1
|
Liu Y, Wang M, Zhou G, Zhang Y, Hai W. Magnetic MOF-based sensing platform integrated with graphene field-effect transistors for ultrasensitive detection of infectious disease. Bioelectrochemistry 2025; 165:108951. [PMID: 40056885 DOI: 10.1016/j.bioelechem.2025.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
The development of highly sensitive methods for detecting infectious diseases is crucial for preventing disease spread. In this study, a novel sensing platform for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogens was developed by combining a magnetic metal-organic framework (Fe3O4@MIL-100) with graphene field-effect transistors (GFET). The Fe3O4@MIL-100 magnetic MOF was functionalized with SARS-CoV-2-specific antibodies, enabling highly selective pathogen capture in a phosphate-buffered solution. Following magnetic separation, the captured pathogens were detected using GFETs, with a linear detection range of 1 ag/mL to 10 ng/mL and a detection limit as low as 8.60 ag/mL. Furthermore, the platform has been successfully applied to human serum samples, highlighting its remarkable potential for practical application.
Collapse
Affiliation(s)
- Yushuang Liu
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China.
| | - Mingxuan Wang
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Guiqi Zhou
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Ying Zhang
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| |
Collapse
|
2
|
Sharma PK, Kim NY, Ganbold E, Seong RS, Kim YM, Park JS, Shin YK, Han HS, Kim ES, Kim ST. SARS-CoV-2 detection in COVID-19 patients' sample using Wooden quoit conformation structural aptamer (WQCSA)-Based electronic bio-sensing system. Biosens Bioelectron 2025; 267:116506. [PMID: 39277919 DOI: 10.1016/j.bios.2024.116506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 09/17/2024]
Abstract
The COVID-19 epidemic and its continuous spread pose a serious threat to public health. Coronavirus strains known as SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) variants have undergone genomic changes. The severity of the symptoms, the efficiency of vaccinations, and the transmission capacity of the virus can be impacted by these alterations. Point-of-care diagnostic assays can identify particular genetic or protein sequences that are exclusive to each variety. Currently, ultrafast, responsive, and accurate antibody detection faces several challenges. Here, we outline the fabrication, implementation, and sensing performance benchmarking of an ultrafast (5 s) and inexpensive (0.15 USD) assay with label-free sensing of SARS-CoV-2 S (Spike)/N (Nucleocapsid) protein and other variants in real patient samples. A label-free DNA aptameric capacitive bio-sensing device was used to detect SARS-CoV-2 variants. Our novel, cutting-edge bio-sensing device contains a Wooden quoits conformation structural aptamer (WQCSA)-based inter-digitated capacitor electronic (WQCSA-IDCE) system. WQCSA-aptamer was used as a switch-turn on response to achieve ultrasensitivity in the variable area of the SARS-CoV-2. The molecular beacon (MB) method was also used to measure the fluorescently colored SARS-CoV-2 S/N protein. These sensors can be used with several types of label-free DNA aptamers to act as rapid, affordable, and label-free biosensors for a variety of critical acute respiratory virus syndrome disorders.
Collapse
Affiliation(s)
- Parshant Kumar Sharma
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea.
| | - Nam-Young Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| | - Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea
| | - Ryun-Sang Seong
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea
| | - Yu Mi Kim
- Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital 82, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13620, South Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea; Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Ho Seong Han
- Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea.
| | - Sang Tae Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul, 01897, South Korea; Bioscience & Biotechnology Research Institute, Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13605, South Korea; Department of Surgery, Seoul National University Bundang Hospital 82, Goomi-ro, Bundanggu Seongnam City, Geonggeedo, 13620, South Korea
| |
Collapse
|
3
|
Liu Z, Wang S. A novel biomarker of COVI-19: MMP8 emerged by integrated bulk RNAseq and single-cell sequencing. Sci Rep 2024; 14:31086. [PMID: 39730651 PMCID: PMC11680813 DOI: 10.1038/s41598-024-82227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
COVID-19 has been emerging as the most influential illness which has caused great costs to the heath of population and social economy. Sivelestat sodium (SS) is indicated as an effective cure for lung dysfunction, a characteristic symptom of COVID-19 infection, but its pharmacological target is still unclear. Therefore, a deep understanding of the pathological progression and molecular alteration is an urgent issue for settling the diagnosis and therapy problems of COVID-19. In this study, the bulk ribonucleic acid sequencing (RNA-seq) data of healthy donors and non-severe and severe COVID-19 patients were collected. Then, target differentially expressed genes (DEGs) were screened through integrating sequencing data and the pharmacological database. Besides, with the help of functional and molecular interaction analyses, the potential effect of target gene alteration on COVID-19 progression was investigated. Single-cell sequencing was performed to evaluate the cell distribution of target genes, and the possible interaction of gene-positive cells with other cells was explored by intercellular ligand-receptor pattern analysis. The results showed that matrix metalloproteinase 8 (MMP8) was upregulated in severe COVID-19 patients, which was also identified as a targeting site to SS. Additionally, MMP8 took a core part in the regulatory interaction network of the screened DEGs in COVID-19 and was dramatically correlated with the inflammatory signaling pathway. The further investigations indicated that MMP8 was mainly expressed in myelocytes with a high degree of heterogeneity. MMP8-positive myelocytes interacted with other cell types through RETN-TLR4 and RETN-CAP1 ligand-receptor patterns. These findings emphasize the important role of MMP8 in COVID-19 progression and provide a potential therapeutic target for COVID-19 patients.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Shunda Wang
- Department of Rehabilitative medicine, Shaanxi Provincial People's Hospital, No.256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
4
|
Su Y, Cui Z, Savvidis P, Rong G, Sawan M. Microcavity based Biosensor for Detection of SARS-CoV-2. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039275 DOI: 10.1109/embc53108.2024.10782828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
During a pandemic, infectious diseases can lead to significant health and societal challenges. While advanced technologies have been developed for the accurate detection of SARS-CoV-2, they still have limitations. The entire detection process, including sampling, pre-treatment, analysis, and data reporting, often takes several hours, leading to delays in treatment decisions. Therefore, there is a need for a technique that can provide rapid results, preferably accessible directly to individuals, benefiting both the general public and healthcare systems. In this study, we introduce a biosensor that utilizes microcavity-based dark-field reflectivity, thus providing a powerful technique for sensing the covering virus layer. Moreover, aptamers are used to specific bonding of viruses, leading to improved biosensor accuracy. Data obtained from the microcavity-based biosensor show high sensitivity to the detection of pseudo-viruses, with the limit of detection at 102 copies. In comparison, the polymerase chain reaction requires more than 103 copies for monitoring the viruses. Therefore, the biosensor shows considerable potential for point-of-care testing.
Collapse
|
5
|
Sengupta J, Hussain CM. Graphene transistor-based biosensors for rapid detection of SARS-CoV-2. Bioelectrochemistry 2024; 156:108623. [PMID: 38070365 DOI: 10.1016/j.bioelechem.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Field-effect transistor (FET) biosensors use FETs to detect changes in the amount of electrical charge caused by biomolecules like antigens and antibodies. COVID-19 can be detected by employing these biosensors by immobilising bio-receptor molecules that bind to the SARS-CoV-2 virus on the FET channel surface and subsequent monitoring of the changes in the current triggered by the virus. Graphene Field-effect Transistor (GFET)-based biosensors utilise graphene, a two-dimensional material with high electrical conductivity, as the sensing element. These biosensors can rapidly detect several biomolecules including the SARS-CoV-2 virus, which is responsible for COVID-19. GFETs are ideal for real-time infectious illness diagnosis due to their great sensitivity and specificity. These graphene transistor-based biosensors could revolutionise clinical diagnostics by generating fast, accurate data that could aid pandemic management. GFETs can also be integrated into point-of-care (POC) diagnostic equipment. Recent advances in GFET-type biosensors for SARS-CoV-2 detection are discussed here, along with their associated challenges and future scope.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, NJ, USA.
| |
Collapse
|
6
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Liang QH, Cao BP, Xiao Q, Wei D. The Application of Graphene Field-Effect Transistor Biosensors in COVID-19 Detection Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8764. [PMID: 37960464 PMCID: PMC10650741 DOI: 10.3390/s23218764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a disease caused by the infectious agent of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). The primary method of diagnosing SARS-CoV-2 is nucleic acid detection, but this method requires specialized equipment and is time consuming. Therefore, a sensitive, simple, rapid, and low-cost diagnostic test is needed. Graphene field-effect transistor (GFET) biosensors have become the most promising diagnostic technology for detecting SARS-CoV-2 due to their advantages of high sensitivity, fast-detection speed, label-free operation, and low detection limit. This review mainly focus on three types of GFET biosensors to detect SARS-CoV-2. GFET biosensors can quickly identify SARS-CoV-2 within ultra-low detection limits. Finally, we will outline the pros and cons of the diagnostic approaches as well as future directions.
Collapse
Affiliation(s)
- Qin-Hong Liang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
| | - Ban-Peng Cao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Li SS, Lu YJ, Chang R, Tsai MH, Hung JN, Chen WH, Fan YJ, Wei PK, Sheen HJ. Investigation of DNA Hybridization on Nano-Structured Plasmonic Surfaces for Identifying Nasopharyngeal Viruses. Bioengineering (Basel) 2023; 10:1189. [PMID: 37892920 PMCID: PMC10604513 DOI: 10.3390/bioengineering10101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, studies have revealed that human herpesvirus 4 (HHV-4), also known as the Epstein-Barr virus, might be associated with the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Compared to SARS-CoV-2 infection alone, patients coinfected with SARS-CoV-2 and HHV-4 had higher risks of fever, inflammation, and even death, thus, confirming that HHV-4/SARS-CoV-2 coinfection in patients could benefit from clinical investigation. Although several intelligent devices can simultaneously discern multiple genes related to SARS-CoV-2, most operate via label-based detection, which restricts them from directly measuring the product. In this study, we developed a device that can replicate and detect SARS-CoV-2 and HHV-4 DNA. This device can conduct a duplex polymerase chain reaction (PCR) in a microfluidic channel and detect replicates in a non-labeled manner through a plasmonic-based sensor. Compared to traditional instruments, this device can reduce the required PCR time by 55% while yielding a similar amount of amplicon. Moreover, our device's limit of detection (LOD) reached 100 fg/mL, while prior non-labeled sensors for SARS-CoV-2 detection were in the range of ng/mL to pg/mL. Furthermore, the device can detect desired genes by extracting cells artificially infected with HHV-4/SARS-CoV-2. We expect that this device will be able to help verify HHV-4/SARS-CoV-2 coinfected patients and assist in the evaluation of practical treatment approaches.
Collapse
Affiliation(s)
- Shao-Sian Li
- Department of Materials and Mineral Resources, National Taipei University of Technology, Taipei 10608, Taiwan;
| | - Yi-Jung Lu
- Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| | - Ray Chang
- Institute of Applied Mechanics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan; (R.C.); (W.-H.C.)
| | - Ming-Han Tsai
- Institute of Microbiology & Immunology, National Yang Ming Chiao Tung University, No. 155, Section 2, Linong St., Beitou District, Taipei 11221, Taiwan; (M.-H.T.); (J.-N.H.)
| | - Jo-Ning Hung
- Institute of Microbiology & Immunology, National Yang Ming Chiao Tung University, No. 155, Section 2, Linong St., Beitou District, Taipei 11221, Taiwan; (M.-H.T.); (J.-N.H.)
| | - Wei-Hung Chen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan; (R.C.); (W.-H.C.)
| | - Yu-Jui Fan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Horn-Jiunn Sheen
- Institute of Applied Mechanics, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan; (R.C.); (W.-H.C.)
| |
Collapse
|
9
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
10
|
Movendane Y, Sipalo MG, Chan LCZ. Advances in Folic Acid Biosensors and Their Significance in Maternal, Perinatal, and Paediatric Preventive Medicine. BIOSENSORS 2023; 13:912. [PMID: 37887105 PMCID: PMC10605181 DOI: 10.3390/bios13100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Auxotrophic primates like human beings rely on exogenous dietary vitamin B9 supplementation to meet their metabolic demands. Folates play a crucial role in nucleotide synthesis and DNA methylation. Maternal folate deficiency causes several pregnancy-related complications, perinatal defects, and early childhood cognitive impairments. New evidence suggests excess FA is a potential risk factor resulting in unfavourable genomic and epigenomic alterations. Thus, it is essential to revisit the need to consistently monitor maternal folate levels during pregnancy. Yet, to date, no point-of-care folate-monitoring biosensor is commercially available. Here, we critically appraise the advances in folate biosensors to understand the translational gaps in biosensor design. Further, our review sheds light on the potential role of folate biosensors in strengthening maternal, perinatal, and child healthcare.
Collapse
Affiliation(s)
- Yogesh Movendane
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-04, Singapore 138634, Singapore;
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Mbozu G. Sipalo
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
| | - Leon C. Z. Chan
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-04, Singapore 138634, Singapore;
| |
Collapse
|
11
|
Su Y, Bian S, Pan D, Xu Y, Rong G, Zhang H, Sawan M. Heterogeneous-Nucleation Biosensor for Long-Term Collection and Mask-Based Self-Detection of SARS-CoV-2. BIOSENSORS 2023; 13:858. [PMID: 37754092 PMCID: PMC10526364 DOI: 10.3390/bios13090858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
The effective control of infectious diseases, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, depends on the availability of rapid and accurate monitoring techniques. However, conventional SARS-CoV-2 detection technologies do not support continuous self-detection and may lead to cross-infection when utilized in medical institutions. In this study, we introduce a prototype of a mask biosensor designed for the long-term collection and self-detection of SARS-CoV-2. The biosensor utilizes the average resonance Rayleigh scattering intensity of Au nanocluster-aptamers. The inter-mask surface serves as a medium for the long-term collection and concentration enhancement of SARS-CoV-2, while the heterogeneous-nucleation nanoclusters (NCs) contribute to the exceptional stability of Au NCs for up to 48 h, facilitated by the adhesion of Ti NCs. Additionally, the biosensors based on Au NC-aptamers exhibited high sensitivity for up to 1 h. Moreover, through the implementation of a support vector machine classifier, a significant number of point signals can be collected and differentiated, leading to improved biosensor accuracy. These biosensors offer a complementary wearable device-based method for diagnosing SARS-CoV-2, with a limit of detection of 103 copies. Given their flexibility, the proposed biosensors possess tremendous potential for the continuous collection and sensitive self-detection of SARS-CoV-2 variants and other infectious pathogens.
Collapse
Affiliation(s)
- Yi Su
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China; (Y.S.); (D.P.)
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China; (S.B.); (Y.X.); (G.R.); (H.Z.)
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China; (S.B.); (Y.X.); (G.R.); (H.Z.)
| | - Dingyi Pan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310013, China; (Y.S.); (D.P.)
| | - Yankun Xu
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China; (S.B.); (Y.X.); (G.R.); (H.Z.)
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China; (S.B.); (Y.X.); (G.R.); (H.Z.)
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China; (S.B.); (Y.X.); (G.R.); (H.Z.)
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China; (S.B.); (Y.X.); (G.R.); (H.Z.)
| |
Collapse
|
12
|
Akib TBA, Mostufa S, Rana MM, Hossain MB, Islam MR. A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2. OPTICAL AND QUANTUM ELECTRONICS 2023; 55:448. [PMID: 37008732 PMCID: PMC10039361 DOI: 10.1007/s11082-023-04700-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/18/2023] [Indexed: 06/19/2023]
Abstract
This paper presents a performance comparison of heterostructure surface plasmon resonance (SPR) biosensors for the application of Novel Coronavirus SARS-CoV-2 diagnosis. The comparison is performed and compared with the existing literature based on the performance parameters in terms of several prisms such as BaF2, BK7, CaF2, CsF, SF6, and SiO2, several adhesion layers such as TiO2, Chromium, plasmonic metals such as Ag, Au, and two-dimensional (2D) transition metal dichalcogenides materials such as BP, Graphene, PtSe2 MoS2, MoSe2, WS2, WSe2. To study the performance of the heterostructure SPR sensor, the transfer matrix method is applied, and to analyses, the electric field intensity near the graphene-sensing layer contact, the finite-difference time-domain approach is utilized. Numerical results show that the heterostructure comprised of CaF2/TiO2/Ag/BP/Graphene/Sensing-layer has the best sensitivity and detection accuracy. The proposed sensor has an angle shift sensitivity of 390°/refractive index unit (RIU). Furthermore, the sensor achieved a detection accuracy of 0.464, a quality factor of 92.86/RIU, a figure of merit of 87.95, and a combined sensitive factor of 85.28. Furthermore, varied concentrations (0-1000 nM) of biomolecule binding interactions between ligands and analytes have been observed for the prospects of diagnosis of the SARS-CoV-2 virus. Results demonstrate that the proposed sensor is well suited for real-time and label-free detection particularly SARS-CoV-2 virus detection.
Collapse
Affiliation(s)
- Tarik Bin Abdul Akib
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
- Department of Electrical and Electronic Engineering, Bangladesh Army University of Engineering and Technology, Rajshahi, 6431 Bangladesh
| | - Shahriar Mostufa
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
| | - Md. Masud Rana
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi, 6204 Bangladesh
| | - Md. Biplob Hossain
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
- Department of Electrical and Electronic Engineering, Jashore University of Science and Technology, Jashore, 7408 Bangladesh
| | - Md. Rabiul Islam
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| |
Collapse
|
13
|
Dyankov G, Genova-Kalou P, Eftimov T, Ghaffari SS, Mankov V, Kisov H, Veselinov P, Hikova E, Malinowski N. Binding of SARS-CoV-2 Structural Proteins to Hemoglobin and Myoglobin Studied by SPR and DR LPG. SENSORS (BASEL, SWITZERLAND) 2023; 23:3346. [PMID: 36992057 PMCID: PMC10058041 DOI: 10.3390/s23063346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
One of the first clinical observations related to COVID-19 identified hematological dysfunctions. These were explained by theoretical modeling, which predicted that motifs from SARS-CoV-2 structural proteins could bind to porphyrin. At present, there is very little experimental data that could provide reliable information about possible interactions. The surface plasmon resonance (SPR) method and double resonance long period grating (DR LPG) were used to identify the binding of S/N protein and the receptor bind domain (RBD) to hemoglobin (Hb) and myoglobin (Mb). SPR transducers were functionalized with Hb and Mb, while LPG transducers, were only with Hb. Ligands were deposited by the matrix-assisted laser evaporation (MAPLE) method, which guarantees maximum interaction specificity. The experiments carried out showed S/N protein binding to Hb and Mb and RBD binding to Hb. Apart from that, they demonstrated that chemically-inactivated virus-like particles (VLPs) interact with Hb. The binding activity of S/N- and RBD proteins was assessed. It was found that protein binding fully inhibited heme functionality. The registered N protein binding to Hb/Mb is the first experimental fact that supports theoretical predictions. This fact suggests another function of this protein, not only binding RNA. The lower RBD binding activity reveals that other functional groups of S protein participate in the interaction. The high-affinity binding of these proteins to Hb provides an excellent opportunity for assessing the effectiveness of inhibitors targeting S/N proteins.
Collapse
Affiliation(s)
- Georgi Dyankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
| | - Petia Genova-Kalou
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria
| | - Tinko Eftimov
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
- Photonics Research Center, Université du Québec en Outaouais, 101 Rue St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Sanaz Shoar Ghaffari
- Photonics Research Center, Université du Québec en Outaouais, 101 Rue St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Vihar Mankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Hristo Kisov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
| | - Petar Veselinov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Evdokia Hikova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Nikola Malinowski
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| |
Collapse
|
14
|
Wang H, Liu J, Wei J, Xiao K, Chen Y, Jiang YL, Wan J. Au Nanoparticles/HfO₂/Fully Depleted Silicon-on-Insulator MOSFET Enabled Rapid Detection of Zeptomole COVID-19 Gene With Electrostatic Enrichment Process. IEEE TRANSACTIONS ON ELECTRON DEVICES 2023; 70:1236-1242. [PMID: 36972181 PMCID: PMC10009805 DOI: 10.1109/ted.2022.3233544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
In this work, a novel sensing structure based on Au nanoparticles/HfO2/fully depleted silicon-on-insulator (AuNPs/HfO2/FDSOI) MOSFET is fabricated. Using such a planar double gate MOSFET, the electrostatic enrichment (ESE) process is proposed for the ultrasensitive and rapid detection of the coronavirus disease 2019 (COVID-19) ORF1ab gene. The back-gate (BG) bias can induce the required electric field that enables the ESE process in the testing liquid analyte with indirect contact with the top-Si layer. It is revealed that the ESE process can rapidly and effectively accumulate ORF1ab genes close to the HfO2 surface, which can significantly change the MOSFET threshold voltage ([Formula: see text]). The proposed MOSFET successfully demonstrates the detection of zeptomole (zM) COVID-19 ORF1ab gene with an ultralow detection limit down to 67 zM (~0.04 copy/[Formula: see text]) for a test time of less than 15 min even in a high ionic-strength solution. Besides, the quantitative dependence of [Formula: see text] variation on COVID-19 ORF1ab gene concentration from 200 zM to 100 femtomole is also revealed, which is further confirmed by TCAD simulation.
Collapse
Affiliation(s)
- Haihua Wang
- State Key Laboratory of ASIC and System, School of MicroelectronicsFudan UniversityShanghai200433China
| | - Jian Liu
- Shanghai Institute of Intelligent Electronics and Systems, School of Information Science and Technology, State Key Laboratory of ASIC and SystemFudan UniversityShanghai200433China
| | - Jiahao Wei
- Shanghai Institute of Intelligent Electronics and Systems, School of Information Science and Technology, State Key Laboratory of ASIC and SystemFudan UniversityShanghai200433China
| | - Kai Xiao
- Shanghai Institute of Intelligent Electronics and Systems, School of Information Science and Technology, State Key Laboratory of ASIC and SystemFudan UniversityShanghai200433China
| | - Yingxin Chen
- Shanghai Institute of Intelligent Electronics and Systems, School of Information Science and Technology, State Key Laboratory of ASIC and SystemFudan UniversityShanghai200433China
| | - Yu-Long Jiang
- State Key Laboratory of ASIC and System, School of MicroelectronicsFudan UniversityShanghai200433China
| | - Jing Wan
- Shanghai Institute of Intelligent Electronics and Systems, School of Information Science and Technology, State Key Laboratory of ASIC and SystemFudan UniversityShanghai200433China
| |
Collapse
|
15
|
Eftimov T, Genova-Kalou P, Dyankov G, Bock WJ, Mankov V, Shoar Ghaffari S, Veselinov P, Arapova A, Makouei S. Capabilities of Double-Resonance LPG and SPR Methods for Hypersensitive Detection of SARS-CoV-2 Structural Proteins: A Comparative Study. BIOSENSORS 2023; 13:318. [PMID: 36979530 PMCID: PMC10046782 DOI: 10.3390/bios13030318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The danger of the emergence of new viral diseases and their rapid spread demands apparatuses for continuous rapid monitoring in real time. This requires the creation of new bioanalytical methods that overcome the shortcomings of existing ones and are applicable for point-of-care diagnostics. For this purpose, a variety of biosensors have been developed and tested in proof-of-concept studies, but none of them have been introduced for commercial use so far. Given the importance of the problem, in this study, long-period grating (LPG) and surface plasmon resonance (SPR) biosensors, based on antibody detection, were examined, and their capabilities for SARS-CoV-2 structural proteins detection were established. Supersensitive detections of structural proteins in the order of several femtomoles were achieved by the LPG method, while the SPR method demonstrated a sensitivity of about one hundred femtomoles. The studied biosensors are compatible in sensitivity with ELISA and rapid antigen tests but, in contrast, they are quantitative, which makes them applicable for acute SARS-CoV-2 infection detection, especially during the early stages of viral replication.
Collapse
Affiliation(s)
- Tinko Eftimov
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
| | - Petia Genova-Kalou
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria
| | - Georgi Dyankov
- Central Laboratory of Applied Physics, Bulgarian Academy of Sciences, 61 Sanct Peterburg Blvd., 4000 Plovdiv, Bulgaria
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Wojtek J. Bock
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Vihar Mankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Sanaz Shoar Ghaffari
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Petar Veselinov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria
| | - Alla Arapova
- Photonics Research Center, Université du Québec en Outaouais, Rue 101 St-Jean Bosco, Gatineau, QC J8X 3G5, Canada
| | - Somayeh Makouei
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
16
|
Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mohd Hayrie Mohd Hatta
- Centre for Research and Development Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Juan Matmin
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Farah Hidayah Kamisan
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Aishah Badruzzaman
- Centre for Foundation, Language and General Studies Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Siew Ling Lee
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
17
|
Meskher H, Ragdi T, Thakur AK, Ha S, Khelfaoui I, Sathyamurthy R, Sharshir SW, Pandey AK, Saidur R, Singh P, Sharifian Jazi F, Lynch I. A Review on CNTs-Based Electrochemical Sensors and Biosensors: Unique Properties and Potential Applications. Crit Rev Anal Chem 2023; 54:2398-2421. [PMID: 36724894 DOI: 10.1080/10408347.2023.2171277] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors. It emphasizes the synthesis and optimization of CNT-based sensors for a range of applications and outlines the benefits of using CNTs for biomolecule immobilization. In addition, the use of molecularly imprinted polymer (MIP)-CNTs in the production of electrochemical sensors is also discussed. The challenges faced by the current CNTs-based sensors, along with some the future perspectives and their future opportunities, are also briefly explained in this paper.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Teqwa Ragdi
- Division of Chemical Engineering, Kasdi-Merbah University, Ouargla, Algeria
| | - Amrit Kumar Thakur
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Sohmyung Ha
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Issam Khelfaoui
- School of Insurance and Economics, University of International Business and Economics, Beijing, China
| | - Ravishankar Sathyamurthy
- Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dammam, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - A K Pandey
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Services, Saveetha University, Chennai, India
- CoE for Energy and Eco-sustainability Research, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, Malaysia
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Chaumuhan, Uttar Pradesh, India
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
18
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
19
|
Akarapipad P, Bertelson E, Pessell A, Wang TH, Hsieh K. Emerging Multiplex Nucleic Acid Diagnostic Tests for Combating COVID-19. BIOSENSORS 2022; 12:bios12110978. [PMID: 36354487 PMCID: PMC9688249 DOI: 10.3390/bios12110978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 05/29/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has drawn attention to the need for fast and accurate diagnostic testing. Concerns from emerging SARS-CoV-2 variants and other circulating respiratory viral pathogens further underscore the importance of expanding diagnostic testing to multiplex detection, as single-plex diagnostic testing may fail to detect emerging variants and other viruses, while sequencing can be too slow and too expensive as a diagnostic tool. As a result, there have been significant advances in multiplex nucleic-acid-based virus diagnostic testing, creating a need for a timely review. This review first introduces frequent nucleic acid targets for multiplex virus diagnostic tests, then proceeds to a comprehensive and up-to-date overview of multiplex assays that incorporate various detection reactions and readout modalities. The performances, advantages, and disadvantages of these assays are discussed, followed by highlights of platforms that are amenable for point-of-care use. Finally, this review points out the remaining technical challenges and shares perspectives on future research and development. By examining the state of the art and synthesizing existing development in multiplex nucleic acid diagnostic tests, this review can provide a useful resource for facilitating future research and ultimately combating COVID-19.
Collapse
Affiliation(s)
- Patarajarin Akarapipad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Bertelson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Label-free and portable field-effect sensor for monitoring RT-LAMP products to detect SARS-CoV-2 in wastewater. Talanta 2022. [PMCID: PMC9637047 DOI: 10.1016/j.talanta.2022.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has proven the need for developing reliable and affordable technologies to detect pathogens. Particularly, the detecting the genome in wastewater could be an indicator of the transmission rate to alert on new outbreaks. However, wastewater-based epidemiology remains a technological challenge to develop affordable technologies for sensing pathogens. In this work, we introduce a label-free and portable field-effect transistor (FET)-based sensor to detect N and ORF1ab genes of the SARS-CoV-2 genome. Our sensor integrates the reverse transcription loop-mediated isothermal amplification (RT-LAMP) reaction as a cost-effective molecular detection exhibiting high specificity. The detection relies upon pH changes, due to the RT-LAMP reaction products, which are detected through a simple, but effective, extended-gate FET sensor (EGFET). We evaluate the proposed device by measuring real wastewater samples to detect the presence of SARS-CoV-2 genome, achieving a limit of detection of 0.31 × 10−3 ng/μL for end-point measurement. Moreover, we find the ability of the sensor to perform real-time-like analysis, showing that the RT-LAMP reaction provides a good response after 15 min for concentrations as low as 0.37 ng/μL. Hence, we show that our EGFET sensor offers a powerful tool to detect the presence of the SARS-CoV-2 genome with a naked-eye method, in a straightforward way than the conventional molecular methods for wastewater analysis.
Collapse
|
21
|
Cherusseri J, Savio CM, Khalid M, Chaudhary V, Numan A, Varma SJ, Menon A, Kaushik A. SARS-CoV-2-on-Chip for Long COVID Management. BIOSENSORS 2022; 12:890. [PMID: 36291027 PMCID: PMC9599615 DOI: 10.3390/bios12100890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a "wicked evil" in this century due to its extended progression and huge human mortalities. Although the diagnosis of SARS-CoV-2 viral infection is made simple and practical by employing reverse transcription polymerase chain reaction (RT-PCR) investigation, the process is costly, complex, time-consuming, and requires experts for testing and the constraints of a laboratory. Therefore, these challenges have raised the paradigm of on-site portable biosensors on a single chip, which reduces human resources and enables remote access to minimize the overwhelming burden on the existing global healthcare sector. This article reviews the recent advancements in biosensors for long coronavirus disease (COVID) management using a multitude of devices, such as point-of-care biosensors and lab-on-chip biosensors. Furthermore, it details the shift in the paradigm of SARS-CoV-2-on-chip biosensors from the laboratory to on-site detection with intelligent and economical operation, representing near-future diagnostic technologies for public health emergency management.
Collapse
Affiliation(s)
- Jayesh Cherusseri
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Claire Mary Savio
- Department of Engineering, Amity University Dubai, Dubai International Academic City P.O. Box 345019, United Arab Emirates
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
- SUMAN Laboratory (Sustainable Materials and Advanced Nanotechnology), New Delhi 110072, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Sreekanth J. Varma
- Materials for Energy Storage and Optoelectronic Devices Group, Department of Physics, Sanatana Dharma College, University of Kerala, Alappuzha 688003, India
| | - Amrutha Menon
- Advanced Bio-Energy Devices Laboratory, Research & Development Division, JC Puli Energy Private Limited, Koduvayur, Palakkad 678501, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
22
|
Torres-Torres C, García-Pérez BE. Fundamentals of SARS-CoV-2 Biosensors. BIOSENSORS 2022; 12:880. [PMID: 36291016 PMCID: PMC9599352 DOI: 10.3390/bios12100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
A beautiful topic in its essence and content is represented by the powerful assistance of sensing methods and techniques for automatically revealing biological agents and biological functions in this era [...].
Collapse
Affiliation(s)
- Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
23
|
Antiochia R. Electrochemical biosensors for SARS-CoV-2 detection: Voltametric or impedimetric transduction? Bioelectrochemistry 2022; 147:108190. [PMID: 35738049 PMCID: PMC9188450 DOI: 10.1016/j.bioelechem.2022.108190] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Abstract
During the COVID-19 pandemic, electrochemical biosensors have shown several advantages including accuracy, low cost, possibility of miniaturization and portability, which make them an interesting testing method for rapid point-of-care (POC) detection of SARS-CoV-2 infection, allowing the detection of both viral RNA and viral antigens. Herein, we reviewed advancements in electrochemical biosensing platforms towards the detection of SARS-CoV-2 based on voltametric and impedimetric transduction modes, highlighting the advantages and drawbacks of the two methods.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
24
|
Ellis JE, Guest P, Lawson V, Loecherbach J, Lindner N, McCulloch A. Performance Evaluation of the Microfluidic Antigen LumiraDx SARS-CoV-2 and Flu A/B Test in Diagnosing COVID-19 and Influenza in Patients with Respiratory Symptoms. Infect Dis Ther 2022; 11:2099-2109. [PMID: 36152227 PMCID: PMC9510530 DOI: 10.1007/s40121-022-00696-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) and influenza share similar symptoms, which hampers diagnosis. Given that they require different containment and treatment strategies, fast and accurate distinction between the two infections is needed. This study evaluates the sensitivity and specificity of the microfluidic antigen LumiraDx SARS-CoV-2 and Flu A/B Test for simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/B from a single nasal swab. Methods Nasal samples were collected from patients as part of the ASPIRE (NCT04557046) and INSPIRE (NCT04288921) studies at point-of-care testing sites in the USA. ASPIRE study participants were included after developing COVID-19 symptoms in the last 14 days or following a positive SARS-CoV-2 test in the last 48 h. INSPIRE study participants were included after developing influenza symptoms in the last 4 days. Samples were extracted into proprietary buffer and analysed using the LumiraDx SARS-CoV-2 and Flu A/B Test. A reference sample was taken from each subject, placed into universal transport medium and tested using reference SARS-CoV-2 and influenza reverse transcription polymerase chain reaction (RT-PCR) tests. The test and reference samples were compared using the positive percent agreement (PPA) and negative percent agreement (NPA), together with their 95% confidence intervals (CIs). Results Analysis of the data from the ASPIRE (N = 124) and INSPIRE (N = 159) studies revealed high levels of agreement between the LumiraDx SARS-CoV-2 and Flu A/B Test and the reference tests in detecting SARS-CoV-2 (PPA = 95.5% [95% CI 84.9%, 98.7%]; NPA = 96.0% [95% CI 90.9%, 98.3%]), influenza A (PPA = 83.3% [95% CI 66.4%, 92.7%]; NPA = 97.7% [95% CI 93.4%, 99.2%]) and influenza B (PPA = 80.0% [95% CI 62.7%, 90.5%]; NPA = 95.3% [95% CI 90.2%, 97.9%]). Conclusions The LumiraDx SARS-CoV-2 and Flu A/B Test shows a high agreement with the reference RT-PCR tests while simultaneously detecting and differentiating between SARS-CoV-2 and influenza A/B. Trial Registration ClinicalTrials.gov identifiers NCT04557046 and NCT04288921. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-022-00696-8.
Collapse
Affiliation(s)
- Jayne E Ellis
- LumiraDx Ltd, Stirling, UK. .,LumiraDx Ltd, 3 More London Riverside, London, SE1 2AQ, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Samodelova MV, Kapitanova OO, Meshcheryakova NF, Novikov SM, Yarenkov NR, Streletskii OA, Yakubovsky DI, Grabovenko FI, Zhdanov GA, Arsenin AV, Volkov VS, Zavyalova EG, Veselova IA, Zvereva MI. Model of the SARS-CoV-2 Virus for Development of a DNA-Modified, Surface-Enhanced Raman Spectroscopy Sensor with a Novel Hybrid Plasmonic Platform in Sandwich Mode. BIOSENSORS 2022; 12:bios12090768. [PMID: 36140152 PMCID: PMC9497064 DOI: 10.3390/bios12090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed a great challenge for the development of ultra-fast methods for virus identification based on sensor principles. We created a structure modeling surface and size of the SARS-CoV-2 virus and used it in comparison with the standard antigen SARS-CoV-2—the receptor-binding domain (RBD) of the S-protein of the envelope of the SARS-CoV-2 virus from the Wuhan strain—for the development of detection of coronaviruses using a DNA-modified, surface-enhanced Raman scattering (SERS)-based aptasensor in sandwich mode: a primary aptamer attached to the plasmonic surface—RBD-covered Ag nanoparticle—the Cy3-labeled secondary aptamer. Fabricated novel hybrid plasmonic structures based on “Ag mirror-SiO2-nanostructured Ag” demonstrate sensitivity for the detection of investigated analytes due to the combination of localized surface plasmons in nanostructured silver surface and the gap surface plasmons in a thin dielectric layer of SiO2 between silver layers. A specific SERS signal has been obtained from SERS-active compounds with RBD-specific DNA aptamers that selectively bind to the S protein of synthetic virion (dissociation constants of DNA-aptamer complexes with protein in the range of 10 nM). The purpose of the study is to systematically analyze the combination of components in an aptamer-based sandwich system. A developed virus size simulating silver particles adsorbed on an aptamer-coated sensor provided a signal different from free RBD. The data obtained are consistent with the theory of signal amplification depending on the distance of the active compound from the amplifying surface and the nature of such a compound. The ability to detect the target virus due to specific interaction with such DNA is quantitatively controlled by the degree of the quenching SERS signal from the labeled compound. Developed indicator sandwich-type systems demonstrate high stability. Such a platform does not require special permissions to work with viruses. Therefore, our approach creates the promising basis for fostering the practical application of ultra-fast, amplification-free methods for detecting coronaviruses based on SARS-CoV-2.
Collapse
Affiliation(s)
- Mariia V. Samodelova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Olesya O. Kapitanova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Correspondence:
| | | | - Sergey. M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Nikita R. Yarenkov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Oleg A. Streletskii
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitry I. Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Fedor I. Grabovenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Gleb A. Zhdanov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Aleksey V. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Elena G. Zavyalova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Irina A. Veselova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Maria I. Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
26
|
Stokes W, Berenger BM, Venner AA, Deslandes V, Shaw JLV. Point of care molecular and antigen detection tests for COVID-19: current status and future prospects. Expert Rev Mol Diagn 2022; 22:797-809. [PMID: 36093682 DOI: 10.1080/14737159.2022.2122712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Detection of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has been critical to support and management of the COVID-19 pandemic. Point of care testing (POCT) for SARS-CoV-2 has been a widely used tool for detection of SARS-CoV-2. AREAS COVERED POCT nucleic acid amplification tests (NAATs) and rapid antigen tests (RATs) have been the most readily used POCT for SARS-CoV-2. Here, current knowledge on the utility of POCT NAATs and RATs for SARS-CoV-2 are reviewed and discussed alongside aspects of quality assurance factors that must be considered for successful and safe implementation of POCT. EXPERT OPINION Use cases for implementation of POCT must be evidence based, regardless of the test used. A quality assurance framework must be in place to ensure accuracy and safety of POCT.
Collapse
Affiliation(s)
- William Stokes
- Alberta Precision Laboratories, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Byron M Berenger
- Alberta Precision Laboratories, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Allison A Venner
- Alberta Precision Laboratories, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vincent Deslandes
- Eastern Ontario Regional Laboratories Association, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, The University of Ottawa, Ottawa, Ontario, Canada
| | - Julie L V Shaw
- Eastern Ontario Regional Laboratories Association, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, The University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
KILIÇ NM, ODACI DEMİRKOL D. Virus detection using bio-based analysis systems: a review of biorecognition strategies. Turk J Chem 2022; 46:1802-1816. [PMID: 37621347 PMCID: PMC10446939 DOI: 10.55730/1300-0527.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/19/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious illnesses are on the rise in today's world, with serious consequences for animals, plants, and humans. Several infections, including the human immunodeficiency virus, affect a large number of individuals in various countries, particularly in the poorer portions of contemporary society, and continue to cause a variety of health problems. Viruses are tiny parasitic organisms. They are infectious agents that can only reproduce within a live cell of an organism. Viruses may infect any living organism. For clinical point-of-care applications, early detections for harmful agents such as bacteria, viruses are critical. The possibility of worldwide epidemics as a result of viral propagation emphasizes the importance of creating speedy, precise, and sensitive early detection systems. Furthermore, because certain viruses have a long latent phase and can evolve from one person to another, early detection during the incubation period is critical for improving recovery rates and avoiding pandemics. Nowadays, there has been various bio-based detection systems that have rapid reaction times, user-friendly, cost-effective, and repeatable. In this review, biological molecule-based detection technologies which focus on virus analysis are examined.
Collapse
Affiliation(s)
- Nur Melis KILIÇ
- Department of Biochemistry, Faculty of Science, Ege University, İzmir,
Turkey
| | | |
Collapse
|
28
|
Wei H, Zhang C, Du X, Zhang Z. Research progress of biosensors for detection of SARS-CoV-2 variants based on ACE2. Talanta 2022; 251:123813. [PMID: 35952504 PMCID: PMC9356646 DOI: 10.1016/j.talanta.2022.123813] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Currently, the coronavirus disease 2019 (COVID-19) pandemic is ravaging the world, causing serious crisis in economy and human health. The top priority is the detection and drug development of the novel coronavirus. The gold standard for real-time diagnosis of coronavirus disease is the reverse transcription-polymerase chain reaction (RT-PCR), which is usually operatively complex and time-consuming. Biosensors are known for their low cost and rapid detection, which are developing rapidly in detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current study showed that the spike protein of SARS-CoV-2 will bind to angiotensin-converting hormone 2 (ACE2) to mediate the entry of the virus into cells. Interestingly, the affinity between ACE2 and SARS-CoV-2 spike protein increases with the mutation of the virus. Using ACE2 as a biosensor recognition receptor to detect SARS-CoV-2 will effectively avoid the decline of detection accuracy and false negative caused by variants. In fact, due to the variation of the virus, it may even lead to enhanced detection performance. In addition, ACE2-specific drugs to prevent SARS-CoV-2 from entering cells will be effectively evaluated using the biosensors even with virus mutations. Here, we reviewed the biosensors for rapid detection of SARS-CoV-2 by ACE2 and discussed the advantages of ACE2 as an antibody for the detection of SARS-CoV-2 variants. The review also discussed the value of ACE2-based biosensors for screening for drugs that modulate the interaction between ACE2 and SARS-CoV-2.
Collapse
|
29
|
Asymmetric Mach–Zehnder Interferometric Biosensing for Quantitative and Sensitive Multiplex Detection of Anti-SARS-CoV-2 Antibodies in Human Plasma. BIOSENSORS 2022; 12:bios12080553. [PMID: 35892450 PMCID: PMC9394312 DOI: 10.3390/bios12080553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has once more emphasized the urgent need for accurate and fast point-of-care (POC) diagnostics for outbreak control and prevention. The main challenge in the development of POC in vitro diagnostics (IVD) is to combine a short time to result with a high sensitivity, and to keep the testing cost-effective. In this respect, sensors based on photonic integrated circuits (PICs) may offer advantages as they have features such as a high analytical sensitivity, capability for multiplexing, ease of miniaturization, and the potential for high-volume manufacturing. One special type of PIC sensor is the asymmetric Mach–Zehnder Interferometer (aMZI), which is characterized by a high and tunable analytical sensitivity. The current work describes the application of an aMZI-based biosensor platform for sensitive and multiplex detection of anti-SARS-CoV-2 antibodies in human plasma samples using the spike protein (SP), the receptor-binding domain (RBD), and the nucleocapsid protein (NP) as target antigens. The results are in good agreement with several CE-IVD marked reference methods and demonstrate the potential of the aMZI biosensor technology for further development into a photonic IVD platform.
Collapse
|
30
|
Wang W, Wang X, Liu J, Lin C, Liu J, Wang J. The Integration of Gold Nanoparticles with Polymerase Chain Reaction for Constructing Colorimetric Sensing Platforms for Detection of Health-Related DNA and Proteins. BIOSENSORS 2022; 12:bios12060421. [PMID: 35735568 PMCID: PMC9220820 DOI: 10.3390/bios12060421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/02/2023]
Abstract
Polymerase chain reaction (PCR) is the standard tool in genetic information analysis, and the desirable detection merits of PCR have been extended to disease-related protein analysis. Recently, the combination of PCR and gold nanoparticles (AuNPs) to construct colorimetric sensing platforms has received considerable attention due to its high sensitivity, visual detection, capability for on-site detection, and low cost. However, it lacks a related review to summarize and discuss the advances in this area. This perspective gives an overview of established methods based on the combination of PCR and AuNPs for the visual detection of health-related DNA and proteins. Moreover, this work also addresses the future trends and perspectives for PCR-AuNP hybrid biosensors.
Collapse
Affiliation(s)
- Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Jingqi Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Chuankai Lin
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Jianhua Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
- Correspondence: ; Tel.: +86-13268283561
| |
Collapse
|
31
|
Zhang Y, Chen F, Xie H, Zhou B. Electrochemical biosensors for the detection of SARS-CoV-2 pathogen and protein biomarkers. INT J ELECTROCHEM SC 2022; 17:220541. [PMID: 37360860 PMCID: PMC10276346 DOI: 10.20964/2022.05.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 09/21/2024]
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV CoV-2) pathogen and protein biomarkers can improve the diagnosis accuracy for Coronavirus disease 2019 (COVID-19). Electrochemical biosensors have attracted extensive attention in the scientific community because of their simple design, fast response, good portability, high sensitivity and high selectivity. In this review, we summarized the progress in the electrochemical detection of COVID-19 pathogen and SARS-CoV-2 biomarkers, including SARS-CoV-2 spike protein and nucleocapsid protein and their antibodies.
Collapse
Affiliation(s)
- Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
- Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
| | - Fang Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
- Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
| | - Hao Xie
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| |
Collapse
|
32
|
Zandi M, Fani M. Target genes used for biosensor development in COVID-19 diagnosis. Biosens Bioelectron 2022; 200:113924. [PMID: 34974265 PMCID: PMC8717705 DOI: 10.1016/j.bios.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/29/2021] [Accepted: 12/25/2021] [Indexed: 11/30/2022]
Abstract
In a published review entitled "COVID-19 diagnosis -A review of current methods", the authors considered hemagglutinin esterase as one of the structural proteins of SARS-CoV-2 and also they did not represent ORF3b, ORF9b, and ORF9c in SARS-CoV-2 genome structure. However, according to the scientific evidence, among coronaviruses only some betacoronaviruses (Embecovirus subgenera) contain HE, and the genome of most of the coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV lack the HE gene. In addition, the genome of SARS-CoV-2 contains several accessory proteins ORFs including ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c, and ORF10.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mona Fani
- Department of Pathobiology & Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
33
|
Adam T, Gopinath SC. Nanosensors: Recent Perspectives on Attainments and Future Promise of Downstream Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Zheng Y, Bian S, Sun J, Wen L, Rong G, Sawan M. Label-Free LSPR-Vertical Microcavity Biosensor for On-Site SARS-CoV-2 Detection. BIOSENSORS 2022; 12:151. [PMID: 35323421 PMCID: PMC8946032 DOI: 10.3390/bios12030151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 05/08/2023]
Abstract
Cost-effective, rapid, and sensitive detection of SARS-CoV-2, in high-throughput, is crucial in controlling the COVID-19 epidemic. In this study, we proposed a vertical microcavity and localized surface plasmon resonance hybrid biosensor for SARS-CoV-2 detection in artificial saliva and assessed its efficacy. The proposed biosensor monitors the valley shifts in the reflectance spectrum, as induced by changes in the refractive index within the proximity of the sensor surface. A low-cost and fast method was developed to form nanoporous gold (NPG) with different surface morphologies on the vertical microcavity wafer, followed by immobilization with the SARS-CoV-2 antibody for capturing the virus. Modeling and simulation were conducted to optimize the microcavity structure and the NPG parameters. Simulation results revealed that NPG-deposited sensors performed better in resonance quality and in sensitivity compared to gold-deposited and pure microcavity sensors. The experiment confirmed the effect of NPG surface morphology on the biosensor sensitivity as demonstrated by simulation. Pre-clinical validation revealed that 40% porosity led to the highest sensitivity for SARS-CoV-2 pseudovirus at 319 copies/mL in artificial saliva. The proposed automatic biosensing system delivered the results of 100 samples within 30 min, demonstrating its potential for on-site coronavirus detection with sufficient sensitivity.
Collapse
Affiliation(s)
- Yuqiao Zheng
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou 310024, China; (Y.Z.); (S.B.)
| | - Sumin Bian
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou 310024, China; (Y.Z.); (S.B.)
| | - Jiacheng Sun
- School of Engineering, Westlake University, Hangzhou 310024, China; (J.S.); (L.W.)
| | - Liaoyong Wen
- School of Engineering, Westlake University, Hangzhou 310024, China; (J.S.); (L.W.)
| | - Guoguang Rong
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou 310024, China; (Y.Z.); (S.B.)
| | - Mohamad Sawan
- CenBRAIN Lab, School of Engineering, Westlake University, Hangzhou 310024, China; (Y.Z.); (S.B.)
| |
Collapse
|
35
|
Dhar BC. Diagnostic assay and technology advancement for detecting SARS-CoV-2 infections causing the COVID-19 pandemic. Anal Bioanal Chem 2022; 414:2903-2934. [PMID: 35211785 PMCID: PMC8872642 DOI: 10.1007/s00216-022-03918-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has transmitted to humans in practically all parts of the world, producing socio-economic turmoil. There is an urgent need for precise, fast, and affordable diagnostic testing to be widely available for detecting SARS-CoV-2 and its mutations in various phases of the disease. Early diagnosis with great precision has been achieved using real-time polymerase chain reaction (RT-PCR) and similar other molecular methods, but theseapproaches are costly and involve rigorous processes that are not easily obtainable. Conversely, immunoassays that detect a small number of antibodies have been employed for quick, low-cost tests, but their efficiency in diagnosing infected people has been restricted. The use of biosensors in the detection of SARS-CoV-2 is vital for the COVID-19 pandemic’s control. This review gives an overview of COVID-19 diagnostic approaches that are currently being developed as well as nanomaterial-based biosensor technologies, to aid future technological advancement and innovation. These approaches can be integrated into point-of-care (POC) devices to quickly identify a large number of infected patients and asymptomatic carriers. The ongoing research endeavors and developments in complementary technologies will play a significant role in curbing the spread of the COVID-19 pandemic and fill the knowledge gaps in current diagnostic accuracy and capacity.
Collapse
Affiliation(s)
- Bidhan C Dhar
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC), 205 S Columbia St, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
36
|
Silicon Nanowires Length and Numbers Dependence on Sensitivity of the Field-Effect Transistor Sensor for Hepatitis B Virus Surface Antigen Detection. BIOSENSORS 2022; 12:bios12020115. [PMID: 35200375 PMCID: PMC8869653 DOI: 10.3390/bios12020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022]
Abstract
Silicon nanowire field effect transistor (NWFET) sensors have been demonstrated to have high sensitivity, are label free, and offer specific detection. This study explored the effect of nanowire dimensions on sensors’ sensitivity. We used sidewall spacer etching to fabricate polycrystalline silicon NWFET sensors. This method does not require expensive nanoscale exposure systems and reduces fabrication costs. We designed transistor sensors with nanowires of various lengths and numbers. Hepatitis B surface antigen (HBsAg) was used as the sensing target to explore the relationships of nanowire length and number with biomolecule detection. The experimental results revealed that the sensor with a 3 µm nanowire exhibited high sensitivity in detecting low concentrations of HBsAg. However, the sensor reached saturation when the biomolecule concentration exceeded 800 fg/mL. Sensors with 1.6 and 5 µm nanowires exhibited favorable linear sensing ranges at concentrations from 800 ag/mL to 800 pg/mL. The results regarding the number of nanowires revealed that the use of few nanowires in transistor sensors increases sensitivity. The results demonstrate the effects of nanowire dimensions on the silicon NWFET biosensors.
Collapse
|