1
|
Guduru RKR, Ramineni J, M M R, D S, Bharathi H. Comparative Analysis of SCM Muscle Fatigue in Office Workers with Hunched Posture: A Study on Chronic Lower Back Pain versus Non-Affected Individuals. Biotechnol Appl Biochem 2025. [PMID: 39901562 DOI: 10.1002/bab.2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/18/2025] [Indexed: 02/05/2025]
Abstract
This study examines the disparities between people suffering from chronic lower back pain (LBP) and those who do not, with a particular focus on how extended periods of sitting with poor posture affect fatigue and discomfort in the sternocleidomastoid (SCM) muscles among office employees. Eighty university staff and students were enrolled in the study by matching age, BMI, and type of job. They were split into two groups later: a control group (n = 40) with no back pain and a pain group (n = 40) with a history of lower back pain (LBP). Pain intensity was measured using a Visual Analog Scale (VAS), while SCM muscle activity was measured via surface electromyography (sEMG) during both normal and hunched postures. Participants maintained each posture for a specified duration of 30 min. The study revealed that Pain_Hunched group exhibited significantly reduced SCM muscle activity compared to the Control_Hunched group (mean difference = -9.728, p < 0.001). Furthermore, the SCM muscle activity in the Pain_Hunched group was significantly lower than that of the Pain_Normal group (mean difference = -2.769, p = 0.041). These results highlight the heightened SCM muscle activity during hunched postures, particularly in individuals with LBP. The results emphasize the crucial role posture plays in influencing SCM muscle activation and pain perception among individuals with LBP. These results imply that correcting one's posture could be a useful pain management intervention technique for this population. The long-term impacts of postural adjustments and their possible advantages in clinical contexts, such as incorporating ergonomic interventions or specific exercise regimens, should be investigated in future studies.
Collapse
Affiliation(s)
| | | | | | - Sridhar D
- Alliance College of Engineering and Design, Alliance University - Central Campus, Bengaluru, India
| | - Hema Bharathi
- Department of Physical Science and Information Technology, AEC&RI, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
2
|
Li X, Lv H, Luo W, Yang W, Kong L, Zhu Q, Zeng L. Recent advances in detection techniques for vitamin analysis: A comprehensive review. Food Chem X 2025; 26:102226. [PMID: 39995404 PMCID: PMC11848456 DOI: 10.1016/j.fochx.2025.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Vitamins are vital micronutrients that play critical roles in human growth and development. However, vitamins are highly susceptible to degradation by light, heat, oxygen, and interactions with other food components during processing and storage. Additionally, insufficient intake or malabsorption can lead to vitamin deficiencies, resulting in various diseases. Since the human body cannot synthesize most vitamins, they must be sourced through diet or supplementation. Therefore, vitamin analysis is critical for meeting human nutritional needs and ensuring quality control. In recent years, significant advancements have been made in vitamin analysis. Here, we propose a comprehensive and critical evaluation of detection methods for water- and fat-soluble vitamins that have been studied over the past five years, including microbiology-, spectroscopy-, liquid chromatography-mass spectrometry-, electrochemistry-, sensor-, and immunoassay-based analysis techniques. Notably, immunoassays are highlighted for their simplicity, affordability, and high sensitivity. Finally, the current challenges and prospects of vitamin analysis are discussed.
Collapse
Affiliation(s)
- Xiangrui Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Huan Lv
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wencan Luo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - WenJia Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Linghong Kong
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qiujin Zhu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Lu Zeng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the potential of titanium dioxide nanoparticles: an insight into green synthesis, optimizations, characterizations, and multifunctional applications. Microb Cell Fact 2024; 23:341. [PMID: 39710687 DOI: 10.1186/s12934-024-02609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and environmental applications.
Collapse
Affiliation(s)
- Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Waleed M El Kazzaz
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
4
|
K J A, Reddy S, B L, Harish KN, N M Y, R P, S M. MoS 2_CNTs_aerogel-based PEDOT nanocomposite electrochemical sensor for simultaneous detection of chloramphenicol and furazolidone in food samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:595-610. [PMID: 39287337 DOI: 10.1080/03601234.2024.2399461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Toxic intermediates in food caused by chloramphenicol (CP) and furazolidone (FZ) have gained interest in research toward their detection. Hence, fast, reliable, and accurate detection of CP and FZ in food products is of utmost importance. Here, a novel molybdenum disulfide-connected carbon nanotube aerogel/poly (3,4-ethylenedioxythiophene) [MoS2/CNTs aerogel/PEDOT] nanocomposite materials are constructed and deposited on the pretreated carbon paste electrode (PCPE) by a facile eletropolymerization method. The characterization of MoS2/CNTs aerogel/PEDOT nanocomposite was analyzed by scanning electron microscopy (SEM), cyclic voltammetry, and differential pulse voltammetry. The modified MoS2/CNTs aerogel/PEDOT nanocomposite has improved sensing characteristics for detecting CP and FZ in PBS solution. For this work, we have studied various parameters like electrocatalytic activity, the effect of scan rates, pH variation studies, and concentration variation studies. Under optimum conditions, the modified electrode exhibited superior sensing ability compared to the bare and pretreated CPE. This improvement in electrocatalytic activity can be the higher conductivity, larger surface area, increased heterogeneous rate constant, and presence of more active sites in the MoS2/CNTs aerogel/PEDOT nanocomposite. The modified electrode demonstrated distinct electrochemical sensing toward the individual and simultaneous analysis of CP and FZ with a high sensitivity of 0.701 µA. µM-1 .cm-2 for CP and 0.787 µA. µM-1 .cm-2 for FZ and a low detection limit of 3.74 nM for CP and 3.83 nM for FZ with good reproducibility, repeatability, and interferences. Additionally, the prepared sensor effectively detects CP and FZ in food samples (honey and milk) with an acceptable recovery range and a relative standard deviation below 4%.
Collapse
Affiliation(s)
- Abhishek K J
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Sathish Reddy
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Lakshmi B
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - K N Harish
- Department of Chemistry, B.M.S. College of Engineering, Bangalore, Karnataka, India
| | - Yathish N M
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Pavanashree R
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| | - Madhumitha S
- Department of Chemistry, School of Applied Science, REVA University, Bangalore, India
| |
Collapse
|
5
|
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, Kim SH. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors. Crit Rev Anal Chem 2024:1-21. [PMID: 39269682 DOI: 10.1080/10408347.2024.2399202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Jung-Tae Kim
- Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration (RDA), Jellabuk-do, Republic of Korea
| | - Won-Ryeol Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ji-Ye Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Bum-Su Jung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Jin Choi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Yu Y, Li H, Song Y, Mao B, Huang S, Shao Z, Wang D, Yan K, Zhang S. Preparation of Fresh-Keeping Paper Using Clove Essential Oil through Pickering Emulsion and Maintaining the Quality of Postharvest Cherry Tomatoes. Foods 2024; 13:1331. [PMID: 38731701 PMCID: PMC11083675 DOI: 10.3390/foods13091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This study focused on developing a Pickering emulsion fresh-keeping paper that contained clove essential oil (CEO). Cherry tomatoes served as the test material for assessing the preservative efficacy of fresh-keeping paper. The results showed that Pickering emulsion had strong stability. Additionally, the fresh-keeping paper had a good antioxidant activity and sustained-release effect on CEO. In terms of the preservation effect, 0.75 wt% CEO Pickering emulsion paper reduced the decay incidence and weight loss of cherry tomatoes during 12-day storage. Fresh-keeping paper could also play a positive role in protecting the sensory index and color difference of tomatoes. It slowed the decline rate of soluble solid concentration (SSC) and titrable acid (TA). The vitamin C (Vc) and hardness of preserved tomatoes using fresh-keeping paper were maintained at a high level. The paper also inhibited the growth of microorganisms significantly. Therefore, 0.75 wt% CEO Pickering emulsion fresh-keeping paper displayed considerable potential for application in the preservation of postharvest fruits and vegetables. It is a novel fruit and vegetable preservation material worthy of development.
Collapse
Affiliation(s)
- Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (H.L.); (Y.S.); (B.M.); (S.H.); (Z.S.); (D.W.); (K.Y.); (S.Z.)
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Moulya KP, Manjunatha JG, Osman SM, Ataollahi N. A novel and efficient voltammetric sensor for the simultaneous determination of alizarin red S and tartrazine by using poly(leucine) functionalized carbon paste electrode. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:103-112. [PMID: 38613456 DOI: 10.1080/10934529.2024.2339160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
In the current work, a rapid, selective, and sensitive technique was developed for the detection of Alizarin Red S (ARS) by applying poly leucine modified carbon paste electrode (PLMCPE). Electrochemical impedance spectroscopy (EIS) and Scanning electron microscopy (SEM) were utilized to study the surface morphology of unmodified carbon paste electrode (UMCPE) and PLMCPE. The active surface area for UMCPE and PLMCPE was found to be 0.0012 cm2 and 0.0026 cm2 respectively. The electrochemical response of ARS at UMCPE and PLMCPE was analyzed using cyclic voltammetry (CV) in the potential window of 0.4 to 1.0 V. The cyclic voltammogram obtained for varying the pH of 0.2 M phosphate buffer (PB) solution showed maximum current for the oxidation of ARS at pH 6.5. The electrochemical reaction of ARS was found to be irreversible and adsorption controlled. The effect of variation of concentration of ARS on the oxidation peak current was evaluated using CV and linear scan voltammetry (LSV). A linear relationship between the concentration variation and current was obtained in the linear range of 1.5 μM-3.5 μM and 0.2 μM-5.0 μM for CV and LSV respectively. The limit of detection (LOD) of 0.68 μM for the CV method and 0.29 μM for the LSV method was exhibited by the developed sensor. The simultaneous study of ARS along with tartrazine (TZ) showed good selectivity for ARS. The interferents of foreign molecules showed no effect on the selectivity of the electrode. The applicability of PLMCPE on real samples gave good recovery ranging from 97.46-101.2%; hence, the sensor can be utilized on real samples. The developed sensor has good stability and sensitivity.
Collapse
Affiliation(s)
- Karnayana Prasad Moulya
- Department of Chemistry, FMKMC College, Mangalore University Constituent College, Madikeri, Karnataka, India
| | - Jamballi G Manjunatha
- Department of Chemistry, FMKMC College, Mangalore University Constituent College, Madikeri, Karnataka, India
| | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Narges Ataollahi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| |
Collapse
|
8
|
Lu S, Zhang K, Liu Y, Zhan X, Savari R. Polymeric nanocomposite electrode for enhanced electrochemical detection of α-lipoic acid: Application in neuroinflammation prevention and clinical analysis. ENVIRONMENTAL RESEARCH 2024; 245:117369. [PMID: 37827372 DOI: 10.1016/j.envres.2023.117369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Using poly (vanillin-co-chitosan)/functionalized MWCNTs/GCE (PV-CS/f-MWCNTs/GCE) as a polymeric nanocomposite modified electrode, the present investigation has been conducted on the electrochemical detection of α-lipoic acid (α-LA) to prevent the activation of microglia inflammation of the nervous system. The manufacture of modified polymeric nanocomposite electrodes was carried out using the established electropolymerization process. Field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analyses of structure revealed that the electropolymerization of poly (vanillin-co-chitosan) on the surface of the f-MWCNTs modified electrode was successful. Vanillin-co-chitosan electropolymerization on f-MWCNTs as electroactive sheets can enhance the signal for α-LA electrochemical sensors, according to research on the electrochemical characteristics utilizing cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methodologies. The PV-CS/f-MWCNTs/GCE demonstrated that it had a sensitivity of 0.04664 μA/μM, a detection limit of 0.012 μM, and an excellent response, linear range, and wide linear range to α-LA from 0 to 3000 μM. The results of the application of PV-CS/f-MWCNTs/GCE for determining the concentration of α-LA in a prepared real sample of human serum by DPV and human lipoic acid ELISA Kit analyses via standard addition method illustrated the substantial conformity between the findings of both assays. The results of the DPV analyses resulted in acceptable recovery values (97.60%-99.10%) and appropriate values of the Relative Standard Deviation (RSD) (3.58%-5.07%), which demonstrated the great applicability and accuracy of the results of PV-CS/f-MWCNTs/GCE for determining α-LA concentration in biological fluids and pharmaceutical specimens.
Collapse
Affiliation(s)
- Shenyi Lu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Ke Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yu Liu
- Guangxi Medical university, Nanning, 530021, China
| | | | - Rojan Savari
- School of Physics, College of Science, University of Tehran, North-Kargar Street, Tehran, 1439955961, Iran
| |
Collapse
|
9
|
Kurian KJ, De Maere J, Schazmann B. Pencil and Gold Electrode Materials for the Electrochemical Study and Analysis of Dinitrotoluene. ACS OMEGA 2024; 9:9375-9382. [PMID: 38434862 PMCID: PMC10905693 DOI: 10.1021/acsomega.3c08741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
The aim of our work was to investigate practical and robust methods for the electrochemical analysis of DNT. Using gold WEs, we differentiated between the nitro substituents in 2,4- and 2,6-DNT in organic electrolyte systems. Switching to an aqueous electrolyte (2 M H2SO4), a limit of detection (LOD) of 0.158 ppm (0.87 μM) and a limit of quantitation (LOQ) of 0.48 ppm (2.64 μM) were observed for 2,4-DNT. Subsequent simplification to wooden craft pencils as WEs in aqueous 2 M H2SO4 electrolyte achieved a LOD of 4.8 ppm (26.48 μM) and a LOQ of 14.6 ppm (80.54 μM) for 2,4-DNT. Alongside this easily renewable WE choice, 2 M H2SO4 was found to improve the solubility of DNT in aqueous media and has not been previously reported as an electrolyte in DNT electroanalysis. On testing a range of pencil grades from 4H to 8B, it was found that 4B gave the best sensitivity. The work serves as a preliminary study into materials that, through their simplicity and availability, may be suitable for the development of a robust and portable instrumental method through the electrochemical work presented here.
Collapse
Affiliation(s)
- Kevin J. Kurian
- Applied
Electrochemistry Group (AEG), FOCAS Research
Institute − Technological University Dublin, Aungier Street, Dublin 8, Ireland
| | - Julie De Maere
- Odisee
University of Applied Sciences, Technology Campus Ghent, Gebroeders de Smetstraat 1, 9000 Gent, Belgium
| | - Benjamin Schazmann
- School
of Chemical and BioPharmaceutical Sciences, CQ 441, Technological University Dublin, Grangegorman Lower, Dublin 7, Ireland
| |
Collapse
|
10
|
Fernández H, Zon MA, Maccio SA, Alaníz RD, Di Tocco A, Carrillo Palomino RA, Cabas Rodríguez JA, Granero AM, Arévalo FJ, Robledo SN, Pierini GD. Multivariate Optimization of Electrochemical Biosensors for the Determination of Compounds Related to Food Safety-A Review. BIOSENSORS 2023; 13:694. [PMID: 37504093 PMCID: PMC10377565 DOI: 10.3390/bios13070694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
We summarize the application of multivariate optimization for the construction of electrochemical biosensors. The introduction provides an overview of electrochemical biosensing, which is classified into catalytic-based and affinity-based biosensors, and discusses the most recent published works in each category. We then explore the relevance of electrochemical biosensors for food safety analysis, taking into account analytes of different natures. Then, we describe the chemometrics tools used in the construction of electrochemical sensors/biosensors and provide examples from the literature. Finally, we carefully discuss the construction of electrochemical biosensors based on design of experiments, including the advantages, disadvantages, and future perspectives of using multivariate optimization in this field. The discussion section offers a comprehensive analysis of these topics.
Collapse
Affiliation(s)
- Héctor Fernández
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - María Alicia Zon
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sabrina Antonella Maccio
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Rubén Darío Alaníz
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Aylen Di Tocco
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Roodney Alberto Carrillo Palomino
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Jose Alberto Cabas Rodríguez
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Adrian Marcelo Granero
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Fernando J Arévalo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sebastian Noel Robledo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
- Departamento de Tecnología Química (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Gastón Darío Pierini
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| |
Collapse
|
11
|
Vargas‐Varela A, Cardenas‐Riojas AA, Nagles E, Hurtado J. Detection of Allura Red in Food Samples Using Carbon Paste Modified with Lanthanum and Titanium Oxides. ChemistrySelect 2023. [DOI: 10.1002/slct.202204737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anthony Vargas‐Varela
- Facultad de Química e Ing. Química Universidad Nacional Mayor de San Marcos. Lima Perú 07016
| | | | - Edgar Nagles
- Facultad de Química e Ing. Química Universidad Nacional Mayor de San Marcos. Lima Perú 07016
| | - John Hurtado
- Departamento de Química Universidad de los Andes Bogotá Colombia
| |
Collapse
|
12
|
Moulya KP, Manjunatha JG, Aljuwayid AM, Habila MA, Sillanpaa M. Polymer modified Carbon Paste Electrode as the Sensor for the Analysis of Tartrazine. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|