1
|
Rasooly Heshteli R, Paimard G, Adabi M, Esmaeili S. Advances in biosensors: A breakthrough in rapid and precise brucellosis detection. Anal Biochem 2025; 700:115782. [PMID: 39884527 DOI: 10.1016/j.ab.2025.115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Brucellosis, a significant zoonotic disease, poses a threat to both livestock and human health. Infections in livestock lead to abortion, infertility, and substantial economic losses in the industry. In humans, acute brucellosis can progress to a chronic condition, resulting in multisystemic infections with high morbidity and mortality rates. Additionally, the bioterrorism potential of certain Brucella species through aerosol transmission poses risks to laboratory workers and livestock handlers. Therefore, there is an urgent need for rapid and precise diagnosis of brucellosis in both animals and humans. Even with the availability of routine diagnostic techniques that are effective they frequently have some limitations. Biosensors, as innovative techniques, have demonstrated significant potential in detecting various pathogens with high efficiency. These biosensors can identify specific analytes, biomolecules of pathogenic bacteria, secreted antibodies against bacteria, and even the bacterial body in real time. Their high sensitivity, selectivity, and user-friendly configurations make them valuable tools for diagnostics. In this comprehensive review, beside the reviewing routine diagnostic tests for detecting brucellosis and discussing the positive and negative aspects of these methods, we explore different types of biosensors and their applications in diagnosing brucellosis. We hope to show how these advancements can result in quicker and more precise disease detection by offering a thorough evaluation of these technologies performance and contrasting it with more conventional diagnostic techniques. This improves patient outcomes by lowering the complications linked to delayed diagnosis in addition to advancing scientific knowledge of brucellosis.
Collapse
Affiliation(s)
- Roya Rasooly Heshteli
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Giti Paimard
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran.
| | - Saber Esmaeili
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran; National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran.
| |
Collapse
|
2
|
Kang S, Davis JJ. Leveraging microfluidic confinement to boost assay sensitivity and selectivity. Chem Sci 2025; 16:6965-6974. [PMID: 40134656 PMCID: PMC11931431 DOI: 10.1039/d5sc00199d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
The native and tunable microscale fluid manipulation accessible within 3D-printed configurations can be a transformative tool in biosensing, promoting mass transport and sample mixing to boost assay performance. In this study, we demonstrate that channel height restrictions can support a 2000% acceleration in target recruitment kinetics, a notable 600% improvement in target response magnitude, and a 300% enhancement in assay selectivity within an entirely reagentless format that requires neither catalytic amplification nor the employment of specialized nanomaterials. This highly accessible experimental configuration supports robust target detection from serum at simple, untreated, and un-passivated sensor surfaces. The underlying operational principles have been elucidated through a combination of theoretical analysis and COMSOL simulation; the enhanced analyte flux leveraged by channel confinement is directly responsible for these effects, which also scale with both bioreceptor surface density and target binding affinity. The operational simplicity of this assay format with its resolved channel and flux promoted assay performance, holds significant value not only for biosensing but also for broader microfluidic-integrated applications, such as biosynthesis and catalysis.
Collapse
Affiliation(s)
- Shaoyu Kang
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0) 1865272690 +44(0) 1865275914
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK +44(0) 1865272690 +44(0) 1865275914
| |
Collapse
|
3
|
Liu Z, Bai Z, Chen X, Chen Y, Chen Z, Wang L, He Y, Guo Y. Advances and applications of biosensors in pulmonary hypertension. Respir Res 2025; 26:147. [PMID: 40234824 PMCID: PMC11998464 DOI: 10.1186/s12931-025-03221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/05/2025] [Indexed: 04/17/2025] Open
Abstract
Pulmonary hypertension (PH) is a serious disease characterized by elevated pulmonary artery pressure, with its prevalence and incidence continuously increasing, posing a threat to the lives of many patients worldwide. Due to the complex etiology of PH and the lack of specificity in clinical manifestations, there is currently a lack of effective and specific methods for early diagnosis in clinical practice. Biosensors hold significant promise for the early detection, therapeutic monitoring, prognostic evaluation, and personalized treatment of PH, owing to their rapid, sensitive, and highly selective characteristics. The rapid development of various types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and wireless biosensors, combined with the use of nanomaterials, makes the rapid and accurate detection of PH-related biomarkers possible. Despite the broad application prospects of biosensors in the field of PH, challenges remain in terms of sensitivity, selectivity, stability, and regulation. This article reviews the main pathophysiological mechanisms and commonly used biomarkers of PH, the types and principles of biosensors, and summarizes the progress of biosensors in PH research as well as the current challenges, in order to promote further in-depth research and the development of biosensor technology, thereby improving the diagnosis and treatment effects of PH. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Zhi Liu
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China
| | - Zhuojun Bai
- Department of Laboratory, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China
| | - Xiang Chen
- Department of Laboratory, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China
| | - Yajie Chen
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhu Chen
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Wang
- Department of Laboratory, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China.
| | - Yi He
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China.
| | - Yuan Guo
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of Cardiovascular Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, No. 116 South Changjiang Road, Zhuzhou, 412007, Hunan, China.
| |
Collapse
|
4
|
Tang Y, Li Y, Chen P, Zhong S, Yang Y. Nucleic Acid Aptamer-Based Sensors for Bacteria Detection: A Review. Bioessays 2025; 47:e202400111. [PMID: 39821800 DOI: 10.1002/bies.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
Bacteria have a significant impact on human production and life, endangering human life and health, so rapid detection of infectious agents is essential to improve human health. Aptamers, which are pieces of oligonucleotides (DNA or RNA) have been applied to biosensors for bacteria detection due to their high affinity, selectivity, robust chemical stability, and their compatibility with various signal amplification and signal transduction mechanisms. In this review, we summarize the different bacterial aptamers selected in recent years using SELEX technology and discuss the differences in optical and electrochemical bacterial aptamer sensors. In addition the technological developments and innovations in bacterial aptamer sensor technology are introduced. Combining new materials and methods, the efficiency and stability of the sensors have also been improved. This review summarizes the progress of current bacterial aptamer sensors based on their practical application status and provides an outlook on their future development.
Collapse
Affiliation(s)
- Yalan Tang
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yun Li
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Ping Chen
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Shian Zhong
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Yanjing Yang
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
5
|
Nastasijevic I, Kundacina I, Jaric S, Pavlovic Z, Radovic M, Radonic V. Recent Advances in Biosensor Technologies for Meat Production Chain. Foods 2025; 14:744. [PMID: 40077447 PMCID: PMC11899517 DOI: 10.3390/foods14050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Biosensors are innovative and cost-effective analytical devices that integrate biological recognition elements (bioreceptors) with transducers to detect specific substances (biomolecules), providing a high sensitivity and specificity for the rapid and accurate point-of-care (POC) quantitative detection of selected biomolecules. In the meat production chain, their application has gained attention due to the increasing demand for enhanced food safety, quality assurance, food fraud detection, and regulatory compliance. Biosensors can detect foodborne pathogens (Salmonella, Campylobacter, Shiga-toxin-producing E. coli/STEC, L. monocytogenes, etc.), spoilage bacteria and indicators, contaminants (pesticides, dioxins, and mycotoxins), antibiotics, antimicrobial resistance genes, hormones (growth promoters and stress hormones), and metabolites (acute-phase proteins as inflammation markers) at different modules along the meat chain, from livestock farming to packaging in the farm-to-fork (F2F) continuum. By providing real-time data from the meat chain, biosensors enable early interventions, reducing the health risks (foodborne outbreaks) associated with contaminated meat/meat products or sub-standard meat products. Recent advancements in micro- and nanotechnology, microfluidics, and wireless communication have further enhanced the sensitivity, specificity, portability, and automation of biosensors, making them suitable for on-site field applications. The integration of biosensors with blockchain and Internet of Things (IoT) systems allows for acquired data integration and management, while their integration with artificial intelligence (AI) and machine learning (ML) enables rapid data processing, analytics, and input for risk assessment by competent authorities. This promotes transparency and traceability within the meat chain, fostering consumer trust and industry accountability. Despite biosensors' promising potential, challenges such as scalability, reliability associated with the complexity of meat matrices, and regulatory approval are still the main challenges. This review provides a broad overview of the most relevant aspects of current state-of-the-art biosensors' development, challenges, and opportunities for prospective applications and their regular use in meat safety and quality monitoring, clarifying further perspectives.
Collapse
Affiliation(s)
- Ivan Nastasijevic
- Institute of Meat Hygiene and Technology, Kacanskog 13, 11000 Belgrade, Serbia
| | - Ivana Kundacina
- University of Novi Sad, Biosense Institute, Dr Zorana Djindjica 1a, 21000 Novi Sad, Serbia; (I.K.); (S.J.); (Z.P.); (M.R.); (V.R.)
| | - Stefan Jaric
- University of Novi Sad, Biosense Institute, Dr Zorana Djindjica 1a, 21000 Novi Sad, Serbia; (I.K.); (S.J.); (Z.P.); (M.R.); (V.R.)
| | - Zoran Pavlovic
- University of Novi Sad, Biosense Institute, Dr Zorana Djindjica 1a, 21000 Novi Sad, Serbia; (I.K.); (S.J.); (Z.P.); (M.R.); (V.R.)
| | - Marko Radovic
- University of Novi Sad, Biosense Institute, Dr Zorana Djindjica 1a, 21000 Novi Sad, Serbia; (I.K.); (S.J.); (Z.P.); (M.R.); (V.R.)
| | - Vasa Radonic
- University of Novi Sad, Biosense Institute, Dr Zorana Djindjica 1a, 21000 Novi Sad, Serbia; (I.K.); (S.J.); (Z.P.); (M.R.); (V.R.)
| |
Collapse
|
6
|
Kumar J, Xu M, Li YA, You SW, Doherty BM, Gardiner WD, Cirrito JR, Yuede CM, Benegal A, Vahey MD, Joshi A, Seehra K, Boon ACM, Huang YY, Puthussery JV, Chakrabarty RK. Capacitive Biosensor for Rapid Detection of Avian (H5N1) Influenza and E. coli in Aerosols. ACS Sens 2025. [PMID: 39982783 DOI: 10.1021/acssensors.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Airborne transmission via aerosols is a dominant route for the transmission of respiratory pathogens, including avian H5N1 influenza A virus and E. coli bacteria. Rapid and direct detection of respiratory pathogen aerosols has been a long-standing technical challenge. Herein, we develop a novel label-free capacitive biosensor using an interlocked Prussian blue (PB)/graphene oxide (GO) network on a screen-printed carbon electrode (SPCE) for direct detection of avian H5N1 and E. coli. A single-step electro-co-deposition process grows GO branches on the SPCE surface, while the PB nanocrystals simultaneously decorate around the GO branches, resulting in an ultrasensitive capacitive response at nanofarad levels. We tested the biosensor for H5N1 concentrations from 2.0 viral RNA copies/mL to 1.6 × 105 viral RNA copies/mL, with a limit of detection (LoD) of 56 viral RNA copies/mL. We tested it on E. coli for concentrations ranging from 2.0 bacterial cells/mL to 1.8 × 104 bacterial cells/mL, with a LoD of 5 bacterial cells/mL. The detection times for both pathogens were under 5 min. When integrated with a custom-built wet cyclone bioaerosol sampler, our biosensor could detect and quasi-quantitatively estimate H5N1 and E. coli concentrations in air with spatial resolutions of 93 viral RNA copies/m3 and 8 bacterial cells/m3, respectively. The quasi-quantification method, based on dilution and binary detection (positive/negative), achieved an overall accuracy of >90% for pathogen-laden aerosol samples. This biosensor is adaptable for multiplexed detection of other respiratory pathogens, making it a versatile tool for real-time airborne pathogen monitoring and risk assessment.
Collapse
Affiliation(s)
- Joshin Kumar
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Meng Xu
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yuezhi August Li
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shu-Wen You
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brookelyn M Doherty
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Woodrow D Gardiner
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - John R Cirrito
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Carla M Yuede
- Department of Psychiatry, Washington University in St. Louis, St. Louis, St. Louis, Missouri 63110, United States
| | - Ananya Benegal
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael D Vahey
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Astha Joshi
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Kuljeet Seehra
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Adrianus C M Boon
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States
- Departments Molecular Microbiology, and Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Yin-Yuan Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Joseph V Puthussery
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Neurology, Hope Center for Neurological Disease, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Rajan K Chakrabarty
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
7
|
Xue T, Gao L, Dai X, Ma S, Bu Y, Wan Y. Development of Robust MWCNT Hydrogel Electrochemical Biosensor for Pyocyanin Detection by Phosphotungstic Acid Modification. SENSORS (BASEL, SWITZERLAND) 2025; 25:557. [PMID: 39860926 PMCID: PMC11769391 DOI: 10.3390/s25020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor. The sensor is capable of achieving stable and continuous detection of PCN within the range of 5-100 μM across a variety of complex electrolyte environments. The limit of detection (LOD) is as low as 1.67 μM in PBS solution, 2.71 μM in LB broth, and 3.63 μM in artificial saliva. It was demonstrated that the introduction of PTA can complex with PVA through hydrogen bonding to form a stabilized hydrogel architecture, effectively addressing issues related to inadequate film adhesion and unstable sensing characteristics observed with MWCNTs/PVA alone. By adjusting the content of PTA within the hydrogel, an increase followed by a subsequent decrease in sensing current response was observed, elucidating how PTA regulates the active sites and conductive network of MWCNTs on the sensor surface. This study provides a new strategy for constructing stable carbon-based electrochemical sensors and offers feasible assistance towards advancing PCN electrochemical sensors for practical applications.
Collapse
Affiliation(s)
- Ting Xue
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; (T.X.); (S.M.)
| | - Lei Gao
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi’an 710043, China;
| | - Xianying Dai
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; (T.X.); (S.M.)
| | - Shenhui Ma
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; (T.X.); (S.M.)
| | - Yuyu Bu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China; (T.X.); (S.M.)
| | - Yi Wan
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi’an 710043, China;
| |
Collapse
|
8
|
Pillai RG, Azyat K, Chan NWC, Jemere AB. Rapid assembly of mixed thiols for toll-like receptor-based electrochemical pathogen sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7021-7032. [PMID: 39283241 DOI: 10.1039/d4ay00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we describe a rapid and facile fabrication of electrochemical sensors utilizing two different toll-like receptor (TLR) proteins as biorecognition elements to detect bacterial pathogen associated molecular patterns (PAMPs). Using potential-assisted self-assembly, binary mixtures of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (MCH), or MUA and an in-house synthesized zwitterionic sulfobetaine thiol (DPS) were assembled on a gold working electrode within 5 minutes, which is >200 times shorter than other TLR sensors' preparation time. Electrochemical methods and X-ray photoelectron microscopy were used to characterize the SAM layers. SAMs composed of the betaine terminated thiol exhibited superior resistance to nonspecific interactions, and were used to develop the TLR sensors. Biosensors containing two individually immobilized TLRs (TLR4 and TLR9) were fabricated on separate MUA-DPS SAM modified Au electrodes (MUA-DPS/Au) and tested for their response towards their respective PAMPs. The changes to electron transfer resistance in EIS of the TLR4/MUA-DPS/Au sensor showed a detection limit of 4 ng mL-1 for E. coli 0157:H7 endotoxin (lipopolysaccharide, LPS) and a dynamic range of up to 1000 ng mL-1. The TLR4-based sensor showed negligible response when tested with LPS spiked human plasma samples, showing no interference from the plasma matrix. The TLR9/MUA-DPS/Au sensor responded linearly up to 350 μg mL-1 bacterial DNA, with a detection limit of 7 μg mL-1. The rapid assembly of the TLR sensors, excellent antifouling properties of the mixed SAM assembly, small size and ease of operation of EIS hold great promise for the development of a portable and automated broad-spectrum pathogen detection and classification tool.
Collapse
Affiliation(s)
- Rajesh G Pillai
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Khalid Azyat
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Nora W C Chan
- Defence Research and Development Canada - Suffield Research Centre, Medicine Hat T1A 8K6, AB, Canada
| | - Abebaw B Jemere
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
- Department of Chemistry, Queen's University, Kingston K7L 3N6, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, ON, Canada
| |
Collapse
|
9
|
Flores-Ramírez AY, González-Estrada RR, Chacón-López MA, García-Magaña MDL, Montalvo-González E, Álvarez-López A, Rodríguez-López A, López-García UM. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors. Anal Biochem 2024; 693:115600. [PMID: 38964698 DOI: 10.1016/j.ab.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.
Collapse
Affiliation(s)
- Ana Yareli Flores-Ramírez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Ramsés Ramón González-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Martina Alejandra Chacón-López
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Alejandra Álvarez-López
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Aeropuerto, Centro Universitario, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Querétaro, Mexico
| | - Aarón Rodríguez-López
- Universidad Politécnica de Santa Rosa Jáuregui, Carretera Federal 57, Querétaro-San Luis Potosí km 31-150, Parque Industrial Querétaro, C.P. 76220, Santiago de Querétaro, Querétaro, Mexico.
| | - Ulises Miguel López-García
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico.
| |
Collapse
|
10
|
Ding S, Chen X, Yu B, Liu Z. Electrochemical biosensors for clinical detection of bacterial pathogens: advances, applications, and challenges. Chem Commun (Camb) 2024; 60:9513-9525. [PMID: 39120607 DOI: 10.1039/d4cc02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bacterial pathogens are responsible for a variety of human diseases, necessitating their prompt detection for effective diagnosis and treatment of infectious diseases. Over recent years, electrochemical methods have gained significant attention owing to their exceptional sensitivity and rapidity. This review outlines the current landscape of electrochemical biosensors employed in clinical diagnostics for the detection of bacterial pathogens. We categorize these biosensors into four types: amperometry, potentiometry, electrochemical impedance spectroscopy, and conductometry, targeting various bacterial components, including toxins, virulence factors, metabolic activity, and events related to bacterial adhesion and invasion. We discuss the merits and challenges associated with electrochemical methods, underscoring their rapid response, high sensitivity, and specificity, while acknowledging the necessity for skilled operators and potential interference from biological and environmental factors. Furthermore, we examine future prospects and potential applications of electrochemical biosensors in clinical diagnostics. While electrochemical biosensors offer a promising avenue for detecting bacterial pathogens, further research in optimizing the robustness and surmounting the challenges hindering their seamless integration into clinical practice is imperative.
Collapse
Affiliation(s)
- Shengyong Ding
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Xiaodi Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Yu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Liu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| |
Collapse
|
11
|
Samare-Najaf M, Dehghanian A, Asadikaram G, Mohamadi M, Jafarinia M, Savardashtaki A, Afshari A, Vakili S. Designing an Electrochemical Biosensor Based on Voltammetry for Measurement of Human Chorionic Gonadotropin. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:21. [PMID: 39234593 PMCID: PMC11373787 DOI: 10.4103/jmss.jmss_64_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 09/06/2024]
Abstract
Background Human chorionic gonadotropin (hCG) is a polypeptide hormone synthesized during pregnancy and is also upregulated in some pathologic conditions such as certain tumors. Its measurement is essential for diagnosing pregnancy and malignancies. Despite numerous attempts to introduce an accurate method capable of detecting hCG levels, several limitations are found in previous techniques. This study aimed to address the limitations of current hCG assay methods by designing an electrochemical biosensor based on voltammetry for the rapid, selective, inexpensive, and sensitive measurement of hCG levels. Methods A carbon paste electrode was prepared and functionalized by para-aminobenzoic acid. The primary anti-β-hCG monoclonal antibody was immobilized on the electrode surface by activating the carboxyl groups with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide solutions. The study also involved optimizing parameters such as the time for primary antibody fixation, the time for hCG attachment, and the pH of the hydrogen peroxide solution to maximize the biosensor response. Different concentrations of hCG hormone were prepared and loaded on the electrode surface, the secondary antibody labeled with HRP enzyme was applied, thionine in phosphate-buffered saline solution was placed on the electrode surface, and the differential pulse electrical signal was recorded. Results The linear range ranged from 5 to 100 mIU/ml, and the limit of detection was calculated as 0.11 mIU. The relative standard deviation was 3% and 2% for five repeated measurements of commercial standard samples with concentrations of 2 and 20 mIU/mL, respectively. The percent recovery was obtained from 98.3% to 101.5%. Conclusion The sensor represents a promising advancement in hCG level measurement, offering a potential solution to overcome the existing limitations in current diagnostic strategies. Simple and inexpensive design, detecting hCG in its important clinical range during early pregnancy, and successful measurement of hCG in real serum samples are the advantages of this sensor.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, Kerman Regional Blood Transfusion Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pathology, Molecular Pathology and Cytogenetics Division, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Asadikaram
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mohamadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afrooz Afshari
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Sahu PK, Gangwar R, Ramesh A, Rao KT, Vanjari SRK, Subrahmanyam C. Green-Synthesized Amino Carbons for Impedimetric Biosensing of E. coli O157:H7. ACS Infect Dis 2024; 10:1644-1653. [PMID: 38602317 DOI: 10.1021/acsinfecdis.3c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
This study describes the synthesis of amino-functionalized carbon nanoparticles derived from biopolymer chitosan using green synthesis and its application toward ultrasensitive electrochemical immunosensor of highly virulent Escherichia coli O157:H7 (E. coli O157:H7). The inherent advantage of high surface-to-volume ratio and enhanced rate transfer kinetics of nanoparticles is leveraged to push the limit of detection (LOD), without compromising on the selectivity. The prepared carbon nanoparticles were systematically characterized by employing CO2-thermal programmed desorption (CO2-TPD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-visible), and transmission electron microscopy (TEM). The estimated limit of detection of 0.74 CFU/mL and a sensitivity of 5.7 ((ΔRct/Rct)/(CFU/mL))/cm2 in the electrochemical impedance spectroscopy (EIS) affirm the utility of the sensor. The proposed biosensor displayed remarkable selectivity against interfering species, making it well suited for real-time applications. Moreover, the chitosan-derived semiconducting amino-functionalized carbon shows excellent sensitivity in a comparative analysis compared to highly conducting amine-functionalized carbon synthesized via chemical modification, demonstrating its vast potential as an E. coli sensor.
Collapse
Affiliation(s)
- Pravat Kumar Sahu
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Asha Ramesh
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Karri Trinadha Rao
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Siva Rama Krishna Vanjari
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Challapalli Subrahmanyam
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
13
|
Crapnell RD, Banks CE. Electroanalysis overview: additive manufactured biosensors using fused filament fabrication. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2625-2634. [PMID: 38639065 DOI: 10.1039/d4ay00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Additive manufacturing (3D-printing), in particular fused filament fabrication, presents a potential paradigm shift in the way electrochemical based biosensing platforms are produced, giving rise to a new generation of personalized and on-demand biosensors. The use of additive manufactured biosensors is unparalleled giving rise to unique customization, facile miniaturization, ease of use, economical but yet, still providing sensitive and selective approaches towards the target analyte. In this mini review, we focus on the use of fused filament fabrication additive manufacturing technology alongside different biosensing approaches that exclusively use antibodies, enzymes and associated biosensing materials (mediators) providing an up-to-date overview with future considerations to expand the additive manufacturing biosensors field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
14
|
Pan M, Zhao Y, Qiao J, Meng X. Electrochemical biosensors for pathogenic microorganisms detection based on recognition elements. Folia Microbiol (Praha) 2024; 69:283-304. [PMID: 38367165 DOI: 10.1007/s12223-024-01144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
Collapse
Affiliation(s)
- Mengting Pan
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yurui Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jinjuan Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
15
|
Hua X, Zhao T, Gui X, Jin B. A NiFe PBA/AuNPs nanocomposite sensitive immunosensor for electrochemical detection of PSA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1923-1933. [PMID: 38497295 DOI: 10.1039/d3ay02184j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In this paper, a label-free electrochemical immunosensor for sensitive detection of prostate antigen (PSA) was developed based on a NiFe PBA/AuNPs composite. The prostate antigen antibody was immobilized and the immunosensor was constructed by using a glassy carbon electrode modified with a nanocomposite consisting of nickel-iron Prussian blue analog (NiFe PBA) and gold nanoparticles (AuNPs). Due to the good biological affinity of AuNPs for biomolecules, as well as the porous nanostructure and regular shape of NiFe PBA, NiFe PBA/AuNPs nanocomposites significantly improve the electron transport rate, while achieving excellent performance for the sensor. Due to the interaction between the antibody and the antigen on the modified electrode, the current signal of the NiFe PBA itself is reduced due to the redox changes in Fe2+ and Fe3+, which can be determined by differential pulse voltammetry (DPV). Therefore, the monitoring of prostate antigen detection is realized. Under optimal experimental conditions, the immunosensor exhibited excellent detection performance with a dynamic response range from 0.5 pg mL-1 to 1000 pg mL-1 for the PSA concentration and a detection limit of 0.23 pg mL-1 (S/N = 3). In addition, the PSA aptasensor has good selectivity, high stability, and satisfactory reproducibility and has broad potential in clinical research and diagnostic applications.
Collapse
Affiliation(s)
- Xin Hua
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Tongxiao Zhao
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Xueqin Gui
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
16
|
Kandukuri TR, Prattis I, Oluwasanya P, Occhipinti LG. Pathogen Detection via Impedance Spectroscopy-Based Biosensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:856. [PMID: 38339574 PMCID: PMC10857222 DOI: 10.3390/s24030856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
This paper presents the development of a miniaturized sensor device for selective detection of pathogens, specifically Influenza A Influenza virus, as an enveloped virus is relatively vulnerable to damaging environmental impacts. In consideration of environmental factors such as humidity and temperature, this particular pathogen proves to be an ideal choice for our study. It falls into the category of pathogens that pose greater challenges due to their susceptibility. An impedance biosensor was integrated into an existing platform and effectively separated and detected high concentrations of airborne pathogens. Bio-functionalized hydrogel-based detectors were utilized to analyze virus-containing particles. The sensor device demonstrated high sensitivity and specificity when exposed to varying concentrations of Influenza A virus ranging from 0.5 to 50 μg/mL. The sensitivity of the device for a 0.5 μg/mL analyte concentration was measured to be 695 Ω· mL/μg. Integration of this pathogen detector into a compact-design air quality monitoring device could foster the advancement of personal exposure monitoring applications. The proposed sensor device offers a promising approach for real-time pathogen detection in complex environmental settings.
Collapse
Affiliation(s)
| | | | - Pelumi Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK; (T.R.K.); (I.P.)
| | - Luigi G. Occhipinti
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK; (T.R.K.); (I.P.)
| |
Collapse
|
17
|
Carducci NGG, Dey S, Hickey DP. Recent Developments and Applications of Microbial Electrochemical Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:149-183. [PMID: 38273205 DOI: 10.1007/10_2023_236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
This chapter provides a comprehensive overview of microbial electrochemical biosensors, which are a unique class of biosensors that utilize the metabolic activity of microorganisms to convert chemical signals into electrical signals. The principles and mechanisms of these biosensors are discussed, including the different types of microorganisms that can be used. The various applications of microbial electrochemical biosensors in fields such as environmental monitoring, medical diagnostics, and food safety are also explored. The chapter concludes with a discussion of future research directions and potential advancements in the field of microbial electrochemical biosensors.
Collapse
Affiliation(s)
- Nunzio Giorgio G Carducci
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sunanda Dey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Patil AVP, Yang PF, Yang CY, Gaur MS, Wu CC. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors. Crit Rev Biomed Eng 2024; 52:17-40. [PMID: 38523439 DOI: 10.1615/critrevbiomedeng.2023049469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
An outbreak of foodborne pathogens would cause severe consequences. Detecting and diagnosing foodborne diseases is crucial for food safety, and it is increasingly important to develop fast, sensitive, and cost-effective methods for detecting foodborne pathogens. In contrast to traditional methods, such as medium-based culture, nucleic acid amplification test, and enzyme-linked immunosorbent assay, electrochemical biosensors possess the advantages of simplicity, rapidity, high sensitivity, miniaturization, and low cost, making them ideal for developing pathogen-sensing devices. The biorecognition layer, consisting of recognition elements, such as aptamers, antibodies and bacteriophages, and other biomolecules or polymers, is the most critical component to determine the selectivity, specificity, reproducibility, and lifetime of a biosensor when detecting pathogens in a biosample. Furthermore, nanomaterials have been frequently used to improve electrochemical biosensors for sensitively detecting foodborne pathogens due to their high conductivity, surface-to-volume ratio, and electrocatalytic activity. In this review, we survey the characteristics of biorecognition elements and nanomaterials in constructing electrochemical biosensors applicable for detecting foodborne pathogens during the past five years. As well as the challenges and opportunities of electrochemical biosensors in the application of foodborne pathogen detection are discussed.
Collapse
Affiliation(s)
- Avinash V Police Patil
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Ping-Feng Yang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan R.O.C
| | - Chiou-Ying Yang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan R.O.C
| | - M S Gaur
- Department of Physics, Hindustan College of Science and Technology, Farah, Mathura, 281122 U.P., India
| | | |
Collapse
|
19
|
Gangwar R, Ray D, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Toll-like receptor-immobilized carbon paste electrodes with plasma functionalized amine termination: Towards real-time electrochemical based triaging of gram-negative bacteria. Biosens Bioelectron 2023; 241:115674. [PMID: 37717423 DOI: 10.1016/j.bios.2023.115674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Chronic wounds caused due to bacterial biofilms are detrimental to a patient, and an immediate diagnosis of these bacteria can aid in an effective treatment, which is still an unmet clinical need. An instant and accurate identification of bacterial type could be made by utilizing the Toll-Like Receptors (TLRs) combined with Myeloid Differentiation factor 2 (MD-2). Given this, we have developed an electrochemical sensing platform to identify the gram-negative (gram-ve) bacteria using TLR4/MD-2 complex. The nonthermal plasma (NTP) technique was utilized to functionalize amine groups onto the carbon surface to fabricate cost-effective carbon paste working electrodes (CPEs). The proposed electrochemical sensor platform with a specially engineered electrochemical cell (E-Cell) identified the Escherichia coli (E. coli) in a wide linear range of 1.5×10° - 1.5×106 C.F.U./mL, accounting for a very low detection limit of 0.087 C.F.U./mL. The novel and cost-effective sensor platform identified gram-ve bacteria predominantly in a mixture of gram positive (gram+ve) bacteria and fungi. Further, towards real-time detection of bacteria and point-of-care (PoC) applications, the effect of the pond water matrix was studied, which was minimal, and the sensor could identify E. coli concentrations selectively, showing the potential application of the proposed platform towards real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | - Debjyoti Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502284, India; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | |
Collapse
|
20
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
21
|
He X, Wang S, Ma C, Xu GR, Ma J, Xie H, Zhu W, Liu H, Wang L, Wang Y. Utilizing Electrochemical Biosensors as an Innovative Platform for the Rapid and On-Site Detection of Animal Viruses. Animals (Basel) 2023; 13:3141. [PMID: 37835747 PMCID: PMC10571726 DOI: 10.3390/ani13193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Animal viruses are a significant threat to animal health and are easily spread across the globe with the rise of globalization. The limitations in diagnosing and treating animal virus infections have made the transmission of diseases and animal deaths unpredictable. Therefore, early diagnosis of animal virus infections is crucial to prevent the spread of diseases and reduce economic losses. To address the need for rapid diagnosis, electrochemical sensors have emerged as promising tools. Electrochemical methods present numerous benefits, including heightened sensitivity and selectivity, affordability, ease of use, portability, and rapid analysis, making them suitable for real-time virus detection. This paper focuses on the construction of electrochemical biosensors, as well as promising biosensor models, and expounds its advantages in virus detection, which is a promising research direction.
Collapse
Affiliation(s)
- Xun He
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Shan Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Caoyuan Ma
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Guang-Ri Xu
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Jinyou Ma
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Hongbing Xie
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Wei Zhu
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
| | - Hongyang Liu
- Shuangliao Animal Disease Control Center, Siping 136400, China;
| | - Lei Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Yimin Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China; (X.H.); (S.W.); (C.M.); (G.-R.X.); (J.M.); (H.X.); (W.Z.)
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| |
Collapse
|
22
|
Zhang QB, Zhu P, Zhang S, Rong YJ, Huang ZA, Sun LW, Cai T. Hypervirulent Klebsiella pneumoniae detection methods: a minireview. Arch Microbiol 2023; 205:326. [PMID: 37672079 DOI: 10.1007/s00203-023-03665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp), characterized by high virulence and epidemic potential, has become a global public health challenge. Therefore, improving the identification of hvKp and enabling earlier and faster detection in the community to support subsequent effective treatment and prevention of hvKp are an urgent issue. To address these issues, a number of assays have emerged, such as String test, Galleria mellonella infection test, PCR, isothermal exponential amplification, and so on. In this paper, we have collected articles on the detection methods of hvKp and conducted a retrospective review based on two aspects: traditional detection technology and biomarker-based detection technology. We summarize the advantages and limitations of these detection methods and discuss the challenges as well as future directions, hoping to provide new insights and references for the rapid detection of hvKp in the future. The aim of this study is to focus on the research papers related to Hypervirulent Klebsiella pneumoniae involving the period from 2012 to 2022. We conducted searches using the keywords "Hypervirulent Klebsiella pneumoniae, biomarkers, detection techniques" on ScienceDirect and Google Scholar. Additionally, we also searched on PubMed, using MeSH terms associated with the keywords (such as Klebsiella pneumoniae, Klebsiella Infections, Virulence, Biomarkers, diagnosis, etc.).
Collapse
Affiliation(s)
- Qi-Bin Zhang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Peng Zhu
- Ningbo No. 2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yan-Jing Rong
- Ningbo No. 2 Hospital, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zuo-An Huang
- Ningbo No. 2 Hospital, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | | | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China.
| |
Collapse
|
23
|
Fernández H, Zon MA, Maccio SA, Alaníz RD, Di Tocco A, Carrillo Palomino RA, Cabas Rodríguez JA, Granero AM, Arévalo FJ, Robledo SN, Pierini GD. Multivariate Optimization of Electrochemical Biosensors for the Determination of Compounds Related to Food Safety-A Review. BIOSENSORS 2023; 13:694. [PMID: 37504093 PMCID: PMC10377565 DOI: 10.3390/bios13070694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
We summarize the application of multivariate optimization for the construction of electrochemical biosensors. The introduction provides an overview of electrochemical biosensing, which is classified into catalytic-based and affinity-based biosensors, and discusses the most recent published works in each category. We then explore the relevance of electrochemical biosensors for food safety analysis, taking into account analytes of different natures. Then, we describe the chemometrics tools used in the construction of electrochemical sensors/biosensors and provide examples from the literature. Finally, we carefully discuss the construction of electrochemical biosensors based on design of experiments, including the advantages, disadvantages, and future perspectives of using multivariate optimization in this field. The discussion section offers a comprehensive analysis of these topics.
Collapse
Affiliation(s)
- Héctor Fernández
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - María Alicia Zon
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sabrina Antonella Maccio
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Rubén Darío Alaníz
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Aylen Di Tocco
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Roodney Alberto Carrillo Palomino
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Jose Alberto Cabas Rodríguez
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Adrian Marcelo Granero
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Fernando J Arévalo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sebastian Noel Robledo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
- Departamento de Tecnología Química (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Gastón Darío Pierini
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| |
Collapse
|
24
|
Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:867. [PMID: 36903746 PMCID: PMC10005622 DOI: 10.3390/nano13050867] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ali Darraj
- Department of Medicine, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226025, India
| | - Abdulaziz Alalwan
- University Family Medicine Center, Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, Riyadh 2925, Saudi Arabia
| | - Osamah Alamri
- Consultant of Family Medicine, Ministry of Health, Second Health Cluster, Riyadh 2925, Saudi Arabia
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
25
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:246. [PMID: 36832012 PMCID: PMC9954504 DOI: 10.3390/bios13020246] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/22/2023]
Abstract
Using pathogen-infected food that can be unhygienic can result in severe diseases and an increase in mortality rate among humans. This may arise as a serious emergency problem if not appropriately restricted at this point of time. Thus, food science researchers are concerned with precaution, prevention, perception, and immunity to pathogenic bacteria. Expensive, elongated assessment time and the need for skilled personnel are some of the shortcomings of the existing conventional methods. Developing and investigating a rapid, low-cost, handy, miniature, and effective detection technology for pathogens is indispensable. In recent times, there has been a significant scope of interest for microfluidics-based three-electrode potentiostat sensing platforms, which have been extensively used for sustainable food safety exploration because of their progressively high selectivity and sensitivity. Meticulously, scholars have made noteworthy revolutions in signal enrichment tactics, measurable devices, and portable tools, which can be used as an allusion to food safety investigation. Additionally, a device for this purpose must incorporate simplistic working conditions, automation, and miniaturization. In order to meet the critical needs of food safety for on-site detection of pathogens, point-of-care testing (POCT) has to be introduced and integrated with microfluidic technology and electrochemical biosensors. This review critically discusses the recent literature, classification, difficulties, applications, and future directions of microfluidics-based electrochemical sensors for screening and detecting foodborne pathogens.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Renalyx Healthcare Systems (P) Limited, Bengaluru 560004, Karnataka, India
- School of Electronics and Communication Engineering, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
26
|
Neelam A, Tabassum S. Optical Sensing Technologies to Elucidate the Interplay between Plant and Microbes. MICROMACHINES 2023; 14:195. [PMID: 36677256 PMCID: PMC9866067 DOI: 10.3390/mi14010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Plant-microbe interactions are critical for ecosystem functioning and driving rhizosphere processes. To fully understand the communication pathways between plants and rhizosphere microbes, it is crucial to measure the numerous processes that occur in the plant and the rhizosphere. The present review first provides an overview of how plants interact with their surrounding microbial communities, and in turn, are affected by them. Next, different optical biosensing technologies that elucidate the plant-microbe interactions and provide pathogenic detection are summarized. Currently, most of the biosensors used for detecting plant parameters or microbial communities in soil are centered around genetically encoded optical and electrochemical biosensors that are often not suitable for field applications. Such sensors require substantial effort and cost to develop and have their limitations. With a particular focus on the detection of root exudates and phytohormones under biotic and abiotic stress conditions, novel low-cost and in-situ biosensors must become available to plant scientists.
Collapse
Affiliation(s)
| | - Shawana Tabassum
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|