated CUMS-induced hyperactivation of microglia. Moreover, the expression level of SIRT1 in the hippocampus was augmented, while the protein levels of NF-κB, p65, NLRP3, Caspase-1, IL-1β and GSDMD-N were diminished after PF treatment. Additionally, the selective inhibition of SIRT1 attenuated the therapeutic effect of PF on depression. These results imply that PF possesses antidepressant properties that rely on SIRT1 signaling to regulate NLRP3 inflammasome inactivation.
Collapse
Affiliation(s)
- Xue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lili Su
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| |
Collapse
|
10
|
Almalki WH, Almujri SS. Therapeutic approaches to microglial dysfunction in Alzheimer's disease: Enhancing phagocytosis and metabolic regulation. Pathol Res Pract 2024; 263:155614. [PMID: 39342887 DOI: 10.1016/j.prp.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Microglia are essential in neurogenesis, synaptic pruning, and homeostasis. Nevertheless, aging, and cellular senescence may modify their role, causing them to shift from being shields to being players of neurodegeneration. In the aging brain, the population of microglia increases, followed by enhanced activity of genes related to neuroinflammation. This change increases their ability to cause inflammation, resulting in a long-lasting state of inflammation in the brain that harms the condition of neurons. In Alzheimer's Disease (AD), microglia are located inside amyloid plaques and exhibit an inflammatory phenotype characterized by a diminished ability to engulf and remove waste material, worsening the illness's advancement. Genetic polymorphisms in TREM2, APOE, and CD33 highlight the significant impact of microglial dysfunction in AD. This review examines therapeutic approaches that aim to address microglial dysfunction, such as enhancing the microglial capability to engulf and remove amyloid-β clumps and regulating microglial metabolism and mitochondrial activity. Microglial transplanting and reprogramming advancements show the potential to restore their ability to reduce inflammation. Although there has been notable advancement, there are still voids in our knowledge of microglial biology, including their relationships with other brain cells. Further studies should prioritize the improvement of human AD models, establish standardized methods for characterizing microglia, and explore how various factors influence microglial responses. It is essential to tackle these problems to create effective treatment plans that focus on reducing inflammation in the brain and protecting against damage in age-related neurodegenerative illnesses.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
11
|
Chim SM, Howell K, Kokkosis A, Zambrowicz B, Karalis K, Pavlopoulos E. A Human Brain-Chip for Modeling Brain Pathologies and Screening Blood-Brain Barrier Crossing Therapeutic Strategies. Pharmaceutics 2024; 16:1314. [PMID: 39458643 PMCID: PMC11510380 DOI: 10.3390/pharmaceutics16101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The limited translatability of preclinical experimental findings to patients remains an obstacle for successful treatment of brain diseases. Relevant models to elucidate mechanisms behind brain pathogenesis, including cell-specific contributions and cell-cell interactions, and support successful targeting and prediction of drug responses in humans are urgently needed, given the species differences in brain and blood-brain barrier (BBB) functions. Human microphysiological systems (MPS), such as Organ-Chips, are emerging as a promising approach to address these challenges. Here, we examined and advanced a Brain-Chip that recapitulates aspects of the human cortical parenchyma and the BBB in one model. Methods: We utilized human primary astrocytes and pericytes, human induced pluripotent stem cell (hiPSC)-derived cortical neurons, and hiPSC-derived brain microvascular endothelial-like cells and included for the first time on-chip hiPSC-derived microglia. Results: Using Tumor necrosis factor alpha (TNFα) to emulate neuroinflammation, we demonstrate that our model recapitulates in vivo-relevant responses. Importantly, we show microglia-derived responses, highlighting the Brain-Chip's sensitivity to capture cell-specific contributions in human disease-associated pathology. We then tested BBB crossing of human transferrin receptor antibodies and conjugated adeno-associated viruses. We demonstrate successful in vitro/in vivo correlation in identifying crossing differences, underscoring the model's capacity as a screening platform for BBB crossing therapeutic strategies and ability to predict in vivo responses. Conclusions: These findings highlight the potential of the Brain-Chip as a reliable and time-efficient model to support therapeutic development and provide mechanistic insights into brain diseases, adding to the growing evidence supporting the value of MPS in translational research and drug discovery.
Collapse
Affiliation(s)
- Shek Man Chim
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Kristen Howell
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Alexandros Kokkosis
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Brian Zambrowicz
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Katia Karalis
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| | - Elias Pavlopoulos
- Human Systems, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA; (K.H.); (A.K.); (K.K.)
- Velocigene, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA;
| |
Collapse
|
12
|
Samuel Olajide T, Oyerinde TO, Omotosho OI, Okeowo OM, Olajide OJ, Ijomone OM. Microglial senescence in neurodegeneration: Insights, implications, and therapeutic opportunities. NEUROPROTECTION 2024; 2:182-195. [PMID: 39364217 PMCID: PMC11449118 DOI: 10.1002/nep3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 10/05/2024]
Abstract
The existing literature on neurodegenerative diseases (NDDs) reveals a common pathological feature: the accumulation of misfolded proteins. However, the heterogeneity in disease onset mechanisms and the specific brain regions affected complicates the understanding of the diverse clinical manifestations of individual NDDs. Dementia, a hallmark symptom across various NDDs, serves as a multifaceted denominator, contributing to the clinical manifestations of these disorders. There is a compelling hypothesis that therapeutic strategies capable of mitigating misfolded protein accumulation and disrupting ongoing pathogenic processes may slow or even halt disease progression. Recent research has linked disease-associated microglia to their transition into a senescent state-characterized by irreversible cell cycle arrest-in aging populations and NDDs. Although senescent microglia are consistently observed in NDDs, few studies have utilized animal models to explore their role in disease pathology. Emerging evidence from experimental rat models suggests that disease-associated microglia exhibit characteristics of senescence, indicating that deeper exploration of microglial senescence could enhance our understanding of NDD pathogenesis and reveal novel therapeutic targets. This review underscores the importance of investigating microglial senescence and its potential contributions to the pathophysiology of NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Additionally, it highlights the potential of targeting microglial senescence through iron chelation and senolytic therapies as innovative approaches for treating age-related NDDs.
Collapse
Affiliation(s)
- Tobiloba Samuel Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Toheeb O. Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Omolabake I. Omotosho
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Oritoke M. Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, School of Basic Medical Science, Federal University of Technology, Akure, Ondo, Nigeria
| | - Olayemi J. Olajide
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| | - Omamuyouwi M. Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
13
|
Anwar MM, Pérez-Martínez L, Pedraza-Alva G. Exploring the Significance of Microglial Phenotypes and Morphological Diversity in Neuroinflammation and Neurodegenerative Diseases: From Mechanisms to Potential Therapeutic Targets. Immunol Invest 2024; 53:891-946. [PMID: 38836373 DOI: 10.1080/08820139.2024.2358446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Studying various microglial phenotypes and their functions in neurodegenerative diseases is crucial due to the intricate nature of their phenomics and their vital immunological role. Microglia undergo substantial phenomic changes, encompassing morphological, transcriptional, and functional aspects, resulting in distinct cell types with diverse structures, functions, properties, and implications. The traditional classification of microglia as ramified, M1 (proinflammatory), or M2 (anti-inflammatory) phenotypes is overly simplistic, failing to capture the wide range of recently identified microglial phenotypes in various brain regions affected by neurodegenerative diseases. Altered and activated microglial phenotypes deviating from the typical ramified structure are significant features of many neurodegenerative conditions. Understanding the precise role of each microglial phenotype is intricate and sometimes contradictory. This review specifically focuses on elucidating recent modifications in microglial phenotypes within neurodegenerative diseases. Recognizing the heterogeneity of microglial phenotypes in diseased states can unveil novel therapeutic strategies for targeting microglia in neurodegenerative diseases. Moreover, the exploration of the use of healthy isolated microglia to mitigate disease progression has provided an innovative perspective. In conclusion, this review discusses the dynamic landscape of mysterious microglial phenotypes, emphasizing the need for a nuanced understanding to pave the way for innovative therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Leonor Pérez-Martínez
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| | - Gustavo Pedraza-Alva
- Neuroimmunobiology Laboratory, Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Morelos, Mexico
| |
Collapse
|
14
|
Manju, Bharadvaja N. Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Mol Biotechnol 2024; 66:1520-1536. [PMID: 37330923 DOI: 10.1007/s12033-023-00783-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
There is a need for an efficient and long-lasting treatment due to the population's increasing prevalence of neurodegenerative disorders. In an effort to generate fresh ideas and create novel therapeutic medications, scientists have recently started to investigate the biological functions of compounds derived from plants and herbs. Ginseng, famous Chinese herbal medicine, has therapeutic value by virtue of its compounds ginsenosides or panaxosides, which are triterpene saponins and steroid glycosides. Research revealed positive impacts on ameliorating various disease conditions and found it as a possible drug candidate. Several neuroprotection mechanisms followed by this compound are inhibition of cell apoptosis, oxidative stress, inflammatory, and tumor activity. It has been demonstrated that controlling these mechanisms enhances cognitive performance and safeguards the brain against neurodegenerative disorders. The main objective of this review is to give a description of the most recent studies on ginsenoside's possible therapeutic application in the treatment of neurodegenerative diseases. Using organic compounds like ginseng and its various components may create new avenues for innovative treatment approaches development for neurological diseases. However, further research is necessary to confirm the stability and effectiveness of ginsenosides for neurodegenerative disease.
Collapse
Affiliation(s)
- Manju
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
15
|
Nigam M, Devi K, Coutinho HDM, Mishra AP. Exploration of gut microbiome and inflammation: A review on key signalling pathways. Cell Signal 2024; 118:111140. [PMID: 38492625 DOI: 10.1016/j.cellsig.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The gut microbiome, a crucial component of the human system, is a diverse collection of microbes that belong to the gut of human beings as well as other animals. These microbial communities continue to coexist harmoniously with their host organisms and perform various functions that affect the host's general health. Each person's gut microbiota has a unique makeup. The gut microbiota is well acknowledged to have a part in the local as well as systemic inflammation that underlies a number of inflammatory disorders (e.g., atherosclerosis, diabetes mellitus, obesity, and inflammatory bowel disease).The gut microbiota's metabolic products, such as short-chain fatty acids (butyrate, propionate, and acetate) inhibit inflammation by preventing immune system cells like macrophages and neutrophils from producing pro-inflammatory factors, which are triggered by the structural elements of bacteria (like lipopolysaccharide). The review's primary goal is to provide comprehensive and compiled data regarding the contribution of gut microbiota to inflammation and the associated signalling pathways.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Kanchan Devi
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | | | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
16
|
Sanz P, Rubio T, Garcia-Gimeno MA. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Repurposing Drugs. Int J Mol Sci 2024; 25:4161. [PMID: 38673747 PMCID: PMC11049926 DOI: 10.3390/ijms25084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politécnica de València, 46022 Valencia, Spain;
| |
Collapse
|
17
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
18
|
Wang Y, Yang X, Zhang Y, Hong L, Xie Z, Jiang W, Chen L, Xiong K, Yang S, Lin M, Guo X, Li Q, Deng X, Lin Y, Cao M, Yi G, Fu M. Single-cell RNA sequencing reveals roles of unique retinal microglia types in early diabetic retinopathy. Diabetol Metab Syndr 2024; 16:49. [PMID: 38409074 PMCID: PMC10895757 DOI: 10.1186/s13098-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND The pathophysiological mechanisms of diabetic retinopathy (DR), a blinding disease, are intricate. DR was thought to be a microvascular disease previously. However, growing studies have indicated that the retinal microglia-induced inflammation precedes microangiopathy. The binary concept of microglial M1/M2 polarization paradigms during inflammatory activation has been debated. In this study, we confirmed microglia had the most significant changes in early DR using single-cell RNA sequencing. METHODS A total of five retinal specimens were collected from donor SD rats. Changes in various cells of the retina at the early stage of DR were analyzed using single-cell sequencing technology. RESULTS We defined three new microglial subtypes at cellular level, including two M1 types (Egr2+ M1 and Egr2- M1) and one M2 type. We also revealed the anatomical location between these subtypes, the dynamic changes of polarization phenotypes, and the possible activation sequence and mutual activation regulatory mechanism of different cells. Furthermore, we constructed an inflammatory network involving microglia, blood-derived macrophages and other retinal nonneuronal cells. The targeted study of new disease-specific microglial subtypes can shorten the time for drug screening and clinical application, which provided insight for the early control and reversal of DR. CONCLUSIONS We found that microglia show the most obvious differential expression changes in early DR and reveal the changes in microglia in a high-glucose microenvironment at the single-cell level. Our comprehensive analysis will help achieve early reversal and control the occurrence and progression of DR.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Xiongyi Yang
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuxi Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Libing Hong
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhuohang Xie
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wenmin Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, People's Republic of China
| | - Lin Chen
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, 1333 Xinhu Road, Shenzhen, 518100, Guangdong, People's Republic of China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Siyu Yang
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Meiping Lin
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Guo
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiumo Li
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoqing Deng
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yanhui Lin
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Mingzhe Cao
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Erheng Road, Yuancun, Tianhe, Guangzhou, Guangdong, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
20
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
21
|
Altomonte S, Pike VW. Candidate Tracers for Imaging Colony-Stimulating Factor 1 Receptor in Neuroinflammation with Positron Emission Tomography: Issues and Progress. ACS Pharmacol Transl Sci 2023; 6:1632-1650. [PMID: 37974622 PMCID: PMC10644394 DOI: 10.1021/acsptsci.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/19/2023]
Abstract
The tyrosine kinase, colony-stimulating factor 1 receptor (CSF1R), has attracted attention as a potential biomarker of neuroinflammation for imaging studies with positron emission tomography (PET), especially because of its location on microglia and its role in microglia proliferation. The development of an effective radiotracer for specifically imaging and quantifying brain CSF1R is highly challenging. Here we review the progress that has been made on PET tracer development and discuss issues that have arisen and which remain to be addressed and resolved.
Collapse
Affiliation(s)
- Stefano Altomonte
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes
of Health, Building 10,
B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
22
|
Alomari OA, Qusti S, Balgoon M, Aljoud F, Alamry KA, Hussein MA. Modified TPP-MoS 2 QD Blend as a Bio-Functional Model for Normalizing Microglial Dysfunction in Alzheimer's Disease. Neurol Int 2023; 15:954-966. [PMID: 37606394 PMCID: PMC10443245 DOI: 10.3390/neurolint15030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease of old age. Accumulation of β-amyloid peptide (Aβ) and mitochondrial dysfunction results in chronic microglial activation, which enhances neuroinflammation and promotes neurodegeneration. Microglia are resident macrophages of the brain and spinal cord which play an important role in maintaining brain homeostasis through a variety of phenotypes, including the pro-inflammatory phenotype and anti-inflammatory phenotypes. However, persistently activated microglial cells generate reactive species and neurotoxic mediators. Therefore, inhibitors of microglial activation are seen to have promise in AD control. The modified TPP/MoS2 QD blend is a mitochondrion-targeted nanomaterial that exhibits cytoprotective activities and antioxidant properties through scavenging free radicals. In the present study, the cell viability and cytotoxicity of the DSPE-PEG-TPP/MoS2 QD blend on microglial cells stimulated by Aβ were investigated. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were also assessed. In addition, pro-inflammatory and anti-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), transforming growth factor beta (TGF-β), inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-I) were measured in the presence or absence of the DSPE-PEG-TPP/MoS2 QD blend on an immortalized microglia cells activated by accumulation of Aβ. We found that the DSPE-PEG-TPP/MoS2 QD blend was biocompatible and nontoxic at specific concentrations. Furthermore, the modified TPP/MoS2 QD blend significantly reduced the release of free radicals and improved the mitochondrial function through the upregulation of MMP in a dose-dependent manner on microglial cells treated with Aβ. In addition, pre-treatment of microglia with the DSPE-PEG-TPP/MoS2 QD blend at concentrations of 25 and 50 μg/mL prior to Aβ stimulation significantly inhibited the release and expression of pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, and iNOS. Nevertheless, the anti-inflammatory cytokines TGF-β and Arg-I were activated. These findings suggest that the modified TPP/MoS2 QD blend reduced oxidative stress, inflammation and improved the mitochondrial function in the immortalized microglial cells (IMG) activated by Aβ. Overall, our research shows that the DSPE-PEG-TPP/MoS2 QD blend has therapeutic promise for managing AD and can impact microglia polarization.
Collapse
Affiliation(s)
- Ohoud A. Alomari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Safaa Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fadwa Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid A. Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
23
|
Oliynyk Z, Rudyk M, Dovbynchuk T, Dzubenko N, Tolstanova G, Skivka L. Inflammatory hallmarks in 6-OHDA- and LPS-induced Parkinson's disease in rats. Brain Behav Immun Health 2023; 30:100616. [PMID: 37096171 PMCID: PMC10121378 DOI: 10.1016/j.bbih.2023.100616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting more than 1% of aged people. PD, which was previously identified as movement disorder, now is recognized as a multi-factorial systemic disease with important pathogenetic and pathophysiological role of inflammation. Reproducing local and systemic inflammation, which is inherent in PD, in animal models is essential for maximizing the translation of their potential to the clinic, as well as for developing putative anti-inflammatory neuroprotective agents. This study was aimed to compare activation patterns of microglia/macrophage population and systemic inflammation indices in rats with 6-Hydroxydopamine (6-OHDA)- and Lipopolysaccharide (LPS)-induced PD. Metabolic and phenotypic characteristics of microglia/macrophage population were examined by flow cytometry, systemic inflammatory markers were calculated using hematological parameters in 6-OHDA- and LPS-lesioned Wistar rats 29 days after the surgery. Microglia/macrophages from rats in both models exhibited pro-inflammatory metabolic shift. Nevertheless, in LPS-lesioned animals, highly increased proportion of CD80/86+ cells in microglia/macrophage population was registered alongside increased values of systemic inflammatory indices: neutrophil to lymphocyte ratio (NLR), derived neutrophil to lymphocyte ratio (dNLR), platelet to lymphocyte ratio and systemic immune inflammation index (SII). There was significant positive correlation between the count of CD80/86+ cells and systemic inflammatory indices in these animals. Microglia/macrophages from 6-OHDA-lesioned rats were characterized by the increased fraction of CD206+ cells alongside decreased proportion of CD80/86+ cells. No signs of systemic inflammation were observed. Negative correlation between quantitation characteristics of CD80/86+ cells and values of systemic inflammatory indices was registered. Collectively, our data show that LPS-PD model unlike 6-OHDA-PD replicates crosstalk between local and systemic inflammatory responses, which is inherent in PD pathogenesis and pathophysiology.
Collapse
Affiliation(s)
- Zhanna Oliynyk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
| | - Mariia Rudyk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
- Corresponding author. Microbiology and Immunology Department, ESC “Institute of Biology and Medicine”, Taras Shevchenko Kyiv National University, Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine.
| | - Taisa Dovbynchuk
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
| | - Nataliia Dzubenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
| | - Ganna Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko University of Kyiv, 4g, Hlushkova Avenue, Kyiv, 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2, Hlushkov Avenue, Kyiv, 03022, Ukraine
| |
Collapse
|
24
|
Dermitzakis I, Theotokis P, Evangelidis P, Delilampou E, Evangelidis N, Chatzisavvidou A, Avramidou E, Manthou ME. CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease. Curr Issues Mol Biol 2023; 45:4285-4300. [PMID: 37232741 PMCID: PMC10217436 DOI: 10.3390/cimb45050272] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Being immune privileged, the central nervous system (CNS) is constituted by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while being phenotypically and functionally distinct from microglial cells. Although the ontogeny of microglia has been largely determined, BAMs need comparable scrutiny as they have been recently discovered and have not been thoroughly explored. Newly developed techniques have transformed our understanding of BAMs, revealing their cellular heterogeneity and diversity. Recent data showed that BAMs also originate from yolk sac progenitors instead of bone marrow-derived monocytes, highlighting the absolute need to further investigate their repopulation pattern in adult CNS. Shedding light on the molecular cues and drivers orchestrating BAM generation is essential for delineating their cellular identity. BAMs are receiving more attention since they are gradually incorporated into neurodegenerative and neuroinflammatory disease evaluations. The present review provides insights towards the current understanding regarding the ontogeny of BAMs and their involvement in CNS diseases, paving their way into targeted therapeutic strategies and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (P.T.); (P.E.); (E.D.); (N.E.); (A.C.); (E.A.)
| |
Collapse
|
25
|
Alassaf M, Rajan A. Diet-Induced Glial Insulin Resistance Impairs The Clearance Of Neuronal Debris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531940. [PMID: 36945507 PMCID: PMC10028983 DOI: 10.1101/2023.03.09.531940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Obesity significantly increases the risk of developing neurodegenerative disorders, yet the precise mechanisms underlying this connection remain unclear. Defects in glial phagocytic function are a key feature of neurodegenerative disorders, as delayed clearance of neuronal debris can result in inflammation, neuronal death, and poor nervous system recovery. Mounting evidence indicates that glial function can affect feeding behavior, weight, and systemic metabolism, suggesting that diet may play a role in regulating glial function. While it is appreciated that glial cells are insulin sensitive, whether obesogenic diets can induce glial insulin resistance and thereby impair glial phagocytic function remains unknown. Here, using a Drosophila model, we show that a chronic obesogenic diet induces glial insulin resistance and impairs the clearance of neuronal debris. Specifically, obesogenic diet exposure downregulates the basal and injury-induced expression of the glia-associated phagocytic receptor, Draper. Constitutive activation of systemic insulin release from Drosophila Insulin-producing cells (IPCs) mimics the effect of diet-induced obesity on glial draper expression. In contrast, genetically attenuating systemic insulin release from the IPCs rescues diet-induced glial insulin resistance and draper expression. Significantly, we show that genetically stimulating Phosphoinositide 3-kinase (PI3K), a downstream effector of Insulin receptor signaling, rescues HSD-induced glial defects. Hence, we establish that obesogenic diets impair glial phagocytic function and delays the clearance of neuronal debris.
Collapse
|
26
|
Drug-induced microglial phagocytosis in multiple sclerosis and experimental autoimmune encephalomyelitis and the underlying mechanisms. Mol Biol Rep 2023; 50:749-759. [PMID: 36309614 DOI: 10.1007/s11033-022-07968-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023]
Abstract
Microglia are resident macrophages of the central nervous system (CNS). It plays a significant role in immune surveillance under physiological conditions. On stimulation by pathogens, microglia change their phenotypes, phagocytize toxic molecules, secrete pro-inflammatory/anti-inflammatory factors, promotes tissue repair, and maintain the homeostasis in CNS. Accumulation of myelin debris in multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE) inhibits remyelination by decreasing the phagocytosis by microglia and prevent the recovery of MS/EAE. Drug induced microglia phagocytosis could be a novel therapeutic intervention for the treatment of MS/EAE. But the abnormal phagocytosis of neurons and synapses by activated microglia will lead to neuronal damage and degeneration. It indicates that the phagocytosis of microglia has many beneficial and harmful effects in central neurodegenerative diseases. Therefore, simply promoting or inhibiting the phagocytic activity of microglia may not achieve ideal therapeutic results. However, limited reports are available to elucidate the microglia mediated phagocytosis and its underlying molecular mechanisms. On this basis, the present review describes microglia-mediated phagocytosis, drug-induced microglia phagocytosis, molecular mechanism, and novel approach for MS/EAE treatment.
Collapse
|
27
|
Bartra C, Irisarri A, Villoslada A, Corpas R, Aguirre S, García-Lara E, Suñol C, Pallàs M, Griñán-Ferré C, Sanfeliu C. Neuroprotective Epigenetic Changes Induced by Maternal Treatment with an Inhibitor of Soluble Epoxide Hydrolase Prevents Early Alzheimer's Disease Neurodegeneration. Int J Mol Sci 2022; 23:ijms232315151. [PMID: 36499477 PMCID: PMC9740580 DOI: 10.3390/ijms232315151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Modulation of Alzheimer's disease (AD) risk begins early in life. During embryo development and postnatal maturation, the brain receives maternal physiological influences and establishes epigenetic patterns that build its level of resilience to late-life diseases. The soluble epoxide hydrolase inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl] urea (TPPU), reported as ant-inflammatory and neuroprotective against AD pathology in the adult 5XFAD mouse model of AD, was administered to wild-type (WT) female mice mated to heterozygous 5XFAD males during gestation and lactation. Two-month-old 5XFAD male and female offspring of vehicle-treated dams showed memory loss as expected. Remarkably, maternal treatment with TPPU fully prevented memory loss in 5XFAD. TPPU-induced brain epigenetic changes in both WT and 5XFAD mice, modulating global DNA methylation (5-mC) and hydroxymethylation (5-hmC) and reducing the gene expression of some histone deacetylase enzymes (Hdac1 and Hdac2), might be on the basis of the long-term neuroprotection against cognitive impairment and neurodegeneration. In the neuropathological analysis, both WT and 5XFAD offspring of TPPU-treated dams showed lower levels of AD biomarkers of tau hyperphosphorylation and microglia activation (Trem2) than the offspring of vehicle-treated dams. Regarding sex differences, males and females were similarly protected by maternal TPPU, but females showed higher levels of AD risk markers of gliosis and neurodegeneration. Taken together, our results reveal that maternal treatment with TPPU impacts in preventing or delaying memory loss and AD pathology by inducing long-term modifications in the epigenetic machinery and its marks.
Collapse
Affiliation(s)
- Clara Bartra
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alba Irisarri
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, 08028 Barcelona, Spain
| | - Ainhoa Villoslada
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
| | - Rubén Corpas
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Samuel Aguirre
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, 08028 Barcelona, Spain
| | - Elisa García-Lara
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cristina Suñol
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, 08028 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, 08028 Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Coral Sanfeliu
- Institut d′Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Científicas (CSIC), 08036 Barcelona, Spain
- Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-363-8338
| |
Collapse
|
28
|
Barragán-Álvarez CP, Flores-Fernandez JM, Hernández-Pérez OR, Ávila-Gónzalez D, Díaz NF, Padilla-Camberos E, Dublan-García O, Gómez-Oliván LM, Diaz-Martinez NE. Recent advances in the use of CRISPR/Cas for understanding the early development of molecular gaps in glial cells. Front Cell Dev Biol 2022; 10:947769. [PMID: 36120556 PMCID: PMC9479146 DOI: 10.3389/fcell.2022.947769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Glial cells are non-neuronal elements of the nervous system (NS) and play a central role in its development, maturation, and homeostasis. Glial cell interest has increased, leading to the discovery of novel study fields. The CRISPR/Cas system has been widely employed for NS understanding. Its use to study glial cells gives crucial information about their mechanisms and role in the central nervous system (CNS) and neurodegenerative disorders. Furthermore, the increasingly accelerated discovery of genes associated with the multiple implications of glial cells could be studied and complemented with the novel screening methods of high-content and single-cell screens at the genome-scale as Perturb-Seq, CRISP-seq, and CROPseq. Besides, the emerging methods, GESTALT, and LINNAEUS, employed to generate large-scale cell lineage maps have yielded invaluable information about processes involved in neurogenesis. These advances offer new therapeutic approaches to finding critical unanswered questions about glial cells and their fundamental role in the nervous system. Furthermore, they help to better understanding the significance of glial cells and their role in developmental biology.
Collapse
Affiliation(s)
- Carla Patricia Barragán-Álvarez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| | - José Miguel Flores-Fernandez
- Departamento de Investigación e Innovación, Universidad Tecnológica de Oriental, Oriental, Mexico
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | - Daniela Ávila-Gónzalez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, México City, Mexico
| | - Nestor Fabian Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, México City, Mexico
| | - Eduardo Padilla-Camberos
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| | - Octavio Dublan-García
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Toluca, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Toluca, México
| | - Nestor Emmanuel Diaz-Martinez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
29
|
Bezsonov EE, Gratchev A, Orekhov AN. Macrophages in Health and Non-Infectious Disease 2.0. Biomedicines 2022; 10:biomedicines10061215. [PMID: 35740237 PMCID: PMC9219829 DOI: 10.3390/biomedicines10061215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia
- Department of Biology and General Genetics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8 Izmailovsky Boulevard, 105043 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| | - Alexei Gratchev
- N.N. Blokhin Cancer Research Center, Institute of Carcinogenesis, 115478 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418 Moscow, Russia
- Correspondence: (E.E.B.); (A.N.O.)
| |
Collapse
|
30
|
LONG-TERM EFFECTS OF SHAM SURGERY ON PHAGOCYTE FUNCTIONS IN RATS. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Animal models of inflammatory disorders, including those of the nervous system are commonly used to explore the pathophysiological role of immune cell response in disease triggering and course and to develop biotechnology products for therapeutic use. Modeling some of these disorders, particularly neurodegenerative diseases, implies surgical manipulations for the intracerebral introduction of disease-initiating substances (toxins, amyloids etc.). Design of these experiments involves the use of sham-operated animals as a control of non-specific intrinsic side-effects elicited by surgical manipulations per se, including local and systemic inflammation, where phagocytic cells are key participants. Short-term post-surgical immunomodulatory effects are widely reported. However, no study thus far has examined the long term effects of sham-surgery on phagocyte functions. The purpose of this study was to evaluate the effect of sham-surgery, commonly used for modeling neurodegenerative diseases, on phagocyte functions in the far terms after the surgical manipulations. Materials and Methods. Adult male Wistar rats were used in the study. Sham surgery consisted of stereotactic unilateral injection of saline solution into the median forebrain bundle (sham-operated 1, SO1) or directly into the substantia nigra (sham-operated 2, SO2). Before the placebo surgery, animals were anaesthetized using nembutal and ketamine/xylazine correspondingly. Functional characteristics (phagocytic activity, oxidative metabolism, CD80/86 and CD206 expression) of phagocytes (microglia, peritoneal macrophages, circulating monocytes and granulocytes) were examined by flow cytometry. Differential leukocyte count was conducted using hematological analyzer. Results. Phagocytes from animals underwent of different protocols of placebo surgery, demonstrated various patterns of functional changes on day 29 after the manipulations. In animals from SO1 group, we observed signs of residual neuroinflammation (pro-inflammatory shift of microglia functional profile) along with ongoing resolution of systemic inflammation (anti-inflammatory metabolic shift of circulating phagocytes and peritoneal macrophages). In rats from SO2 group, pro-inflammatory polarized activation of peritoneal phagocytes was registered along with anti-inflammatory shift in microglia and circulating phagocytes. Conclusions. Sham surgery influences functions of phagocytic cells of different locations even in the far terms after the manipulations. These effects can be considered as combined long-term consequences of surgical brain injury and the use of anesthetics. Our observations evidences, that sham associated non-specific immunomodulatory effects should always be taken into consideration in animal models of inflammatory central nervous system diseases.
Collapse
|
31
|
Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022; 12:biom12030371. [PMID: 35327563 PMCID: PMC8945730 DOI: 10.3390/biom12030371] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s and Parkinson’s diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer’s disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aβ) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley Payne
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA;
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
- Correspondence: ; Tel.: +1850-322-8788
| |
Collapse
|
32
|
C-Reactive Protein as a Biomarker for Major Depressive Disorder? Int J Mol Sci 2022; 23:ijms23031616. [PMID: 35163538 PMCID: PMC8836046 DOI: 10.3390/ijms23031616] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The etiopathogenesis of depression is not entirely understood. Several studies have investigated the role of inflammation in major depressive disorder. The present work aims to review the literature on the association between C-Reactive Protein (CRP) and depression. A systematic review was performed for the topics of ‘CRP’ and ‘depression’ using the PubMed database from inception to December 2021. Fifty-six studies were identified and included in the review. Evidence suggested the presence of dysregulation in the inflammation system in individuals with depression. In most studies, higher blood CRP levels were associated with greater symptom severity, a specific pattern of depressive symptoms, and a worse response to treatment. Moreover, about one-third of depressed patients showed a low-grade inflammatory state, suggesting the presence of a different major depressive disorder (MDD) subgroup with a distinct etiopathogenesis, clinical course, treatment response, and prognosis, which could benefit from monitoring of CRP levels and might potentially respond to anti-inflammatory treatments. This work provides robust evidence about the potential role of CRP and its blood levels in depressive disorders. These findings can be relevant to developing new therapeutic strategies and better understanding if CRP may be considered a valuable biomarker for depression.
Collapse
|
33
|
Wang Q, Ma M, Yu H, Yu H, Zhang S, Li R. Mirtazapine prevents cell activation, inflammation, and oxidative stress against isoflurane exposure in microglia. Bioengineered 2022; 13:521-530. [PMID: 34964706 PMCID: PMC8805817 DOI: 10.1080/21655979.2021.2009971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Mirtazapine is an antidepressant drug that has been proven to possess a cognitive enhancer efficiency. In this study, we evaluated the potential protective effects of mirtazapine on BV2 microglia in response to isoflurane exposure. Our results show that mirtazapine attenuated isoflurane-induced expression of microglia-specific protein Iba1 in BV2 microglia. Mirtazapine prevented isoflurane-induced production of the pro-inflammatory factors interleukin (IL)-1β and IL-18 by inhibiting the activation of the nod-like receptor family protein 3 (NLRP3) inflammasome in BV2 microglia. The increased reactive oxygen species (ROS) production and elevated expression level of NADPH oxidase 4 (NOX4) in isoflurane-induced BV2 microglia were mitigated by mirtazapine. Isoflurane exposure reduced triggering receptor expressed on myeloid cells 2 (TREM2) expression in BV2 microglia, which was restored by mirtazapine. Moreover, silencing of TREM2 abolished the inhibitory effects of mirtazapine on ionized calcium-binding adapter molecule 1 (Iba1) expression and inflammation in BV2 microglia. From these results, we could infer that mirtazapine exerted a protective effect on BV2 microglia against isoflurane exposure-caused microglia activation, neuroinflammation, and oxidative stress via inducing TREM2 activation. Hence, mirtazapine might be a potential intervention strategy to prevent isoflurane exposure-caused cognitive dysfunction in clinical practice.
Collapse
Affiliation(s)
- Qi Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Meina Ma
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hong Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hongmei Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Shuai Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rui Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|