1
|
Pabon A, Bhupana JN, Wong CO. Crosstalk between degradation and bioenergetics: how autophagy and endolysosomal processes regulate energy production. Neural Regen Res 2025; 20:671-681. [PMID: 38886933 PMCID: PMC11433889 DOI: 10.4103/nrr.nrr-d-23-02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation.
Collapse
Affiliation(s)
- Angelid Pabon
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | | | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
2
|
Lazzeri G, Lenzi P, Signorini G, Raffaelli S, Giammattei E, Natale G, Ruffoli R, Fornai F, Ferrucci M. Retinoic Acid Promotes Neuronal Differentiation While Increasing Proteins and Organelles Related to Autophagy. Int J Mol Sci 2025; 26:1691. [PMID: 40004155 PMCID: PMC11855701 DOI: 10.3390/ijms26041691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Retinoic acid (RA) is commonly used to differentiate SH-SY5Y neuroblastoma cells. This effect is sustained by a specific modulation of gene transcription, leading to marked changes in cellular proteins. In this scenario, autophagy may be pivotal in balancing protein synthesis and degradation. The present study analyzes whether some autophagy-related proteins and organelles are modified during RA-induced differentiation of SH-SY5Y cells. RA-induced effects were compared to those induced by starvation. SH-SY5Y cells were treated with a single dose of 10 µM RA or grown in starvation, for 3 days or 7 days. After treatments, cells were analyzed at light microscopy and transmission electron microscopy to assess cell morphology and immunostaining for specific markers (nestin, βIII-tubulin, NeuN) and some autophagy-related proteins (Beclin 1, LC3). We found that both RA and starvation differentiate SH-SY5Y cells. Specifically, cell differentiation was concomitant with an increase in autophagy proteins and autophagy-related organelles. However, the effects of a single dose of 10 μM RA persist for at least 7 days, while prolonged starvation produces cell degeneration and cell loss. Remarkably, the effects of RA are modulated in the presence of autophagy inhibitors or stimulators. The present data indicate that RA-induced differentiation is concomitant with an increased autophagy.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Giulia Signorini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Sara Raffaelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Elisa Giammattei
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Riccardo Ruffoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
- IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.L.); (P.L.); (G.S.); (S.R.); (E.G.); (G.N.); (R.R.); (F.F.)
| |
Collapse
|
3
|
Fan S, Dong S, Yao W, Zhang Y, Fan M, Feng S, Wu C, Zhang L, Yi C. Mec1-mediated Atg9 phosphorylation regulates the PAS recruitment of Atg9 vesicles upon energy stress. Proc Natl Acad Sci U S A 2025; 122:e2422582122. [PMID: 39913206 PMCID: PMC11831128 DOI: 10.1073/pnas.2422582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/08/2025] [Indexed: 02/19/2025] Open
Abstract
Mec1 plays an essential role in both the DNA damage response and glucose starvation-induced autophagy. We recently reported that Mec1 regulates glucose starvation-induced autophagy through its direct binding to Atg13. However, the role of Mec1's kinase activity in autophagy remains unclear. In this study, we demonstrate that the kinase activity of Mec1 is required for glucose starvation-induced autophagy by regulating the phagophore assembly site (PAS) recruitment of Atg9 vesicles. Mechanistic and functional analyses identified Atg9 as a direct phosphorylation substrate of Mec1, with phosphorylation occurring at the S35, T203, and T243 sites. Mutations at these sites reduce the association of Atg9 with Atg17, Atg23, and Atg27, thereby impairing the PAS recruitment of Atg9 vesicles. Notably, we found that the Mec1-Atg13 binding is a prerequisite for the phosphorylation of Atg9 by Mec1. Furthermore, Mec1-mediated phosphorylation of Atg9 is also crucial for the PAS recruitment of Atg9 vesicles in response to DNA damage. We thus propose that Mec1's kinase activity regulates the PAS recruitment of Atg9 vesicles by phosphorylating Atg9 in response to energy stress and DNA damage.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Shuling Dong
- Biology Department, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou313000, China
| | - Weijing Yao
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Yi Zhang
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Mingzhu Fan
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou310030, China
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou310030, China
| | - Choufei Wu
- Biology Department, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou313000, China
| | - Liqin Zhang
- Biology Department, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou313000, China
| | - Cong Yi
- Department of Biochemistry and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310058, China
| |
Collapse
|
4
|
He C, He J. Metabolic reprogramming and signaling adaptations in anoikis resistance: mechanisms and therapeutic targets. Mol Cell Biochem 2025:10.1007/s11010-024-05199-3. [PMID: 39821582 DOI: 10.1007/s11010-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix (ECM), maintains tissue homeostasis by removing mislocalized or detached cells. Cancer cells, however, have evolved multiple mechanisms to evade anoikis under conditions of ECM detachment, enabling survival and distant metastasis. Studies have identified differentially expressed proteins between suspended and adherent cancer cells, revealing that key metabolic and signaling pathways undergo significant alterations during the acquisition of anoikis resistance. This review explores the regulatory roles of epithelial-mesenchymal transition, cancer stem cell characteristics, metabolic reprogramming, and various signaling pathway alterations in promoting anoikis resistance. And the corresponding reagents and non-coding RNAs that target the aforementioned pathways are reviewed. By discussing the regulatory mechanisms that facilitate anoikis resistance in cancer cells, this review aims to shed light on potential strategies for inhibiting tumor progression and preventing metastasis.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of Nursing, Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Zakaria SS, Hanafy SM. Unraveling the Beneficial Role of Resveratrol in Fructose-Induced Non-Alcoholic Steatohepatitis with a Focus on the AMPK/Nrf2 Signaling Axis. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:139. [PMID: 39859121 PMCID: PMC11767180 DOI: 10.3390/medicina61010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: High fructose intake is associated with non-alcoholic fatty liver disease (NAFLD), a chronic liver disease that is on the rise worldwide. New alternatives for treatment, such as bioactive phytochemicals, are needed. The aim of this study was to investigate the beneficial role of resveratrol in treating non-alcoholic steatohepatitis (NASH). Materials and Methods: Sixty male albino rats were allocated to three groups: group I, the normal control group; group II, the fructose-enriched diet group (FED), which was fed a 70% fructose diet for six weeks to induce NASH; and group III, the resveratrol-FED group (RES + FED), which was given the same FED diet plus an oral dose of 70 mg/kg resveratrol (RES) every day for an additional six weeks. We performed histological evaluations and assessed blood lipids and liver enzymes to study resveratrol's impact on NASH. Quantitative real-time PCR was used to assess the mRNA expression of nuclear factor E2-related factor 2 (Nrf2) in the liver samples. ELISA was used to measure Beclin 1, AMPK, IL-6, and the DNA-binding activity of Nrf2. Oxidative stress indicators, including GSH, SOD, and MDA, were evaluated spectrophotometrically. Results: Resveratrol effectively alleviated the biochemical and histopathological abnormalities associated with NASH, improving autophagy by raising Beclin 1 levels while reducing inflammation by decreasing IL-6 levels. Furthermore, resveratrol restored the liver architecture and the oxidative balance, as evidenced by the decreased MDA levels and improved antioxidant status via elevated GSH and SOD activities, as well as the activation of the AMPK/Nrf2 signaling axis. Conclusions: This study specifically examines resveratrol's therapeutic effects in a high-fructose diet-induced NASH model, focusing on the AMPK/Nrf2 signaling pathway to address oxidative stress and autophagy, providing novel insights into its molecular mechanism of action. Resveratrol reduces NASH by boosting autophagy and activating the AMPK/Nrf2 pathway. These findings underscore the potential of resveratrol as a promising therapeutic agent that can support treatment alongside conventional medications in the management of non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Soha S. Zakaria
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Safaa M. Hanafy
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| |
Collapse
|
6
|
Şansaçar M, Gencer Akçok EB. Measurement of Autophagic Activity in Cancer Cells with Flow Cytometric Analysis Using Cyto-ID Staining. Methods Mol Biol 2025; 2879:219-224. [PMID: 38446407 DOI: 10.1007/7651_2024_526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Autophagy is an evolutionarily conserved process providing the energy that cells need to survive, especially in stress situations, through catabolic processes. Considering the dual role of autophagy in cancer cells depending on the cellular context, it is crucial to comprehend the effect of drug candidates put forward to prevent cancer through the autophagy pathway. The CYTO-ID® Autophagy Detection Kit allows a rapid, specific and quantitative measurement of autophagic activity at the cellular level using a 488 nm-excitable green fluorescent detection reagent via flow cytometer. In this chapter, we present the CYTO-ID® Autophagy Detection method with a stepwise protocol to monitor the autophagy flux after the application of any compound to suspension cancer cell lines with flow cytometric analysis.
Collapse
Affiliation(s)
- Merve Şansaçar
- Graduate School of Engineering and Science, Department of Bioengineering, Abdullah Gul University, Kayseri, Turkey
- Faculty of Engineering, Department of Genetic and Bioengineering, Alanya Alaaddin Keykubat University, Alanya, Antalya, Turkey
| | - Emel Başak Gencer Akçok
- Faculty of Life and Natural Sciences, Department of Molecular Biology and Genetics, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
7
|
Sharma R, Kour A, Dewangan HK. Enhancements in Parkinson's Disease Management: Leveraging Levodopa Optimization and Surgical Breakthroughs. Curr Drug Targets 2025; 26:17-32. [PMID: 39350551 DOI: 10.2174/0113894501319817240919103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 02/19/2025]
Abstract
Parkinson's disease (PD) is a complex neurological condition caused due to inheritance, environment, and behavior among various other parameters. The onset, diagnosis, course of therapy, and future of PD are thoroughly examined in this comprehensive review. This review also presents insights into pathogenic mechanisms of reactive microgliosis, Lewy bodies, and their functions in the evolution of PD. It addresses interaction complexity with genetic mutations, especially in genes such as UCH-L1, parkin, and α-synuclein, which illuminates changes in the manner dopaminergic cells handle proteins and use proteases. This raises the improved outcomes and life quality for those with PD. Potential treatments for severe PD include new surgical methods like Deep Brain Stimulation (DBS). Further, exploration of non-motor manifestations, such as cognitive impairment, autonomic dysfunction, and others, is covered in this review article. These symptoms have a significant impact on patients' quality of life. Furthermore, one of the emerging therapeutic routes that are being investigated is neuroprotective medicines that aim to prevent the aggregation of α-synuclein and interventions that modify the progression of diseases. The review concludes by stressing the dynamic nature of PD research and the potential game-changing impact of precision medicines on current approaches to therapy.
Collapse
Affiliation(s)
- Ritika Sharma
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Avneet Kour
- Chitkara College of Pharmacy, Chitkara University, Punjab-140401, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
8
|
Wang HD, Lv CL, Feng L, Guo JX, Zhao SY, Jiang P. The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions. Heliyon 2024; 10:e38959. [PMID: 39524893 PMCID: PMC11546156 DOI: 10.1016/j.heliyon.2024.e38959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Effective management of cellular components is essential for maintaining brain health, and studies have identified several crucial biological processes in the brain. Among these, autophagy and the role of exosomes in cellular communication are critical for brain health and disease. The interaction between autophagy and exosomes in the nervous system, as well as their contributions to brain damage, have garnered significant attention. This review summarizes that exosomes and their cargoes have been implicated in the autophagy process in the pathophysiology of nervous system diseases. Furthermore, the onset and progression of neurological disorders may be affected by autophagy regulation of the secretion and release of exosomes. These findings may provide new insights into the potential mechanism by which autophagy mediates different exosome secretion and release, as well as the valuable biomedical applications of exosomes in the prevention and treatment of various brain diseases by targeting autophagy.
Collapse
Affiliation(s)
- Hai-Dong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/Nanjing Medical University Kangda College First Affiliated Hospital/The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Chao-Liang Lv
- Department of Spine Surgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jin-Xiu Guo
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Shi-Yuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
9
|
Quiniou G, Andromaque L, Duclaux-Loras R, Dinet O, Cervantes O, Verdet M, Meunier C, Boschetti G, Viret C, Nancey S, Faure M, Rozières A. Impaired reprogramming of the autophagy flux in maturing dendritic cells from crohn disease patients with core autophagy gene-related polymorphisms. Autophagy 2024; 20:1837-1853. [PMID: 38615686 PMCID: PMC11262231 DOI: 10.1080/15548627.2024.2338574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Crohn disease (CD) is an inflammatory bowel disease whose pathogenesis involves inappropriate immune responses toward gut microbiota on genetically predisposed backgrounds. Notably, CD is associated with single-nucleotide polymorphisms affecting several genes involved in macroautophagy/autophagy, the catabolic process that ensures the degradation and recycling of cytosolic components and microorganisms. In a clinical translation perspective, monitoring the autophagic activity of CD patients will require some knowledge on the intrinsic functional status of autophagy. Here, we focused on monocyte-derived dendritic cells (DCs) to characterize the intrinsic quantitative features of the autophagy flux. Starting with DCs from healthy donors, we documented a reprogramming of the steady state flux during the transition from the immature to mature status: both the autophagosome pool size and the flux were diminished at the mature stage while the autophagosome turnover remained stable. At the cohort level, DCs from CD patients were comparable to control in term of autophagy flux reprogramming capacity. However, the homozygous presence of ATG16L1 rs2241880 A>G (T300A) and ULK1 rs12303764 (G/T) polymorphisms abolished the capacity of CD patient DCs to reprogram their autophagy flux during maturation. This effect was not seen in the case of CD patients heterozygous for these polymorphisms, revealing a gene dose dependency effect. In contrast, the NOD2 rs2066844 c.2104C>T (R702W) polymorphism did not alter the flux reprogramming capacity of DCs. The data, opening new clinical translation perspectives, indicate that polymorphisms affecting autophagy-related genes can differentially influence the capacity of DCs to reprogram their steady state autophagy flux when exposed to proinflammatory challenges.Abbreviation: BAFA1: bafilomycin A1, CD: Crohn disease; DC: dendritic cells; HD: healthy donor; iDCs: immature DCs; IL: interleukin; J: autophagosome flux; LPS: lipopolysaccharide; MHC: major histocompatibility complex; nA: autophagosome pool size; SNPs: single-nucleotide polymorphisms; PCA: principal component analysis; TLR: toll like receptor; τ: transition time; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Gaëlle Quiniou
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Leslie Andromaque
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Océane Dinet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Ornella Cervantes
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Mallorie Verdet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Camille Meunier
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
10
|
Montagnani Marelli M, Macchi C, Ruscica M, Sartori P, Moretti RM. Anticancer Activity of Delta-Tocotrienol in Human Hepatocarcinoma: Involvement of Autophagy Induction. Cancers (Basel) 2024; 16:2654. [PMID: 39123382 PMCID: PMC11311296 DOI: 10.3390/cancers16152654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
(1) Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer. Surgical resection, tumor ablation, and liver transplantation are curative treatments indicated for early-stage HCC. The management of intermediate and advanced stages of pathology is based on the use of systemic therapies which often show important side effects. Vitamin E-derivative tocotrienols (TTs) play antitumoral properties in different tumors. Here, we analyzed the activity of delta-TT (δ-TT) on HCC human cell lines. (2) We analyzed the ability of δ-TT to trigger apoptosis, to induce oxidative stress, autophagy, and mitophagy in HepG2 cell line. We evaluated the correlation between the activation of autophagy with the ability of δ-TT to induce cell death. (3) The data obtained demonstrate that δ-TT exerts an antiproliferative and proapoptotic effect in HCC cells. Furthermore, δ-TT induces the release of mitochondrial ROS and causes a structural and functional alteration of the mitochondria compatible with a fission process. Finally, δ-TT triggers selective autophagy process removing dysfunctional mitochondria. Inhibition of autophagy reversed the cytotoxic action of δ-TT. (4) Our results demonstrate that δ-TT through the activation of autophagy could represent a potential new approach in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
- Department of Cardio-Thoracic-Vascular Diseases-Foundation, IRCCS Cà Granda Ospedale Maggiore Policlinico, 20162 Milan, Italy
| | - Patrizia Sartori
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (M.R.); (R.M.M.)
| |
Collapse
|
11
|
Al-Kuraishy HM, Sulaiman GM, Jabir MS, Mohammed HA, Al-Gareeb AI, Albukhaty S, Klionsky DJ, Abomughaid MM. Defective autophagy and autophagy activators in myasthenia gravis: a rare entity and unusual scenario. Autophagy 2024; 20:1473-1482. [PMID: 38346408 PMCID: PMC11210922 DOI: 10.1080/15548627.2024.2315893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Majid S. Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
| | | | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
12
|
Yao W, Feng Y, Zhang Y, Yang H, Yi C. The molecular mechanisms regulating the assembly of the autophagy initiation complex. Bioessays 2024; 46:e2300243. [PMID: 38593284 DOI: 10.1002/bies.202300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
The autophagy initiation complex is brought about via a highly ordered and stepwise assembly process. Two crucial signaling molecules, mTORC1 and AMPK, orchestrate this assembly by phosphorylating/dephosphorylating autophagy-related proteins. Activation of Atg1 followed by recruitment of both Atg9 vesicles and the PI3K complex I to the PAS (phagophore assembly site) are particularly crucial steps in its formation. Ypt1, a small Rab GTPase in yeast cells, also plays an essential role in the formation of the autophagy initiation complex through multiple regulatory pathways. In this review, our primary focus is to discuss how signaling molecules initiate the assembly of the autophagy initiation complex, and highlight the significant roles of Ypt1 in this process. We end by addressing issues that need future clarification.
Collapse
Affiliation(s)
- Weijing Yao
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyao Feng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yi Zhang
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Yang
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Gambari R, Finotti A. Therapeutic Relevance of Inducing Autophagy in β-Thalassemia. Cells 2024; 13:918. [PMID: 38891049 PMCID: PMC11171814 DOI: 10.3390/cells13110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The β-thalassemias are inherited genetic disorders affecting the hematopoietic system. In β-thalassemias, more than 350 mutations of the adult β-globin gene cause the low or absent production of adult hemoglobin (HbA). A clinical parameter affecting the physiology of erythroid cells is the excess of free α-globin. Possible experimental strategies for a reduction in excess free α-globin chains in β-thalassemia are CRISPR-Cas9-based genome editing of the β-globin gene, forcing "de novo" HbA production and fetal hemoglobin (HbF) induction. In addition, a reduction in excess free α-globin chains in β-thalassemia can be achieved by induction of the autophagic process. This process is regulated by the Unc-51-like kinase 1 (Ulk1) gene. The interplay with the PI3K/Akt/TOR pathway, with the activity of the α-globin stabilizing protein (AHSP) and the involvement of microRNAs in autophagy and Ulk1 gene expression, is presented and discussed in the context of identifying novel biomarkers and potential therapeutic targets for β-thalassemia.
Collapse
Affiliation(s)
| | - Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
14
|
Perucho-Jaimes L, Do J, Van Elgort A, Kaplan KB. Septins modulate the autophagy response after nutrient starvation. Mol Biol Cell 2024; 35:ar4. [PMID: 37910217 PMCID: PMC10881159 DOI: 10.1091/mbc.e22-11-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The pathways that induce macroautophagy (referred to as autophagy hereafter) in response to the stress of starvation are well conserved and essential under nutrient-limiting conditions. However, less is understood about the mechanisms that modulate the autophagy response. Here we present evidence that after induction of autophagy in budding yeast septin filaments rapidly assemble into discrete patches distributed along the cell cortex. These patches gradually mature over 12 h of nutrient deprivation to form extended structures around Atg9 membranes tethered at the cortical endoplasmic reticulum, a class of membranes that are limiting for autophagosome biogenesis. Loss of cortical septin structures alters the kinetics of autophagy activation and most dramatically extends the duration of the autophagy response. In wild-type cells, diffusion of Atg9 membranes at the cell cortex undergoes transient pauses that are dependent on septins, and septins at the bud neck block the diffusion of Atg9 membranes between mother and daughter cells. We conclude that septins reorganize at the cell cortex during autophagy to locally limit access of Atg9 membranes to autophagosome assembly sites, and thus modulate the autophagy response during nutrient deprivation.
Collapse
Affiliation(s)
- Luis Perucho-Jaimes
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Jonathan Do
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Alexandria Van Elgort
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Kenneth B. Kaplan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
15
|
Abstract
Studies have found that intermittent fasting (IF) can prevent diabetes, cancer, heart disease, and neuropathy, while in humans it has helped to alleviate metabolic syndrome, asthma, rheumatoid arthritis, Alzheimer's disease, and many other disorders. IF involves a series of coordinated metabolic and hormonal changes to maintain the organism's metabolic balance and cellular homeostasis. More importantly, IF can activate hepatic autophagy, which is important for maintaining cellular homeostasis and energy balance, quality control, cell and tissue remodeling, and defense against extracellular damage and pathogens. IF affects hepatic autophagy through multiple interacting pathways and molecular mechanisms, including adenosine monophosphate (AMP)-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), silent mating-type information regulatory 2 homolog-1 (SIRT1), peroxisomal proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR), as well as signaling pathways and molecular mechanisms such as glucagon and fibroblast growth factor 21 (FGF21). These pathways can stimulate the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), play a cytoprotective role, downregulate the expression of aging-related molecules, and prevent the development of steatosis-associated liver tumors. By influencing the metabolism of energy and oxygen radicals as well as cellular stress response systems, IF protects hepatocytes from genetic and environmental factors. By activating hepatic autophagy, IF has a potential role in treating a variety of liver diseases, including non-alcoholic fatty liver disease, drug-induced liver injury, viral hepatitis, hepatic fibrosis, and hepatocellular carcinoma. A better understanding of the effects of IF on liver autophagy may lead to new approaches for the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Ya-Nan Ma
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
17
|
Takács-Vellai K. Apoptosis and Autophagy, Different Modes of Cell Death: How to Utilize Them to Fight Diseases? Int J Mol Sci 2023; 24:11609. [PMID: 37511366 PMCID: PMC10380540 DOI: 10.3390/ijms241411609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A careful balance between cell death and survival is of key importance when it comes to the maintenance of cellular homeostasis [...].
Collapse
|
18
|
Suzuki T, Komatsu T, Shibata H, Tanioka A, Vargas D, Kawabata-Iwakawa R, Miura F, Masuda S, Hayashi M, Tanimura-Inagaki K, Morita S, Kohmaru J, Adachi K, Tobo M, Obinata H, Hirayama T, Kimura H, Sakai J, Nagasawa H, Itabashi H, Hatada I, Ito T, Inagaki T. Crucial role of iron in epigenetic rewriting during adipocyte differentiation mediated by JMJD1A and TET2 activity. Nucleic Acids Res 2023; 51:6120-6142. [PMID: 37158274 PMCID: PMC10325906 DOI: 10.1093/nar/gkad342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Iron metabolism is closely associated with the pathogenesis of obesity. However, the mechanism of the iron-dependent regulation of adipocyte differentiation remains unclear. Here, we show that iron is essential for rewriting of epigenetic marks during adipocyte differentiation. Iron supply through lysosome-mediated ferritinophagy was found to be crucial during the early stage of adipocyte differentiation, and iron deficiency during this period suppressed subsequent terminal differentiation. This was associated with demethylation of both repressive histone marks and DNA in the genomic regions of adipocyte differentiation-associated genes, including Pparg, which encodes PPARγ, the master regulator of adipocyte differentiation. In addition, we identified several epigenetic demethylases to be responsible for iron-dependent adipocyte differentiation, with the histone demethylase jumonji domain-containing 1A and the DNA demethylase ten-eleven translocation 2 as the major enzymes. The interrelationship between repressive histone marks and DNA methylation was indicated by an integrated genome-wide association analysis, and was also supported by the findings that both histone and DNA demethylation were suppressed by either the inhibition of lysosomal ferritin flux or the knockdown of iron chaperone poly(rC)-binding protein 2. In summary, epigenetic regulations through iron-dependent control of epigenetic enzyme activities play an important role in the organized gene expression mechanisms of adipogenesis.
Collapse
Affiliation(s)
- Tomohiro Suzuki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Hiroshi Shibata
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Akiko Tanioka
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Diana Vargas
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma371-8511, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Shinnosuke Masuda
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Mayuko Hayashi
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Kyoko Tanimura-Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Junki Kohmaru
- Institute for Molecular and Cellular Regulation Joint Usage/Research Support Center, Gunma University, Gunma371-8512, Japan
| | - Koji Adachi
- Kaihin Makuhari Laboratory, PerkinElmer Japan Co., Ltd., Chiba261-8501, Japan
| | - Masayuki Tobo
- Institute for Molecular and Cellular Regulation Joint Usage/Research Support Center, Gunma University, Gunma371-8512, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma371-8511, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu501-1196, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Tokyo Institute of Technology, Kanagawa226-8503, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu501-1196, Japan
| | - Hideyuki Itabashi
- Graduate School of Science and Technology, Gunma University, Gunma376-8515, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research, Gunma371-8511, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| |
Collapse
|
19
|
Zhang X, Dai M, Li S, Li M, Cheng B, Ma T, Zhou Z. The emerging potential role of p62 in cancer treatment by regulating metabolism. Trends Endocrinol Metab 2023:S1043-2760(23)00106-6. [PMID: 37349161 DOI: 10.1016/j.tem.2023.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
p62 is an important multifunctional adaptor protein participating in autophagy and many other activities. Many studies have revealed that p62 is highly expressed in multiple cancers and decreasing its level can effectively lower the proliferation ability of cancer cells. Moreover, much research has highlighted the significant role of the regulation of cancer cell metabolism in helping to treat tumors. Recent reports demonstrate that p62 could regulate cancer cell metabolism through various mechanisms. However, the relationship between p62 and cancer cell metabolism as well as the related mechanisms has not been fully elucidated. In this review, we describe glucose, glutamine, and fatty acid metabolism in tumor cells and some signaling pathways that can regulate cancer metabolism and are mediated by p62.
Collapse
Affiliation(s)
- Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Mengge Dai
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Shaotong Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Cheng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Ma
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Lei Y, Klionsky DJ. Transcriptional regulation of autophagy and its implications in human disease. Cell Death Differ 2023; 30:1416-1429. [PMID: 37045910 PMCID: PMC10244319 DOI: 10.1038/s41418-023-01162-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway that is vital for maintaining cell homeostasis and promoting cell survival under stressful conditions. Dysregulation of autophagy is associated with a variety of human diseases, such as cancer, neurodegenerative diseases, and metabolic disorders. Therefore, this pathway must be precisely regulated at multiple levels, involving epigenetic, transcriptional, post-transcriptional, translational, and post-translational mechanisms, to prevent inappropriate autophagy activity. In this review, we focus on autophagy regulation at the transcriptional level, summarizing the transcription factors that control autophagy gene expression in both yeast and mammalian cells. Because the expression and/or subcellular localization of some autophagy transcription factors are altered in certain diseases, we also discuss how changes in transcriptional regulation of autophagy are associated with human pathophysiologies.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Laribee RN, Boucher AB, Madireddy S, Pfeffer LM. The STAT3-Regulated Autophagy Pathway in Glioblastoma. Pharmaceuticals (Basel) 2023; 16:671. [PMID: 37242454 PMCID: PMC10223172 DOI: 10.3390/ph16050671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy in adults with a dismal prognosis. Despite advances in genomic analysis and surgical technique and the development of targeted therapeutics, most treatment options are ineffective and mainly palliative. Autophagy is a form of cellular self-digestion with the goal of recycling intracellular components to maintain cell metabolism. Here, we describe some recent findings that suggest GBM tumors are more sensitive to the excessive overactivation of autophagy leading to autophagy-dependent cell death. GBM cancer stem cells (GSCs) are a subset of the GBM tumor population that play critical roles in tumor formation and progression, metastasis, and relapse, and they are inherently resistant to most therapeutic strategies. Evidence suggests that GSCs are able to adapt to a tumor microenvironment of hypoxia, acidosis, and lack of nutrients. These findings have suggested that autophagy may promote and maintain the stem-like state of GSCs as well as their resistance to cancer treatment. However, autophagy is a double-edged sword and may have anti-tumor properties under certain conditions. The role of the STAT3 transcription factor in autophagy is also described. These findings provide the basis for future research aimed at targeting the autophagy-dependent pathway to overcome the inherent therapeutic resistance of GBM in general and to specifically target the highly therapy-resistant GSC population through autophagy regulation.
Collapse
Affiliation(s)
- Ronald Nicholas Laribee
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew B. Boucher
- Department of Neurosurgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Saivikram Madireddy
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, The Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
22
|
Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, McGrath MJ. Autophagic lysosome reformation in health and disease. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Randini Nanayakkara
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Samuel J. Rodgers
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
23
|
Cristofani R, Piccolella M, Montagnani Marelli M, Tedesco B, Poletti A, Moretti RM. HSPB8 counteracts tumor activity of BRAF- and NRAS-mutant melanoma cells by modulation of RAS-prenylation and autophagy. Cell Death Dis 2022; 13:973. [PMID: 36400750 PMCID: PMC9674643 DOI: 10.1038/s41419-022-05365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
Cutaneous melanoma is one of the most aggressive and lethal forms of skin cancer. Some specific driver mutations have been described in multiple oncogenes including BRAF and NRAS that are mutated in 60-70% and 15-20% of melanoma, respectively. The aim of this study was to evaluate the role of Small Heat Shock Protein B8 (HSPB8) on cell growth and migration of both BLM (BRAFwt/NRASQ61R) and A375 (BRAFV600E/NRASwt) human melanoma cell lines. HSPB8 is a member of the HSPB family of chaperones involved in protein quality control (PQC) system and contributes to chaperone assisted selective autophagy (CASA) as well as in the regulation of mitotic spindle. In cancer, HSPB8 has anti- or pro-tumoral action depending on tumor type. In melanoma cell lines characterized by low HSPB8 levels, we demonstrated that the restoration of HSPB8 expression causes cell growth arrest, reversion of EMT (Epithelial-Mesenchymal Transition)-like phenotype switching and antimigratory effect, independently from the cell mutational status. We demonstrated that HSPB8 regulates the levels of the active prenylated form of NRAS in NRAS-mutant and NRAS-wild-type melanoma cell lines. Consequently, the inhibition of NRAS impairs the activation of Akt/mTOR pathway inducing autophagy activation. Autophagy can play a dual role in regulating cell death and survival. We have therefore demonstrated that HSPB8-induced autophagy is a crucial event that counteracts cell growth in melanoma. Collectively, our results suggest that HSPB8 has an antitumoral action in melanoma cells characterized by BRAF and NRAS mutations.
Collapse
Affiliation(s)
- Riccardo Cristofani
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Margherita Piccolella
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Barbara Tedesco
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy ,grid.417894.70000 0001 0707 5492Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Angelo Poletti
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
24
|
Abdullah CS, Remex NS, Aishwarya R, Nitu S, Kolluru GK, Traylor J, Hartman B, King J, Bhuiyan MAN, Hall N, Murnane KS, Goeders NE, Kevil CG, Orr AW, Bhuiyan MS. Mitochondrial dysfunction and autophagy activation are associated with cardiomyopathy developed by extended methamphetamine self-administration in rats. Redox Biol 2022; 58:102523. [PMID: 36335762 PMCID: PMC9641018 DOI: 10.1016/j.redox.2022.102523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The recent rise in illicit use of methamphetamine (METH), a highly addictive psychostimulant, is a huge health care burden due to its central and peripheral toxic effects. Mounting clinical studies have noted that METH use in humans is associated with the development of cardiomyopathy; however, preclinical studies and animal models to dissect detailed molecular mechanisms of METH-associated cardiomyopathy development are scarce. The present study utilized a unique very long-access binge and crash procedure of METH self-administration to characterize the sequelae of pathological alterations that occur with METH-associated cardiomyopathy. Rats were allowed to intravenously self-administer METH for 96 h continuous weekly sessions over 8 weeks. Cardiac function, histochemistry, ultrastructure, and biochemical experiments were performed 24 h after the cessation of drug administration. Voluntary METH self-administration induced pathological cardiac remodeling as indicated by cardiomyocyte hypertrophy, myocyte disarray, interstitial and perivascular fibrosis accompanied by compromised cardiac systolic function. Ultrastructural examination and native gel electrophoresis revealed altered mitochondrial morphology and reduced mitochondrial oxidative phosphorylation (OXPHOS) supercomplexes (SCs) stability and assembly in METH exposed hearts. Redox-sensitive assays revealed significantly attenuated mitochondrial respiratory complex activities with a compensatory increase in pyruvate dehydrogenase (PDH) activity reminiscent of metabolic remodeling. Increased autophagy flux and increased mitochondrial antioxidant protein level was observed in METH exposed heart. Treatment with mitoTEMPO reduced the autophagy level indicating the involvement of mitochondrial dysfunction in the adaptive activation of autophagy in METH exposed hearts. Altogether, we have reported a novel METH-associated cardiomyopathy model using voluntary drug seeking behavior. Our studies indicated that METH self-administration profoundly affects mitochondrial ultrastructure, OXPHOS SCs assembly and redox activity accompanied by increased PDH activity that may underlie observed cardiac dysfunction.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Gopi K Kolluru
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nicole Hall
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Kevin Sean Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Psychiatry, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
25
|
Shining Light on Autophagy in Skin Pigmentation and Pigmentary Disorders. Cells 2022; 11:cells11192999. [PMID: 36230960 PMCID: PMC9563738 DOI: 10.3390/cells11192999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a vital process for cell survival and it preserves homeostasis by recycling or disassembling unnecessary or dysfunctional cellular constituents. Autophagy ameliorates skin integrity, regulating epidermal differentiation and constitutive pigmentation. It induces melanogenesis and contributes to skin color through melanosome turnover. Autophagy activity is involved in skin phenotypic plasticity and cell function maintenance and, if altered, it concurs to the onset and/or progression of hypopigmentary and hyperpigmentary disorders. Overexpression of autophagy exerts a protective role against the intrinsic metabolic stress occurring in vitiligo skin, while its dysfunction has been linked to the tuberous sclerosis complex hypopigmentation. Again, autophagy impairment reduces melanosome degradation by concurring to pigment accumulation characterizing senile lentigo and melasma. Here we provide an updated review that describes recent findings on the crucial role of autophagy in skin pigmentation, thus revealing the complex interplay among melanocyte biology, skin environment and autophagy. Hence, targeting this process may also represent a promising strategy for treating pigmentary disorders.
Collapse
|
26
|
Almannai M, Marafi D, El-Hattab AW. WIPI proteins: Biological functions and related syndromes. Front Mol Neurosci 2022; 15:1011918. [PMID: 36157071 PMCID: PMC9500159 DOI: 10.3389/fnmol.2022.1011918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
WIPI (WD-repeat protein Interacting with PhosphoInositides) are important effectors in autophagy. These proteins bind phosphoinositides and recruit autophagy proteins. In mammals, there are four WIPI proteins: WIPI1, WIPI2, WIPI3 (WDR45B), and WIPI4 (WDR45). These proteins consist of a seven-bladed β-propeller structure. Recently, pathogenic variants in genes encoding these proteins have been recognized to cause human diseases with a predominant neurological phenotype. Defects in WIPI2 cause a disease characterized mainly by intellectual disability and variable other features while pathogenic variants in WDR45B and WDR45 have been recently reported to cause El-Hattab-Alkuraya syndrome and beta-propeller protein-associated neurodegeneration (BPAN), respectively. Whereas, there is no disease linked to WIPI1 yet, one study linked it neural tube defects (NTD). In this review, the role of WIPI proteins in autophagy is discussed first, then syndromes related to these proteins are summarized.
Collapse
Affiliation(s)
- Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Mohammed Almannai
| | - Dana Marafi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates
- Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi, United Arab Emirates
| |
Collapse
|
27
|
Zhou Z, He Y, Wang S, Wang Y, Shan P, Li P. Autophagy regulation in teleost fish: A double-edged sword. AQUACULTURE 2022; 558:738369. [DOI: 10.1016/j.aquaculture.2022.738369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Post-Translational Modifications of ATG4B in the Regulation of Autophagy. Cells 2022; 11:cells11081330. [PMID: 35456009 PMCID: PMC9025542 DOI: 10.3390/cells11081330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy plays a key role in eliminating and recycling cellular components in response to stress, including starvation. Dysregulation of autophagy is observed in various diseases, including neurodegenerative diseases, cancer, and diabetes. Autophagy is tightly regulated by autophagy-related (ATG) proteins. Autophagy-related 4 (ATG4) is the sole cysteine protease, and four homologs (ATG4A–D) have been identified in mammals. These proteins have two domains: catalytic and short fingers. ATG4 facilitates autophagy by promoting autophagosome maturation through reversible lipidation and delipidation of seven autophagy-related 8 (ATG8) homologs, including microtubule-associated protein 1-light chain 3 (LC3) and GABA type A receptor-associated protein (GABARAP). Each ATG4 homolog shows a preference for a specific ATG8 homolog. Post-translational modifications of ATG4, including phosphorylation/dephosphorylation, O-GlcNAcylation, oxidation, S-nitrosylation, ubiquitination, and proteolytic cleavage, regulate its activity and ATG8 processing, thus modulating its autophagic activity. We reviewed recent advances in our understanding of the effect of post-translational modification on the regulation, activity, and function of ATG4, the main protease that controls autophagy.
Collapse
|
29
|
Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties. Biomedicines 2022; 10:biomedicines10020514. [PMID: 35203723 PMCID: PMC8962426 DOI: 10.3390/biomedicines10020514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
Collapse
|
30
|
BAG Family Members as Mitophagy Regulators in Mammals. Cells 2022; 11:cells11040681. [PMID: 35203329 PMCID: PMC8870067 DOI: 10.3390/cells11040681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
The BCL-2-associated athanogene (BAG) family is a multifunctional group of co-chaperones that are evolutionarily conserved from yeast to mammals. In addition to their common BAG domain, these proteins contain, in their sequences, many specific domains/motifs required for their various functions in cellular quality control, such as autophagy, apoptosis, and proteasomal degradation of misfolded proteins. The BAG family includes six members (BAG1 to BAG6). Recent studies reported their roles in autophagy and/or mitophagy through interaction with the autophagic machinery (LC3, Beclin 1, P62) or with the PINK1/Parkin signaling pathway. This review describes the mechanisms underlying BAG family member functions in autophagy and mitophagy and the consequences in physiopathology.
Collapse
|
31
|
Lei Y, Huang Y, Wen X, Yin Z, Zhang Z, Klionsky DJ. How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Antioxidants (Basel) 2022; 11:antiox11020304. [PMID: 35204187 PMCID: PMC8868404 DOI: 10.3390/antiox11020304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic cells frequently experience fluctuations of the external and internal environments, such as changes in nutrient, energy and oxygen sources, and protein folding status, which, after reaching a particular threshold, become a type of stress. Cells develop several ways to deal with these various types of stress to maintain homeostasis and survival. Among the cellular survival mechanisms, autophagy is one of the most critical ways to mediate metabolic adaptation and clearance of damaged organelles. Autophagy is maintained at a basal level under normal growing conditions and gets stimulated by stress through different but connected mechanisms. In this review, we summarize the advances in understanding the autophagy regulation mechanisms under multiple types of stress including nutrient, energy, oxidative, and ER stress in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuxiang Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Wen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhangyuan Yin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
32
|
Lei Y, Wen X, Klionsky DJ. Vps13 is required for efficient autophagy in Saccharomyces cerevisiae. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221136388. [PMID: 37151407 PMCID: PMC10162780 DOI: 10.1177/25152564221136388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/14/2022] [Indexed: 05/09/2023]
Abstract
Vps13 is a large, conserved protein that transports lipids between membranes. Its localization at multiple organelle membranes and membrane contact sites suggests its important physiological roles. In addition, the high correlation of mutant VPS13 with certain diseases, especially those involving neurodegeneration, makes this protein of considerable biomedical interest. Taking advantage of the fact that yeasts only have one Vps13 protein, the roles of yeast Vps13 have been well studied. However, whether and how Vps13 functions in macroautophagy/autophagy, a process of degradation of cytoplasmic cargoes, have been elusive questions. In this paper, we investigated the role of Vps13 in both non-selective and selective autophagy and found that this protein participates in non-selective autophagy, reticulophagy and pexophagy, but not mitophagy, and that Vps13 plays a role in the late stage of autophagy.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute, and the Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xin Wen
- Life Sciences Institute, and the Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute, and the Department
of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|