1
|
Aerathupalathu Janardhanan J, Yu HH. Recent advances in PEDOT/PProDOT-derived nano biosensors: engineering nano assemblies for fostering advanced detection platforms for biomolecule detection. NANOSCALE 2024; 16:17202-17229. [PMID: 39229680 DOI: 10.1039/d4nr01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the recent unprecedented emergence of a global pandemic, unknown diseases and new metabolic patterns expressing serious health issues, the requirement to develop new diagnostic tools, therapeutic solutions, and healthcare and environmental monitoring systems are significantly higher in the present situation. Considering that high sensitivity, selectivity, stability and a low limit of detection (LOD) are inevitable requirements for an ideal biosensor, the class of conducting polymers of poly(3,4-ethylenedioxythiophene) (PEDOT) and recently poly(3,4-propylenedioxythiophene) (PProDOT) materials have been demonstrated to be promising candidates for designing sensor devices. Nanostructure engineering of these polymeric materials with tunable surface properties and side chain functionalization to enable sensor probe conjugation combined with signal amplification devices such as OECTs and OFETs can fulfil the requirements of next-generation smart nano-biosensors. In this review, we analyze recent reports on PEDOT/PProDOT nanostructures and nanocomposites for developing nano-biosensors and their application in the detection of different biomarkers, environmental, toxicology, marine and aquatic monitoring, forensic and illicit drug detection, etc. In addition, we discuss the challenges associated with the design of PEDOT/PProDOT nano-biosensors and future perspectives on the exploration of novel sensor platforms, particularly PProDOT derivatives for bioelectronics and novel design strategies for next-generation smart nano-biosensors.
Collapse
Affiliation(s)
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory (SOML), Institute of Chemistry, Academia Sinica No. 128, Sec. 2, Nankang District, Taipei City 115201, Taiwan.
| |
Collapse
|
2
|
Ott CE. Strategies for assessing the limit of detection in voltammetric methods: comparison and evaluation of approaches. Analyst 2024; 149:4295-4309. [PMID: 38990215 PMCID: PMC11300140 DOI: 10.1039/d4an00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The realm of analytical chemistry continues to struggle with defining and evaluating the limit of detection in analytical methods in the sense that a multitude of definitions, criteria, caveats, and methods have been proposed, developed, and adopted across disciplines. The last decade has seen a surge in the growth of electrochemical methods and studies in the field of forensic science and forensic chemistry. While many disciplines within forensic science have established method validation guidelines, the historical and current lack of electrochemical methods within forensic laboratories throughout the United States has left a major gap in knowledge, inhibiting the adoption and utilization of electrochemistry, which may serve as a powerful tool in many subdisciplines of forensics. As such, this work begins this discussion by focusing first on the limit of detection (LOD), with application toward both qualitative and quantitative methods. Both inorganic (ferrocyanide and lead) and organic (diphenylamine, naltrexone, and acetaminophen) target analytes were analyzed via two common voltammetry methods: cyclic voltammetry and square-wave voltammetry. The LOD for each analyte was estimated and/or calculated following a variety of literature-described methods and compared. The accuracy and reliability of these LOD characteristics based on the experimental data is described herein along with suggestions and recommendations. This manuscript is intended to compare the resulting LOD values from various methods and provide a starting point for the incorporation of electrochemistry into the forensic science laboratory, beginning a focused discussion on the development of validation guidelines and parameters needed for the adoption of this technology in forensic laboratories in order to meet the standards required by the criminal justice system.
Collapse
Affiliation(s)
- Colby E Ott
- National Institute of Standards and Technology, USA.
| |
Collapse
|
3
|
Chen B, He J, Tian K, Qu J, Hong L, Lin Q, Yang K, Ma L, Xu X. Research Progress on Detection of Pathogens in Medical Wastewater by Electrochemical Biosensors. Molecules 2024; 29:3534. [PMID: 39124939 PMCID: PMC11314202 DOI: 10.3390/molecules29153534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The detection of pathogens in medical wastewater is crucial due to the high content of pathogenic microorganisms that pose significant risks to public health and the environment. Medical wastewater, which includes waste from infectious disease and tuberculosis facilities, as well as comprehensive medical institutions, contains a variety of pathogens such as bacteria, viruses, fungi, and parasites. Traditional detection methods like nucleic acid detection and immunological assays, while effective, are often time-consuming, expensive, and not suitable for rapid detection in underdeveloped areas. Electrochemical biosensors offer a promising alternative with advantages including simplicity, rapid response, portability, and low cost. This paper reviews the sources of pathogens in medical wastewater, highlighting specific bacteria (e.g., E. coli, Salmonella, Staphylococcus aureus), viruses (e.g., enterovirus, respiratory viruses, hepatitis virus), parasites, and fungi. It also discusses various electrochemical biosensing techniques such as voltammetry, conductometry, impedance, photoelectrochemical, and electrochemiluminescent biosensors. These technologies facilitate the rapid, sensitive, and specific detection of pathogens, thereby supporting public health and environmental safety. Future research may should pay more attention on enhancing sensor sensitivity and specificity, developing portable and cost-effective devices, and innovating detection methods for diverse pathogens to improve public health protection and environmental monitoring.
Collapse
Affiliation(s)
- Bangyao Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Kewei Tian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jie Qu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lihui Hong
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Qin Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing College of New Materials and Chemical Engineering, Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| |
Collapse
|
4
|
Miyagawa A, Oshiyama K, Nagatomo S, Nakatani K. Biosensing of DNA through difference in interaction between microparticle and glass plate based on particle dissociation in a coupled acoustic-gravitational field. Talanta 2024; 268:125369. [PMID: 37918248 DOI: 10.1016/j.talanta.2023.125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
A novel approach for detecting DNA without labeling the target DNA was developed based on the particle dissociation behavior in a combined acoustic-gravitational field. The particles, which are tethered on a glass plate via intermolecular interactions (Fbind), are dissociated by the resultant force of the acoustic radiation force (Fac), which is a function of the applied voltage (V), and the sedimentation force. In this system, V required for particle dissociation is dependent on Fbind. The differences in Fbind were exploited for detecting the target DNA. A glass plate and polystyrene (PS) particles were respectively modified with anchor and capture DNAs. The target DNA induces immobilization of the PS particles on the glass plate through sandwich hybridization, with a large accompanying Fbind. In the absence of the target DNA, the anchor DNA on the glass plate interacted weakly with the capture DNA on the PS particles via direct binding (small Fbind). The particle dissociation behavior varies based on the concentration of the target DNA due to changes in the ratio of the PS particles tethered through direct binding and sandwich hybridization. Target DNA with a length exceeding 12 base pairs (bps) can be detected on the picomolar scale at concentrations of 10-12 to 10-5 M. This detection scheme was applied to a specific sequence of HIV-2 with 20 bps, achieving a picomolar detection limit.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Kengo Oshiyama
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
5
|
Foguel MV, Zamora V, Ojeda J, Reed M, Bennett A, Calvo-Marzal P, Gerasimova YV, Kolpashchikov D, Chumbimuni-Torres KY. DNA nanotechnology for nucleic acid analysis: sensing of nucleic acids with DNA junction-probes. Analyst 2024; 149:968-974. [PMID: 38197474 PMCID: PMC11439508 DOI: 10.1039/d3an01707a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
DNA nanotechnology deals with the design of non-naturally occurring DNA nanostructures that can be used in biotechnology, medicine, and diagnostics. In this study, we introduced a nucleic acid five-way junction (5WJ) structure for direct electrochemical analysis of full-length biological RNAs. To the best of our knowledge, this is the first report on the interrogation of such long nucleic acid sequences by hybridization probes attached to a solid support. A hairpin-shaped electrode-bound oligonucleotide hybridizes with three adaptor strands, one of which is labeled with methylene blue (MB). The four strands are combined into a 5WJ structure only in the presence of specific DNA or RNA analytes. Upon interrogation of a full-size 16S rRNA in the total RNA sample, the electrode-bound MB-labeled 5WJ association produces a higher signal-to-noise ratio than electrochemical nucleic acid biosensors of alternative design. This advantage was attributed to the favorable geometry on the 5WJ nanostructure formed on the electrode's surface. The 5WJ biosensor is a cost-efficient alternative to the traditional electrochemical biosensors for the analysis of nucleic acids due to the universal nature of both the electrode-bound and MB-labeled DNA components.
Collapse
Affiliation(s)
- Marcos V Foguel
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Victor Zamora
- Escuela Professional de Quimica, Facultad de Ciencias, Universidad Nacional Ingenieria, Av. Tupac 210, Lima, Peru
| | - Julio Ojeda
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Mark Reed
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Alexander Bennett
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Percy Calvo-Marzal
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Yulia V Gerasimova
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Dmitry Kolpashchikov
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
- Burnett School of Biomedical Science, university of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA
| | - Karin Y Chumbimuni-Torres
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| |
Collapse
|
6
|
Mir TUG, Wani AK, Akhtar N, Katoch V, Shukla S, Kadam US, Hong JC. Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 2023; 9:e22679. [PMID: 38089995 PMCID: PMC10711145 DOI: 10.1016/j.heliyon.2023.e22679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.
Collapse
Affiliation(s)
- Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- State Forensic Science Laboratory, Srinagar, Jammu and Kashmir, 190001, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vaidehi Katoch
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
7
|
Azhdary P, Janfaza S, Fardindoost S, Tasnim N, Hoorfar M. Highly selective molecularly imprinted polymer nanoparticles (MIP NPs)-based microfluidic gas sensor for tetrahydrocannabinol (THC) detection. Anal Chim Acta 2023; 1278:341749. [PMID: 37709477 DOI: 10.1016/j.aca.2023.341749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
A highly selective microfluidic integrated metal oxide gas sensor for THC detection is reported based on MIP nanoparticles (MIP NPs). We synthesized MIP NPs with THC recognition sites and coated them on a 3D-printed microfluidic channel surface. The sensitivity and selectivity of coated microfluidic integrated gas sensors were evaluated by exposure to THC, cannabidiol (CBD), methanol, and ethanol analytes in 300-700 ppm at 300 °C. For comparison, reference signals were obtained from a microfluidic channel coated with nonimprinted polymers (NIP NPs). The MIP and NIP NPs were characterized using scanning electron microscopy (SEM) and Raman spectroscopy. MIP and NIP NPs channels response data were combined and classified with 96.3% accuracy using the Fine KNN classification model in MATLAB R2021b Classification Learner App. Compared to the MIP NPs coated channel, the NIP NPs channel had poor selectivity towards THC, demonstrating that the THC recognition sites in the MIP structure enabled selective detection of THC. The findings demonstrated that the recognition sites of MIP NPs properly captured THC molecules, enabling the selective detection of THC compared to CBD, methanol, and ethanol.
Collapse
Affiliation(s)
- Peyman Azhdary
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Somayeh Fardindoost
- School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
8
|
Venegas CJ, Bollo S, Sierra-Rosales P. Carbon-Based Electrochemical (Bio)sensors for the Detection of Carbendazim: A Review. MICROMACHINES 2023; 14:1752. [PMID: 37763915 PMCID: PMC10536525 DOI: 10.3390/mi14091752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Carbendazim, a fungicide widely used in agriculture, has been classified as a hazardous chemical by the World Health Organization due to its environmental persistence. It is prohibited in several countries; therefore, detecting it in food and environmental samples is highly necessary. A reliable, rapid, and low-cost method uses electrochemical sensors and biosensors, especially those modified with carbon-based materials with good analytical performance. In this review, we summarize the use of carbon-based electrochemical (bio)sensors for detecting carbendazim in environmental and food matrixes, with a particular interest in the role of carbon materials. Focus on publications between 2018 and 2023 that have been describing the use of carbon nanotubes, carbon nitride, graphene, and its derivatives, and carbon-based materials as modifiers, emphasizing the analytical performance obtained, such as linear range, detection limit, selectivity, and the matrix where the detection was applied.
Collapse
Affiliation(s)
- Constanza J. Venegas
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone Polhammer 1007, Independencia, Santiago 8380492, Chile
| | - Paulina Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| |
Collapse
|
9
|
Kanapathy S, Obande GA, Chuah C, Shueb RH, Yean CY, Banga Singh KK. Sequence-Specific Electrochemical Genosensor for Rapid Detection of blaOXA-51-like Gene in Acinetobacter baumannii. Microorganisms 2022; 10:1413. [PMID: 35889132 PMCID: PMC9322073 DOI: 10.3390/microorganisms10071413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) are phenotypically indistinguishable from the Acinetobacter calcoaceticus−A. baumannii (ACB) complex members using routine laboratory methods. Early diagnosis plays an important role in controlling A. baumannii infections and this could be assisted by the development of a rapid, yet sensitive diagnostic test. In this study, we developed an enzyme-based electrochemical genosensor for asymmetric PCR (aPCR) amplicon detection of the blaOXA-51-like gene in A. baumannii. A. baumanniiblaOXA-51-like gene PCR primers were designed, having the reverse primer modified at the 5′ end with FAM. A blaOXA-51-like gene sequence-specific biotin labelled capture probe was designed and immobilized using a synthetic oligomer (FAM-labelled) deposited on the working electrode of a streptavidin-modified, screen-printed carbon electrode (SPCE). The zot gene was used as an internal control with biotin and FAM labelled as forward and reverse primers, respectively. The blaOXA-51-like gene was amplified using asymmetric PCR (aPCR) to generate single-stranded amplicons that were detected using the designed SPCE. The amperometric current response was detected with a peroxidase-conjugated, anti-fluorescein antibody. The assay was tested using reference and clinical A. baumannii strains and other nosocomial bacteria. The analytical sensitivity of the assay at the genomic level and bacterial cell level was 0.5 pg/mL (1.443 µA) and 103 CFU/mL, respectively. The assay was 100% specific and sensitive for A. baumannii. Based on accelerated stability performance, the developed genosensor was stable for 1.6 years when stored at 4 °C and up to 28 days at >25 °C. The developed electrochemical genosensor is specific and sensitive and could be useful for rapid, accurate diagnosis of A. baumannii infections even in temperate regions.
Collapse
Affiliation(s)
- Swarnaletchumi Kanapathy
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Godwin Attah Obande
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia 950101, Nasarawa State, Nigeria;
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
- Faculty of Health Sciences, Universiti Teknologi MARA, Kampus Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (S.K.); (C.C.); (R.H.S.); (C.Y.Y.)
| |
Collapse
|
10
|
Rozman M, Štukovnik Z, Sušnik A, Pakseresht A, Hočevar M, Drobne D, Bren U. A HepG2 Cell-Based Biosensor That Uses Stainless Steel Electrodes for Hepatotoxin Detection. BIOSENSORS 2022; 12:bios12030160. [PMID: 35323430 PMCID: PMC8946082 DOI: 10.3390/bios12030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Humans are frequently exposed to environmental hepatotoxins, which can lead to liver failure. Biosensors may be the best candidate for the detection of hepatotoxins because of their high sensitivity and specificity, convenience, time-saving, low cost, and extremely low detection limit. To investigate suitability of HepG2 cells for biosensor use, different methods of adhesion on stainless steel surfaces were investigated, with three groups of experiments performed in vitro. Cytotoxicity assays, which include the resazurin assay, the neutral red assay (NR), and the Coomassie Brilliant Blue (CBB) assay, were used to determine the viability of HepG2 cells exposed to various concentrations of aflatoxin B1 (AFB1) and isoniazid (INH) in parallel. The viability of the HepG2 cells on the stainless steel surface was quantitatively and qualitatively examined with different microscopy techniques. A simple cell-based electrochemical biosensor was developed by evaluating the viability of the HepG2 cells on the stainless steel surface when exposed to various concentrations of AFB1 and INH by using electrochemical impedance spectroscopy (EIS). The results showed that HepG2 cells can adhere to the metal surface and could be used as part of the biosensor to determine simple hepatotoxic samples.
Collapse
Affiliation(s)
- Martin Rozman
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia; (M.R.); (Z.Š.); (A.S.)
- FunGlass—Center for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 91150 Trenčín, Slovakia;
| | - Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia; (M.R.); (Z.Š.); (A.S.)
| | - Ajda Sušnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia; (M.R.); (Z.Š.); (A.S.)
- National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Amirhossein Pakseresht
- FunGlass—Center for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 91150 Trenčín, Slovakia;
| | - Matej Hočevar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.H.); (D.D.)
- Institute of Metals and Technology, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.H.); (D.D.)
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia; (M.R.); (Z.Š.); (A.S.)
- Natural Sciences and Information Technologies, Faculty of Mathematics, University of Primorska, 6000 Koper, Slovenia
- Correspondence:
| |
Collapse
|
11
|
Brett CMA. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022; 27:1497. [PMID: 35268599 PMCID: PMC8911593 DOI: 10.3390/molecules27051497] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/06/2023] Open
Abstract
Electrochemical impedance spectroscopy is finding increasing use in electrochemical sensors and biosensors, both in their characterisation, including during successive phases of sensor construction, and in application as a quantitative determination technique. Much of the published work continues to make little use of all the information that can be furnished by full physical modelling and analysis of the impedance spectra, and thus does not throw more than a superficial light on the processes occurring. Analysis is often restricted to estimating values of charge transfer resistances without interpretation and ignoring other electrical equivalent circuit components. In this article, the important basics of electrochemical impedance for electrochemical sensors and biosensors are presented, focussing on the necessary electrical circuit elements. This is followed by examples of its use in characterisation and in electroanalytical applications, at the same time demonstrating how fuller use can be made of the information obtained from complete modelling and analysis of the data in the spectra, the values of the circuit components and their physical meaning. The future outlook for electrochemical impedance in the sensing field is discussed.
Collapse
|
12
|
Electrochemically detecting DNA methylation in the EN1 gene promoter: implications for understanding ageing and disease. Biosci Rep 2021; 40:226876. [PMID: 33135722 PMCID: PMC7670582 DOI: 10.1042/bsr20202571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing need for biomarkers which predict age-onset pathology. Although this is challenging, the methylome offers significant potential. Cancer is associated with the hypermethylation of many gene promoters, among which are developmental genes. Evolutionary theory suggests developmental genes arbitrate early-late life trade-offs, causing epimutations that increase disease vulnerability. Such genes could predict age-related disease. The aim of this work was to optimise an electrochemical procedure for the future investigation of a broad range of ageing-related pathologies. An electrochemical approach, which adopted three analytical techniques, was used to investigate DNA methylation in the engrailed-1 (EN1) gene promoter. Using synthetic single-stranded DNA, one technique was able to detect DNA at concentrations as low as 10 nM, with methylation status distinguishable at concentrations >25 nM. A negative correlation could be observed between % methylation of a heterogeneous solution and the key electrochemical parameter, charge transfer resistance (Rct; r = -0.982, P<0.01). The technique was applied to the breast cancer cell line Michigan Cancer Foundation-7 (MCF-7), where a similar correlation was observed (r = -0.965, P<0.01). These results suggest electrochemistry can effectively measure DNA methylation at low concentrations of DNA. This has implications for the future detection of age-related disease.
Collapse
|
13
|
Mat Zaid MH, Abdullah J, Rozi N, Mohamad Rozlan AA, Abu Hanifah S. A Sensitive Impedimetric Aptasensor Based on Carbon Nanodots Modified Electrode for Detection of 17ß-Estradiol. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1346. [PMID: 32664193 PMCID: PMC7407411 DOI: 10.3390/nano10071346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
A simple and sensitive aptasensor based on conductive carbon nanodots (CDs) was fabricated for the detection of 17ß-Estradiol (E2). In the present study, the hydrothermal synthesis of carbon nanodots was successfully electrodeposited on a screen-printed electrode (SPE) as a platform for immobilization of 76-mer aptamer probe. The morphology and structure of the nanomaterial were characterized by UV-visible absorption spectra, Fluorescence spectra, Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). Moreover, cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the electrochemical performance of the prepared electrodes. Subsequently, impedimetric (EIS) measurements were employed to investigate the relative impedances changes before and after E2 binding, which results in a linear relationship of E2 concentration in the range of 1.0 × 10-7 to 1.0 × 10 -12 M, with a detection limit of 0.5 × 10-12 M. Moreover, the developed biosensor showed high selectivity toward E2 and exhibited excellent discrimination against progesterone (PRG), estriol (E3) and bisphenol A (BPA), respectively. Moreover, the average recovery rate of spiked river water samples with E2 ranged from 98.2% to 103.8%, with relative standard deviations between 1.1% and 3.8%, revealing the potential application of the present biosensor for E2 detection in water samples.
Collapse
Affiliation(s)
- Mohd Hazani Mat Zaid
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Normazida Rozi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Aliff Aiman Mohamad Rozlan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Sharina Abu Hanifah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Polymer Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
14
|
Klimuntowski M, Alam MM, Singh G, Howlader MMR. Electrochemical Sensing of Cannabinoids in Biofluids: A Noninvasive Tool for Drug Detection. ACS Sens 2020; 5:620-636. [PMID: 32102542 DOI: 10.1021/acssensors.9b02390] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid sensing in biofluids provides great insight into the effects of medicinal cannabis on the body. The prevalence of cannabis for pain management and illicit drug use necessitates knowledge translation in cannabinoids. In this Review, we provide an overview of the current detection methods of cannabinoids in bodily fluids emphasizing electrochemical sensing. First, we introduce cannabinoids and discuss the structure and metabolism of Δ9-THC and its metabolites in relation to blood, urine, saliva, sweat, and breath. Next, we briefly discuss lab based techniques for cannabinoids in biofluids. While these techniques are highly sensitive and specific, roadside safety requires a quick, portable, and cost-effective sensing method. These needs motivated a comprehensive review of advantages, disadvantages, and future directions for electrochemical sensing of cannabinoids. The literature shows the lowest limit of detection to be 3.3 pg of Δ9-THC/mL using electrochemical immunosensors, while electrodes fabricated with low cost methods such as screen-printing and carbon paste can detect as little as 25 and 1.26 ng of Δ9-THC/mL, respectively. Future research will include nanomaterial modified working electrodes, for simultaneous sensing of multiple cannabinoids. Additionally, there should be an emphasis on selectivity for cannabinoids in the presence of interfering compounds. Sensors should be fully integrated on biocompatible substrates with control electronics and intelligent components for wearable diagnostics. We hope this Review will prove to be the seminal work in the electrochemical sensing of cannabinoids.
Collapse
Affiliation(s)
- Martin Klimuntowski
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Maksud M. Alam
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|