1
|
Gunnala S, Buhlman LM, Jadavji NM. How Increased Dietary Folic Acid Intake Impacts Health Outcomes Through Changes in Inflammation, Angiogenesis, and Neurotoxicity. Nutrients 2025; 17:1286. [PMID: 40219043 PMCID: PMC11990278 DOI: 10.3390/nu17071286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Dietary folic acid supplementation is well known for playing a crucial role in the closure of the neural tube. Individuals have continued to increase dietary intake of folic acid in counties with mandatory fortication laws in place. Some studies have demonstrated adverse health effects in individuals with high dietary intake of folic acid. Nutrition is a modifiable risk factor for ischemic stroke. Specifically, elevated levels of homocysteine, they can be reduced by increasing intake of vitamins, such as folic acid, a B-vitamin. Hypoxia, when levels of oxygen are reduced, is a major component of cardiovascular diseases. The aim of this review paper was to summarize how increased dietary intake of folic acid interaction with hypoxia to impact health outcomes. Our survey of the literature found that increased dietary intake of folic acid promotes inflammation, angiogenesis, and neurotoxicity. We also report negative actions of increased dietary intake of folic acid with vitamin B12 and genetic deficiencies in one-carbon metabolism. Increased dietary intake of folic acid also results in elevated levels of unmetabolized folic acid in the population, of which the impact on health risks has not yet been determined. Our review of the literature emphasizes that a more comprehensive understanding of the action between increased dietary intake of folic acid on disease outcomes could pave the way for improved public health guidelines. Furthermore, adequate knowledge of an individual's one-carbon metabolism status can inform proactive management for patients at higher risk of experiencing negative health outcomes.
Collapse
Affiliation(s)
- Siddarth Gunnala
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Lori M. Buhlman
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ 85308, USA
| | - Nafisa M. Jadavji
- Department of Biomedical Sciences, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Child Health, College of Medicine—Phoenix, University of Arizona, Phoenix, AZ 85721, USA
| |
Collapse
|
2
|
Bragg MG, Rando J, Carroll KN, Eick SM, Karagas MR, Lin PI, Schmidt RJ, Lyall K. The Association of Prenatal Dietary Factors with Child Autism Diagnosis and Autism-Related Traits Using a Mixtures Approach: Results from the Environmental influences on Child Health Outcomes Cohort. J Nutr 2025:S0022-3166(25)00165-8. [PMID: 40107454 DOI: 10.1016/j.tjnut.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Previous research on the role of maternal diet in relation to autism has focused on examining individual nutrient associations. Few studies have examined associations with multiple nutrients using mixtures approaches, which may better reflect true exposure scenarios. OBJECTIVES This study aims to examine associations of nutrient mixtures with children's autism diagnosis and trait scores within a large, diverse population. METHODS Participants were drawn from the United States Environmental influences on Child Health Outcomes (ECHO) consortium. Maternal prenatal diet was reported via validated food frequency questionnaires. Children's autism-related traits were measured using the Social Responsiveness Scale (SRS) and autism diagnoses were from parent reports of physician diagnosis. Bayesian kernel machine regression was used to examine the overall mixture effect and interactions between a set of 5 primary nutrients (folate, vitamin D, omega 3 and omega 6 fatty acids, and iron), adjusted for potential confounders, in relationship to child outcomes. Secondary analyses were conducted in a subset of cohorts with an expanded set of 14 nutrients. Traditional linear and logistic regression models were also analyzed for comparison of results to mixture models. RESULTS A total of 2614 participants drawn from 7 ECHO cohorts were included in primary analysis. Mixture analyses suggested that increasing the overall 5-nutrient mixture was associated with lower SRS scores. Individual U-shaped associations and bivariate interactions between folate and omega 3 fatty acids were suggested. In the subset included in the secondary analyses of the 14-nutrient mixture, a modest inverse trend remained, but individual nutrient associations were altered, with vitamin D demonstrating higher relative importance than other nutrients. Strong associations with autism diagnosis were not observed. CONCLUSIONS In this large sample, we found evidence for combined nutrient effects with broader autism-related traits. Because results for individual nutrients were sensitive to mixture components, replication of combined associations between nutrients and autism-related outcomes is needed.
Collapse
Affiliation(s)
- Megan G Bragg
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Juliette Rando
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Kecia N Carroll
- The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie M Eick
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Margaret R Karagas
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Pi-I Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, United States
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Yang Y, Qi H, Zhang J, Jia J, Yang Y, Zhao H. Evaluating the association of depressive symptoms on serum folate and erythrocyte folate levels based on the 2017-2020 NHANES database. Front Nutr 2025; 12:1505700. [PMID: 39996008 PMCID: PMC11847701 DOI: 10.3389/fnut.2025.1505700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Objective To improve further the management of the nutritional status and dietary habits of depressed patients. Methods This study investigated the effect of different severity states of depressive symptoms on serum and erythrocyte folate levels using the Nutrition Examination Survey (NHANES) database from 2017 to 2020. We comprised a sample of 4,872 cases from NHANES database. We developed 3 linear regression models to assess the effect of depressive symptoms on erythrocyte folate and serum folate by collating and analyzing the data. The relationship between depression severity and erythrocyte folate as well as serum folate was also mutually validated by the results of multiple logistic regression. Finally, we made restricted cubic spline plots using the glm function of R. Results Depression remained negatively correlated with serum folate levels with a OR value of -0.02, 95% CI of -0.05 ~ -0.00. Moderate depression was negatively correlated with folate, with a OR value of -0.03, 95% CI of -0.05 ~ -0.00. When exploring the association between different degrees of depressive symptoms and erythrocyte folate, it was unexpectedly found that major depression was negatively associated with erythrocyte folate with a OR value of -0.18, 95% CI of -0.31 ~ -0.04 after adjusting for all covariates. Conclusion Depression is associated with folate levels. The risk of serum folate insufficiency or erythrocyte folate insufficiency is higher after a positive depression. For different degrees of depressive symptoms, serum folate levels were significantly lower than normal in patients with moderate depression, while erythrocyte folate levels were lower than normal in patients with major depression. Therefore, attention should be paid to the dietary habits and nutritional status of patients with depression or depressive symptoms when they are undergoing long-term antidepressant treatment. Folic acid supplementation is recommended for patients with moderate or severe depression or for depressed patients who have developed unhealthy eating habits.
Collapse
Affiliation(s)
- Yunhong Yang
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
| | - Huaqian Qi
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Jia
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunsong Yang
- Tianjin University of Science and Technology, Tianjin, China
| | - Hong Zhao
- Department of Acupuncture and Moxibustion, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
4
|
Wong CM, Tan CS, Koh HC, Gan X, Hie SL, Saffari SE, Yeo JG, Lam JCM. Folinic acid as a treatment for autism in children: A within-subjects open-label study on safety and efficacy. Int J Dev Neurosci 2025; 85:e10402. [PMID: 39703043 DOI: 10.1002/jdn.10402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
The folate cycle has been implicated in the pathophysiology of autism due to its role in the glutathione oxidative stress pathway, amino acid and DNA methylation reactions, and neurotransmitter synthesis pathway. Previous research on folinic acid supplementation in autistic children has suggested potential benefits. The primary aim of this pilot study was to determine the safety, feasibility and efficacy of oral folinic acid in improving communication and behaviour in autistic children. Ten autistic children were recruited into an open-label pre-post treatment within-subjects design study. At T = 0, 12 and 24 weeks, participants underwent safety evaluations, standardized assessments of language, autism symptoms, adaptive skills and global illness severity, and eye-gaze tracking. During the control period (0-12 weeks), participants continued with standard care. In the treatment period (12-24 weeks), participants took oral folinic acid at 2 mg/kg/day. All 10 children (nine boys, one girl; aged 4-8 years), successfully consumed oral folinic acid supplements with no adverse events. There was a reduction in Pervasive Developmental Disorder Behavior Inventory (PDDBI) Autism Composite T-score with treatment (mean [SD] T-score 49.2 [8.89] pre-treatment, 44.6 [6.19] post-treatment, p = 0.103). Although this difference was not statistically significant due to the small sample size, the effect size was medium-large, indicating that, as a group, there were clinically meaningful changes in PDDBI T-scores. There were also trends towards gains in communication scores and overall Clinical Global Impression scores. Folinic acid is a safe and feasible potential treatment for autism, and results from this pilot justify the need for a larger placebo-controlled trial.
Collapse
Affiliation(s)
- Chui Mae Wong
- Department of Child Development, KK Women's and Children's Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Singapore
| | | | - Hwan Cui Koh
- Department of Child Development, KK Women's and Children's Hospital, Singapore
| | - Xinyi Gan
- Department of Child Development, KK Women's and Children's Hospital, Singapore
| | - Szu Liang Hie
- Outpatient Pharmacy, KK Women's and Children's Hospital, Singapore
| | | | - Joo Guan Yeo
- Duke-NUS Medical School, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Joyce Ching Mei Lam
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Singapore
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
5
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [PMID: 39654662 PMCID: PMC11572612 DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions. AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD. METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness. RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD. CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
6
|
Saferin N, Haseeb I, Taha AM, Beecroft SE, Pillai S, Neifer AE, Lakkuru R, Kistler BP, Nawor CN, Malik I, Hasan D, Carlson JA, Zade KK, Dressel SP, Carney EM, Shah R, Gautam S, Vergis J, Neifer KL, Johnson ZV, Gustison ML, Hall FS, Burkett JP. Folate prevents the autism-related phenotype caused by developmental pyrethroid exposure in prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625285. [PMID: 39651146 PMCID: PMC11623627 DOI: 10.1101/2024.11.25.625285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Neurodevelopmental disorders (NDDs) have dramatically increased in prevalence to an alarming one in six children, and yet both causes and preventions remain elusive. Recent human epidemiology and animal studies have implicated developmental exposure to pyrethroid pesticides, one of the most common classes of pesticides in the US, as an environmental risk factor for autism and neurodevelopmental disorders. Our previous research has shown that low-dose chronic developmental pyrethroid exposure (DPE) changes folate metabolites in the adult mouse brain. We hypothesize that DPE acts directly on molecular targets in the folate metabolism pathway, and that high-dose maternal folate supplementation can prevent or reduce the biobehavioral effects of DPE. We exposed pregnant prairie vole dams chronically to vehicle or low-dose deltamethrin (3 mg/kg/3 days) with or without high-dose folate supplementation (methylfolate, 5 mg/kg/3 days). The resulting DPE offspring showed broad deficits in five behavioral domains relevant to neurodevelopmental disorders (including the social domain); increased plasma folate concentrations; and increased neural expression of SHMT1, a folate cycle enzyme. Maternal folate supplementation prevented most of the behavioral phenotypes (except for repetitive behaviors) and caused potentially compensatory changes in neural expression of FOLR1 and MTHFR, two folate-related proteins. We conclude that DPE causes neurodevelopmental disorder-relevant behavioral deficits; DPE directly alters aspects of folate metabolism; and preventative interventions targeting folate metabolism are effective in reducing, but not eliminating, the behavioral effects of DPE.
Collapse
Affiliation(s)
- Nilanjana Saferin
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ibrahim Haseeb
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Adam M. Taha
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sarah E. Beecroft
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sangeetha Pillai
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Asha E. Neifer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Rudhasri Lakkuru
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Brian P. Kistler
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Charlotte N. Nawor
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Isa Malik
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Dena Hasan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jonathan A. Carlson
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kareem K. Zade
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sydnee P. Dressel
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Eileen M. Carney
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Radha Shah
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Shudhant Gautam
- College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - John Vergis
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kari L. Neifer
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Zachary V. Johnson
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Morgan L. Gustison
- Department of Psychology, The University of Western Ontario, London, ON, Canada (current); Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - F. Scott Hall
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - James P. Burkett
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
7
|
Kong AX, Johnson M, Eno AF, Pham K, Zhang P, Geng Y. Proteome-wide reverse molecular docking reveals folic acid receptor as a mediator of PFAS-induced neurodevelopmental toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623082. [PMID: 39605555 PMCID: PMC11601370 DOI: 10.1101/2024.11.11.623082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of long-lasting chemicals with widespread use and environmental persistence that have been increasingly studied for their detrimental impacts to human and animal health. Several major PFAS species are linked to neurodevelopmental toxicity. For example, epidemiological studies have associated prenatal exposure to perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) with autism risk. However, the neurodevelopmental toxicities of major PFAS species have not been systematically evaluated in an animal model, and the molecular mechanisms underlying these toxicities have remained elusive. Using a high-throughput zebrafish social behavioral model, we screened six major PFAS species currently under regulation by the Environmental Protection Agency (EPA), including PFOA, PFNA, perfluorooctane sulfonate (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorobutane sulfonate (PFBS), and hexafluoropropylene oxide dimer acid ammonium salt (GenX). We found that embryonic exposure to PFNA, PFOA, and PFOS induced social deficits in zebrafish, recapitulating one of the hallmark behavioral deficits in autistic individuals. To uncover protein targets of the six EPA-regulated PFAS, we screened a virtual library containing predicted binding pockets of over 80% of the 3D human proteome through reverse molecular docking. We found that folate receptor beta (FR-β, encoded by the gene FOLR2) interacts strongly with PFNA, PFOA, and PFOS but to a lesser degree with PFHxS, PFBS, and GenX, correlating positively with their in vivo toxicity. Embryonic co-exposure to folic acid rescued social deficits induced by PFAS. The folic acid pathway has been implicated in autism, indicating a novel molecular mechanism for PFAS in autism etiology.
Collapse
Affiliation(s)
- Ally Xinyi Kong
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Maja Johnson
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Aiden F Eno
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Khoa Pham
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Ping Zhang
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Yijie Geng
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| |
Collapse
|
8
|
Shi A, Liu D, Wu H, Zhu R, Deng Y, Yao L, Xiao Y, Lorimer GH, Ghiladi RA, Xu X, Zhang R, Xu H, Wang J. Serum binding folate receptor autoantibodies lower in autistic boys and positively-correlated with folate. Biomed Pharmacother 2024; 172:116191. [PMID: 38320332 DOI: 10.1016/j.biopha.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Folate receptor autoantibody (FRAA) has caught increasing attention since its discovery in biological fluids of patients with autism spectrum disorder (ASD), but quantification and understanding of its function are still in their infancy. In this study, we aimed to quantify serum binding-FRAA and explore its relation with serum folate, vitamin B12 (VB12) and ferritin. We quantitated serum binding-FRAA in 132 ASD children and 132 typically-developing (TD) children, as well as serum levels of folate, VB12 and ferritin. The results showed that serum binding-FRAA in the ASD group was significantly lower than that in the TD group (p < 0.0001). Further analysis showed that the difference between these two groups was attributed to boys in each group, not girls. There was no statistically significant difference in folate levels between the ASD and TD groups (p > 0.05). However, there was significant difference in boys between these two groups, not girls. Additionally, the combination of nitrite and binding-FRAA showed potential diagnostic value in patients with ASD (AUC > 0.7). Moreover, in the ASD group, the level of folate was consistent with that of binding-FRAA, whereas in the TD group, the binding-FRAA level was high when the folate level was low. Altogether, these differences revealed that the low serum FRAA in autistic children was mediated by multiple factors, which deserves more comprehensive investigation with larger population and mechanistic studies.
Collapse
Affiliation(s)
- Ai Shi
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Di Liu
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Huiwen Wu
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Rui Zhu
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Ying Deng
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Lulu Yao
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | - Yaqian Xiao
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China
| | | | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, North Carolina, USA
| | - Xinjie Xu
- Medical Science Research Center, Research Center for Translational Medicine, Department of Scientific Research, Peking Union Medical College Hospital, China
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
| | - Haiqing Xu
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei Province, China.
| | - Jun Wang
- Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China; Department of Child Health Care, Hubei Maternity and Child Health Care Hospital, Wuhan, Hubei Province, China; Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
9
|
Cui J, Zhai Z, Wang S, Song X, Qiu T, Yu L, Zhai Q, Zhang H. The role and impact of abnormal vitamin levels in autism spectrum disorders. Food Funct 2024; 15:1099-1115. [PMID: 38221882 DOI: 10.1039/d3fo03735e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The prevalence of autism spectrum disorder (ASD), a neurodevelopmental disorder with a predominance of social behavioral disorders, has increased dramatically in various countries in recent decades. The interplay between genetic and environmental factors is believed to underlie ASD pathogenesis. Recent analyses have shown that abnormal vitamin levels in early life are associated with an increased risk of autism. As essential substances for growth and development, vitamins have been shown to have significant benefits for the nervous and immune systems. However, it is unknown whether certain vitamin types influence the emergence or manifestation of ASD symptoms. Several studies have focused on vitamin levels in children with autism, and neurotypical children have provided different insights into the types of vitamins and their intake. Here, we review the mechanisms and significance of several vitamins (A, B, C, D, E, and K) that are closely associated with the development of ASD in order to prevent, mitigate, and treat ASD. Efforts have been made to discover and develop new indicators for nutritional assessment of children with ASD to play a greater role in the early detection of ASD and therapeutic remission after diagnosis.
Collapse
Affiliation(s)
- Jingjing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Zidan Zhai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Shumin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| | - Ting Qiu
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Heng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of child health care, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hositipal of Jiangnan University, Wuxi, Jiangsu, 214002, China.
- Department of Toxicology, School of Public Health, Anhui Medical University/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Yoshikawa M, Suemaru K. Prenatal folate deficiency impairs sociability and memory/recognition in mice offspring. Brain Res 2024; 1822:148639. [PMID: 37858854 DOI: 10.1016/j.brainres.2023.148639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Folate is essential for the normal growth and development of the fetus. Folic acid supplementation during the fetal period affects postnatal brain development and reduces the incidence of mental disorders in animal and human studies. However, the association between folate deficiency (FD) during pregnancy and developmental disorders in children remains poorly understood. In this study, we investigated whether prenatal FD is associated with neurodevelopmental disorders in offspring. ICR mice were fed a control diet (2 mg folic acid/kg diet) or a folate-deficient diet (0.3 mg folic acid/kg diet) from embryonic day 1 until parturition. We evaluated locomotor activity, anxiety, grooming, sociability and learning memory in male offspring at 7-10 weeks of age. No differences were found in locomotor activity or anxiety in the open field test, nor in grooming time in the self-grooming test. However, sociability, spatial memory, and novel object recognition were impaired in the FD mice compared with control offspring. Furthermore, we measured protein expression levels of the NMDA and AMPA receptors, as well as PSD-95 and the GABA-synthesizing enzymes GAD65/67 in the frontal cortex and hippocampus. In FD mice, expression levels of AMPA receptor 1 and PSD-95 in both regions were reduced compared with control mice. Moreover, NMDA receptor subunit 2B and GAD65/67 were significantly downregulated in the frontal cortex of prenatal FD mice compared with the controls. Collectively, these findings suggest that prenatal FD causes behavioral deficits together with a reduction in synaptic protein levels in the frontal cortex and hippocampus.
Collapse
Affiliation(s)
- Misato Yoshikawa
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan.
| | - Katsuya Suemaru
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan.
| |
Collapse
|
11
|
Fardous AM, Heydari AR. Uncovering the Hidden Dangers and Molecular Mechanisms of Excess Folate: A Narrative Review. Nutrients 2023; 15:4699. [PMID: 37960352 PMCID: PMC10648405 DOI: 10.3390/nu15214699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
This review delves into the intricate relationship between excess folate (vitamin B9) intake, especially its synthetic form, namely, folic acid, and its implications on health and disease. While folate plays a pivotal role in the one-carbon cycle, which is essential for DNA synthesis, repair, and methylation, concerns arise about its excessive intake. The literature underscores potential deleterious effects, such as an increased risk of carcinogenesis; disruption in DNA methylation; and impacts on embryogenesis, pregnancy outcomes, neurodevelopment, and disease risk. Notably, these consequences stretch beyond the immediate effects, potentially influencing future generations through epigenetic reprogramming. The molecular mechanisms underlying these effects were examined, including altered one-carbon metabolism, the accumulation of unmetabolized folic acid, vitamin-B12-dependent mechanisms, altered methylation patterns, and interactions with critical receptors and signaling pathways. Furthermore, differences in the effects and mechanisms mediated by folic acid compared with natural folate are highlighted. Given the widespread folic acid supplementation, it is imperative to further research its optimal intake levels and the molecular pathways impacted by its excessive intake, ensuring the health and well-being of the global population.
Collapse
Affiliation(s)
- Ali M. Fardous
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Ahmad R. Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
12
|
Fernandes TFDC, Conde PDS, Brasil FDB, Oliveira MRD. Impact of Maternal Folic Acid Supplementation on Descendants' Kidney in Adulthood. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:207-214. [PMID: 37224843 PMCID: PMC10208730 DOI: 10.1055/s-0043-1769001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Supplementation with folic acid (FA) during gestation has been recommended by medical society all over the world, but some studies have shown that intake of high folic acid diet may unleash damages to the descendants. OBJECTIVES Describing the effects of maternal supplementation with FA during gestation on offspring's kidney at late life stages. DATA SOURCE It is a systematic review by which were consulted the following databases: Medline, through Pubmed, Lilacs, and SciELO. The research was performed using the keywords "Folic acid", "Gestation" and "Kidney". STUDY SELECTION Eight studies were regarded for this systematic review. DATA COLLECTION Only studies that evaluated folic acid consumption during gestation and its effects exclusively on descendants' kidney at several phases of life were regarded. RESULTS Gestational FA intake did not change the renal volume, glomerular filtration rate and the expression of some essential genes in the kidney of puppies whose dams were supplemented with FA. Maternal consumption of double FA plus selenium diet was effective in preserving antioxidant enzymes activity in the kidney of descendants from mothers exposed to alcohol. FA supplementation decreased some gross anomalies in the puppies caused by teratogenic drug despite of had not been effective in preventing some renal architectural damages. CONCLUSION FA supplementation did not cause renal toxicity; it exerted an antioxidant protective effect and mitigated some renal disorders caused by severe aggressions.
Collapse
|
13
|
Poudineh M, Parvin S, Omidali M, Nikzad F, Mohammadyari F, Sadeghi Poor Ranjbar F, Rasouli F, Nanbakhsh S, Olangian-Tehrani S. The Effects of Vitamin Therapy on ASD and ADHD: A Narrative Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:711-735. [PMID: 35585808 DOI: 10.2174/1871527321666220517205813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
The effects of a sufficient amount of vitamins and nutrients on the proper function of the nervous system have always been regarded by scientists. In recent years, many studies have been done on controlling or improving the symptoms of neurological and behavioral disorders created by changes in the level of vitamins and other nutrition, such as omega-3 and iron supplements. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that disrupts individual communication, especially in social interactions. Its symptoms include anxiety, violence, depression, self-injury, trouble with social contact and pervasive, stereotyped, and repetitive behavior. ASD is most noticeable in early childhood. Attention Deficit Hyperactivity Disorder (ADHD) is a lasting pattern of inattention with or without hyperactivity that causes functional disruption in daily life. ADHD symptoms included; impulsivity, hyperactivity, inattention, restlessness, talkativeness, excessive fidgeting in situations such as sitting, meetings, lectures, or at the movies, boredom, inability to make decisions, and procrastination. The exact etiology of ADHD has not yet been found, but several observations have assumed the reduced function of the brain leads to deficits in motor planning and cognitive processing. It has been shown that Pro-inflammatory cytokines and oxidative stress biomarkers could be increased in both ASD and ADHD. Several studies have been done to illustrate if vitamins and other dietary supplements are effective in treating and preventing ASD and ADHD. In this review, we aim to evaluate the effects of vitamins and other dietary supplements (e.g., melatonin, zinc supplements, magnesium supplements) on ASD and ADHD.
Collapse
Affiliation(s)
| | - Sadaf Parvin
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrnia Omidali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Nikzad
- Student Research Committee, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Avicennet, Tehran, Iran
| | | | | | - Fayaz Rasouli
- Department of Medicine, Mashhad Islamic Azad University, Mashhad, Iran
| | - Sepehr Nanbakhsh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| | - Sepehr Olangian-Tehrani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Avicennet, Tehran, Iran
| |
Collapse
|
14
|
Alnabbat KI, Fardous AM, Shahab A, James AA, Bahry MR, Heydari AR. High Dietary Folic Acid Intake Is Associated with Genomic Instability in Peripheral Lymphocytes of Healthy Adults. Nutrients 2022; 14:3944. [PMID: 36235597 PMCID: PMC9571807 DOI: 10.3390/nu14193944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Mandatory fortification of food with synthetic folic acid (FA) was instituted in 1998 to reduce the incidence of neural tube defects. Adequate folate status is correlated with numerous health benefits. However, elevated consumption of FA is controversially associated with deleterious effects on health. We previously reported that excess FA mimicked folate depletion in a lymphoblastoid cell line. To explore the impact of FA intake from fortified food, we conducted an observational human study on 33 healthy participants aged 18-40 not taking any supplements. Food intake, anthropomorphic measurements, and blood samples were collected and analyzed. Our results show that individuals belonging to the highest tertile of folic acid intake, as well as ones with the highest folic acid to total folate intake ratio (FAR), display a significantly greater incidence of lymphocyte genomic damage. A decrease in global DNA methylation is observed in the highest tertile of FAR compared to the lowest (p = 0.055). A downward trend in the overall gene expression of select DNA repair and one carbon cycle genes (MGMT, MLH1, UNG, MTHFR, MTR) is noted with increased folate status and FA intake. These results provide supporting evidence that high consumption of FA from fortified foods can precipitate genomic instability in peripheral lymphocyte in vivo.
Collapse
Affiliation(s)
- Khadijah I Alnabbat
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
- Department of Food and Nutrition Sciences, King Faisal University, Al Hufūf 31982, Saudi Arabia
| | - Ali M Fardous
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Aiman Shahab
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Andrew A James
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Manhel R Bahry
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
| | - Ahmad R Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
15
|
Facile bimetallic co-amplified electrochemical sensor for folic acid sensing based on CoNPs and CuNPs. Anal Bioanal Chem 2022; 414:6791-6800. [PMID: 35931786 DOI: 10.1007/s00216-022-04242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/29/2022]
Abstract
Folic acid (FA) is essential for human health, particularly for pregnant women and infants. In this work, a glassy carbon electrode (GCE) was modified by a bimetallic layer of Cu/Co nanoparticles (CuNPs/CoNPs) as a synergistic amplification element by simple step-by-step electrodeposition, and was used for sensitive detection of FA. The proposed CuNPs/CoNPs/GCE sensor was characterized by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and field emission scanning electron microscopy (FESEM). Then, under optimal conditions, a linear relationship was obtained in the wide range of 110.00-1750.00 μM for the detection of FA with a limit of detection (LOD) of 34.79 μM (S/N = 3). The sensitivity was calculated as 0.096 μA μM-1 cm-2. Some interfering compounds including glucose (Glc), biotin, dopamine (DA), and glutamic acid (Glu) showed little effect on the detection of FA by amperometry (i-t). Finally, the average recovery obtained was in a range of 91.77-110.06%, with a relative standard deviation (RSD) less than 8.00% in FA tablets, indicating that the proposed sensor can accurately and effectively detect the FA content in FA tablets.
Collapse
|
16
|
Bailey RL, Dog TL, Smith-Ryan AE, Das SK, Baker FC, Madak-Erdogan Z, Hammond BR, Sesso HD, Eapen A, Mitmesser SH, Wong A, Nguyen H. Sex Differences Across the Life Course: A Focus On Unique Nutritional and Health Considerations among Women. J Nutr 2022; 152:1597-1610. [PMID: 35294009 PMCID: PMC9258555 DOI: 10.1093/jn/nxac059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
In the United States, women, while having a longer life expectancy than men, experience a differential risk for chronic diseases and have unique nutritional needs based on physiological and hormonal changes across the life span. However, much of what is known about health is based on research conducted in men. Additional complexity in assessing nutritional needs within gender include the variations in genetics, body compositions, hormonal milieus, underlying chronic diseases, and medication usage, with this list expanding as we consider these variables across the life course. It is clear women experience nutrient shortfalls during key periods of their lives, which may differentially impact their health. Consequently, as we move into the era of precision nutrition, understanding these sex- and gender-based differences may help optimize recommendations and interventions chosen to support health and weight management. Recently, a scientific conference was convened with content experts to explore these topics from a life-course perspective at biological, physiological, and behavioral levels. This publication summarizes the presentations and discussions from the workshop and provides an overview of important nutrition and related lifestyle considerations across the life course. The landscape of addressing female-specific nutritional needs continues to grow; now more than ever, it is essential to increase our understanding of the physiological differences between men and women, and determine how these physiological considerations may aid in optimizing nutritional strategies to support certain personal goals related to health, quality of life, sleep, and exercise performance among women.
Collapse
Affiliation(s)
- Regan L Bailey
- Institute for Advancing Health Through Agriculture, Texas A&M, College Station, TX, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Sai Krupa Das
- Jean-Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Billy R Hammond
- Behavioral and Brain Sciences Program, Department of Psychology, University of Georgia, Athens, GA, USA
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alex Eapen
- R&D Scientific & Regulatory Affairs–North America, Cargill, Wayzata, MN, USA
| | | | - Andrea Wong
- Scientific & Regulatory Affairs, Council for Responsible Nutrition, Washington, DC, USA
| | - Haiuyen Nguyen
- Scientific & Regulatory Affairs, Council for Responsible Nutrition, Washington, DC, USA
| |
Collapse
|
17
|
Sachdeva P, Mehdi I, Kaith R, Ahmad F, Anwar MS. Potential natural products for the management of autism spectrum disorder. IBRAIN 2022; 8:365-376. [PMID: 37786737 PMCID: PMC10528773 DOI: 10.1002/ibra.12050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 10/04/2023]
Abstract
Autism in a broader sense is a neurodevelopmental disorder, which frequently occurs during early childhood and can last for a lifetime. This condition is primarily defined by difficulties with social engagement, with individuals displaying repetitive and stereotyped behaviors. Numerous neuroanatomical investigations on autistic children have revealed that their brains grow atypically, resulting in atypical neurogenesis, neuronal migration, maturation, differentiation, and degeneration. Special education programs, speech therapy, and occupational therapy have all been used to address autism-related behavioral problems. While widely prescribed antidepressant drugs, antipsychotics, anticonvulsants, and stimulants have demonstrated response in autistic individuals. However, these medications do not fully reverse the core symptoms associated with autism spectrum disorder (ASD). The adverse reactions of ASD medicines and an increased risk of developing various other problems, such as obesity, dyslipidemia, diabetes mellitus, and thyroid disorders, prompted the researchers to investigate herbal medicines for the treatment of autistic individuals. Clinical trials are now being done to establish the efficacy of alternative techniques based on natural substances and to understand better the context in which they may be used to treat autism. This review of literature will look at crucial natural compounds derived from animals and plants that have shown promise as safe and effective autism treatment strategies.
Collapse
Affiliation(s)
- Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Intizaar Mehdi
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Rohit Kaith
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Md Sheeraz Anwar
- Department of PsychologyUniversity of CampaniaLuigi VanvitelliCasertaItaly
| |
Collapse
|
18
|
Bobrowski-Khoury N, Sequeira JM, Arning E, Bottiglieri T, Quadros EV. Absorption and Tissue Distribution of Folate Forms in Rats: Indications for Specific Folate Form Supplementation during Pregnancy. Nutrients 2022; 14:nu14122397. [PMID: 35745126 PMCID: PMC9228663 DOI: 10.3390/nu14122397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Food fortification and folic acid supplementation during pregnancy have been implemented as strategies to prevent fetal malformations during pregnancy. However, with the emergence of conditions where folate metabolism and transport are disrupted, such as folate receptor alpha autoantibody (FRαAb)-induced folate deficiency, it is critical to find a folate form that is effective and safe for pharmacologic dosing for prolonged periods. Therefore, in this study, we explored the absorption and tissue distribution of folic acid (PGA), 5-methyl-tetrahydrofolate (MTHF), l-folinic acid (levofolinate), and d,l-folinic acid (Leucovorin) in adult rats. During absorption, all forms are converted to MTHF while some unconverted folate form is transported into the blood, especially PGA. The study confirms the rapid distribution of absorbed folate to the placenta and fetus. FRαAb administered, also accumulates rapidly in the placenta and blocks folate transport to the fetus and high folate concentrations are needed to circumvent or overcome the blocking of FRα. In the presence of FRαAb, both Leucovorin and levofolinate are absorbed and distributed to tissues better than the other forms. However, only 50% of the leucovorin is metabolically active whereas levofolinate is fully active and generates higher tetrahydrofolate (THF). Because levofolinate can readily incorporate into the folate cycle without needing methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) in the first pass and is relatively stable, it should be the folate form of choice during pregnancy, other disorders where large daily doses of folate are needed, and food fortification.
Collapse
Affiliation(s)
- Natasha Bobrowski-Khoury
- The School of Graduate Studies, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Jeffrey M. Sequeira
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (E.A.); (T.B.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (E.A.); (T.B.)
| | - Edward V. Quadros
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
- Correspondence:
| |
Collapse
|
19
|
Bragg M, Chavarro JE, Hamra GB, Hart JE, Tabb LP, Weisskopf MG, Volk HE, Lyall K. Prenatal Diet as a Modifier of Environmental Risk Factors for Autism and Related Neurodevelopmental Outcomes. Curr Environ Health Rep 2022; 9:324-338. [PMID: 35305256 DOI: 10.1007/s40572-022-00347-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Environmental chemicals and toxins have been associated with increased risk of impaired neurodevelopment and specific conditions like autism spectrum disorder (ASD). Prenatal diet is an individually modifiable factor that may alter associations with such environmental factors. The purpose of this review is to summarize studies examining prenatal dietary factors as potential modifiers of the relationship between environmental exposures and ASD or related neurodevelopmental outcomes. RECENT FINDINGS Twelve studies were identified; five examined ASD diagnosis or ASD-related traits as the outcome (age at assessment range: 2-5 years) while the remainder addressed associations with neurodevelopmental scores (age at assessment range: 6 months to 6 years). Most studies focused on folic acid, prenatal vitamins, or omega-3 fatty acids as potentially beneficial effect modifiers. Environmental risk factors examined included air pollutants, endocrine disrupting chemicals, pesticides, and heavy metals. Most studies took place in North America. In 10/12 studies, the prenatal dietary factor under study was identified as a significant modifier, generally attenuating the association between the environmental exposure and ASD or neurodevelopment. Prenatal diet may be a promising target to mitigate adverse effects of environmental exposures on neurodevelopmental outcomes. Further research focused on joint effects is needed that encompasses a broader variety of dietary factors, guided by our understanding of mechanisms linking environmental exposures with neurodevelopment. Future studies should also aim to include diverse populations, utilize advanced methods to optimize detection of novel joint effects, incorporate consideration of timing, and consider both synergistic and antagonistic potential of diet.
Collapse
Affiliation(s)
- Megan Bragg
- AJ Drexel Autism Institute, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Loni Philip Tabb
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA. .,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Husebye ESN, Wendel AWK, Gilhus NE, Riedel B, Bjørk MH. Plasma unmetabolized folic acid in pregnancy and risk of autistic traits and language impairment in antiseizure medication-exposed children of women with epilepsy. Am J Clin Nutr 2022; 115:1432-1440. [PMID: 34994378 PMCID: PMC9071448 DOI: 10.1093/ajcn/nqab436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fetal exposure to unmetabolized folic acid (UMFA) during pregnancy may be associated with adverse neurodevelopment. Antiseizure medication (ASM) may interact with folate metabolism. Women with epilepsy using ASM are often recommended high-dose folic acid supplement use during pregnancy. OBJECTIVES The aim was to determine the association between UMFA concentrations in pregnant women with epilepsy using ASM and risk of autistic traits or language impairment in their children aged 1.5-8 y. METHODS We included children of women with epilepsy using ASM and with plasma UMFA measurement enrolled in the Norwegian Mother, Father, and Child Cohort Study (MoBa). Data on ASM use, folic acid supplement use, autistic traits, and language impairment were obtained from parent-reported questionnaires during pregnancy and when the child was 1.5, 3, 5, and 8 y old. Plasma UMFA concentrations were measured during gestational weeks 17-19. RESULTS A total of 227 ASM-exposed children of 203 women with epilepsy were included. Response rates at ages 1.5, 3, 5, and 8 y were 67% (n = 151), 54% (n = 122), 36% (n = 82), and 37% (n = 85), respectively. For 208 (94%) children, the mother reported intake of folic acid supplement. There was no association between UMFA concentrations and autistic traits score in the adjusted multiple regression analyses at age 3 y (unstandardized B: -0.01; 95% CI: -0.03, 0.004) or 8 y (unstandardized B: 0.01; 95% CI: -0.02, 0.03). Children exposed to UMFA had no increased risk of autistic traits at age 3 y [adjusted OR (aOR): 0.98; 95% CI: 0.2, 4.2] or 8 y (aOR: 0.1; 95% CI: 0.01, 1.4) compared with unexposed children. We found no association between UMFA concentrations and language impairment in children aged 1.5-8 y. CONCLUSIONS Our findings do not support any adverse neurodevelopmental effects of UMFA exposure in utero in children of women with epilepsy using ASM.
Collapse
Affiliation(s)
| | | | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen,
Bergen, Norway,Department of Neurology, Haukeland University Hospital,
Bergen, Norway
| | - Bettina Riedel
- Department of Medical Biochemistry and Pharmacology, Haukeland University
Hospital, Bergen, Norway,Department of Clinical Science, University of Bergen,
Bergen, Norway
| | - Marte Helene Bjørk
- Department of Clinical Medicine, University of Bergen,
Bergen, Norway,Department of Neurology, Haukeland University Hospital,
Bergen, Norway
| |
Collapse
|
21
|
Dong HY, Feng JY, Li HH, Yue XJ, Jia FY. Non-parental caregivers, low maternal education, gastrointestinal problems and high blood lead level: predictors related to the severity of autism spectrum disorder in Northeast China. BMC Pediatr 2022; 22:11. [PMID: 34980074 PMCID: PMC8722278 DOI: 10.1186/s12887-021-03086-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background The prevalence of autism spectrum disorder (ASD) has increased rapidly in recent years. Environmental factors may play an important role in the pathogenesis of ASD. These factors may include socioeconomic factors, nutritional factors, heavy metal exposure, air pollution, etc. Our aim is to analyze possible environmental factors associated with the severity of ASD. Methods All participating children were divided into two groups (mild and moderate/severe) according to the severity of their symptoms, as determined by their Childhood Autism Rating Scale (CARS) scores. The socioeconomic, demographic factors and the nutritional factors that may affect the severity of ASD were included in the logistic regression to analyze whether they were predictors that affected the severity of ASD. Results Logistic regression showed that caregivers(P = 0.042), maternal education (P = 0.030), gastrointestinal problems (P = 0.041) and a high serum concentration of lead (P = 0.003) were statistically significantly associated with ASD severity. Conclusion Many environmental factors affect the severity of ASD. We concluded that non-parental caregivers, low maternal education, gastrointestinal problems and high blood lead level maybe predictors that affected the severity of ASD in northeast China.
Collapse
Affiliation(s)
- Han-Yu Dong
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jun-Yan Feng
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiao-Jing Yue
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
22
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Morton SU, Leyshon BJ, Tamilia E, Vyas R, Sisitsky M, Ladha I, Lasekan JB, Kuchan MJ, Grant PE, Ou Y. A Role for Data Science in Precision Nutrition and Early Brain Development. Front Psychiatry 2022; 13:892259. [PMID: 35815018 PMCID: PMC9259898 DOI: 10.3389/fpsyt.2022.892259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | | | - Eleonora Tamilia
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rutvi Vyas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Michaela Sisitsky
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States
| | - Imran Ladha
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States
| | | | | | - P Ellen Grant
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| | - Yangming Ou
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
24
|
Yang X, Sun W, Wu Q, Lin H, Lu Z, Shen X, Chen Y, Zhou Y, Huang L, Wu F, Liu F, Chu D. Excess Folic Acid Supplementation before and during Pregnancy and Lactation Alters Behaviors and Brain Gene Expression in Female Mouse Offspring. Nutrients 2021; 14:nu14010066. [PMID: 35010941 PMCID: PMC8746785 DOI: 10.3390/nu14010066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Use of folic acid (FA) during early pregnancy protects against birth defects. However, excess FA has shown gender-specific neurodevelopmental toxicity. Previously, we fed the mice with 2.5 times the recommended amount of FA one week prior to mating and during the pregnancy and lactation periods, and detected the activated expression of Fos and related genes in the brains of weaning male offspring, as well as behavioral abnormalities in the adults. Here, we studied whether female offspring were affected by the same dosage of FA. An open field test, three-chamber social approach and social novelty test, an elevated plus-maze, rotarod test and the Morris water maze task were used to evaluate their behaviors. RNA sequencing was performed to identify differentially expressed genes in the brains. Quantitative real time-PCR (qRT-PCR) and Western blots were applied to verify the changes in gene expression. We found increased anxiety and impaired exploratory behavior, motor coordination and spatial memory in FA-exposed females. The brain transcriptome revealed 36 up-regulated and 79 down-regulated genes in their brains at weaning. The increase of Tlr1; Sult1a1; Tph2; Acacb; Etnppl; Angptl4 and Apold1, as well as a decrease of Ppara mRNA were confirmed by qRT-PCR. Among these genes; the mRNA levels of Etnppl; Angptl4andApold1 were increased in the both FA-exposed female and male brains. The elevation of Sult1a1 protein was confirmed by Western blots. Our data suggest that excess FA alteres brain gene expression and behaviors in female offspring, of which certain genes show apparent gender specificity.
Collapse
Affiliation(s)
- Xingyue Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (H.L.); (F.W.)
| | - Wenyan Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (W.S.); (Z.L.); (Y.C.); (Y.Z.)
| | - Qian Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
| | - Hongyan Lin
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (H.L.); (F.W.)
| | - Zhixing Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (W.S.); (Z.L.); (Y.C.); (Y.Z.)
| | - Xin Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
| | - Yongqi Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (W.S.); (Z.L.); (Y.C.); (Y.Z.)
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong 226001, China; (W.S.); (Z.L.); (Y.C.); (Y.Z.)
| | - Li Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China; (H.L.); (F.W.)
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Correspondence: (F.L.); (D.C.)
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (X.Y.); (Q.W.); (X.S.); (L.H.)
- Correspondence: (F.L.); (D.C.)
| |
Collapse
|
25
|
Oztenekecioglu B, Mavis M, Osum M, Kalkan R. Genetic and Epigenetic Alterations in Autism Spectrum Disorder. Glob Med Genet 2021; 8:144-148. [PMID: 34877571 PMCID: PMC8635813 DOI: 10.1055/s-0041-1735540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
It is extremely important to understand the causes of autism spectrum disorder (ASD) which is a neurodevelopmental disease. Treatment and lifelong support of autism are also important to improve the patient's life quality. In this article, several findings were explained to understand the possible causes of ASD. We draw, outline, and describe ASD and its relation with the epigenetic mechanisms. Here, we discuss, several different factors leading to ASD such as environmental, epigenetic, and genetic factors.
Collapse
Affiliation(s)
- Bugsem Oztenekecioglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| | - Merdiye Mavis
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| | - Meryem Osum
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| | - Rasime Kalkan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus.,Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
26
|
Sampaio AC, Matos FFD, Lopes LDL, Marques ÍMM, Tavares RM, Fernandes MVDM, Teixeira MRVDS, Brito ABD, Feitosa AC, Guedes TO, Mota ML. Association of the Maternal Folic Acid Supplementation with the Autism Spectrum Disorder: A Systematic Review. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2021; 43:775-781. [PMID: 34784634 PMCID: PMC10183865 DOI: 10.1055/s-0041-1736298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To analyze the scientific production regarding maternal folic acid (FA) supplementation and its relationship with autistic spectrum disorder (ASD). DATA SOURCES We performed unrestricted electronic searches in the BIREME virtual bank, Virtual Health Library (VHL) and Medical Literature Analysis and Retrieval System Online (MEDLINE/PubMed) databases. SELECTION OF STUDIES For sample selection, articles that met the proposed objectives were included, published in English, Spanish and Portuguese, the use of Health Sciences Descriptors (DeCS): autistic OR autism AND autism spectrum disorder AND folic acid, AND, with the use of the Medical Subject Headings (MeSH): autistic OR autism AND autistic spectrum disorder AND folic acid. DATA COLLECTION Data extraction was performed by the reviewers with a preestablished data collection formulary. DATA SYNTHESIS The Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) was used based on a checklist with 27 items and a 4-step flowchart. RESULTS A total of 384 articles was found by the search strategies, of which 17 were eligible following the pre-established criteria. The main findings of the present review point to maternal FA supplementation in the pre-conception period and beginning of pregnancy as a protective effect in relation to ASD, which should be indicated in this period as prevention to the problem. CONCLUSION According to the research analyzed, more studies are necessary to know its effects on pregnancy, since the consumption of excessive FA may not be innocuous.
Collapse
Affiliation(s)
- Adalberto Cruz Sampaio
- Department of Medicine, Faculdade de Medicina Estácio de Juazeiro do Norte, Barbalha, CE, Brazil
| | | | - Lucas de Lucena Lopes
- Department of Medicine, Faculdade de Medicina Estácio de Juazeiro do Norte, Barbalha, CE, Brazil
| | | | - Ravel Moreira Tavares
- Department of Medicine, Faculdade de Medicina Estácio de Juazeiro do Norte, Barbalha, CE, Brazil
| | | | | | | | | | | | - Magaly Lima Mota
- Department of Nursing, Centro Universitário Dr. Leão Sampaio, Juazeiro do Norte, CE, Brazil
| |
Collapse
|
27
|
Husen SC, Kemper ND, Go AT, Willemsen SP, Rousian M, Steegers-Theunissen RP. Periconceptional maternal folate status and the impact on embryonic head and brain structures: the Rotterdam Periconceptional Cohort. Reprod Biomed Online 2021; 44:515-523. [DOI: 10.1016/j.rbmo.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
|
28
|
Husebye ESN, Riedel B, Bjørke-Monsen AL, Spigset O, Daltveit AK, Gilhus NE, Bjørk MH. Vitamin B status and association with antiseizure medication in pregnant women with epilepsy. Epilepsia 2021; 62:2968-2980. [PMID: 34590314 DOI: 10.1111/epi.17076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Antiseizure medication (ASM) use interacts with vitamin B status in nonpregnant epilepsy populations. We aimed to examine the association between ASM and vitamin B status in pregnant women with epilepsy. METHODS We performed a cross-sectional study of pregnancies in women with epilepsy enrolled in the Norwegian Mother, Father and Child Cohort Study from 1999 to 2008. Data on ASM and vitamin supplement use were collected from questionnaires. We analyzed maternal plasma concentrations of ASM and metabolites of folate, including unmetabolized folic acid (UMFA), riboflavin (vitamin B2), pyridoxine (vitamin B6), and niacin (vitamin B3) during gestational weeks 17-19. RESULTS We included 227 singleton pregnancies exposed to ASM with available plasma samples (median maternal age 29 years, range 18 to 41 years). From the preconception period to gestational week 20, any supplement of folic acid was reported in 208 of pregnancies (94%), riboflavin in 72 (33%), pyridoxine in 77 (35%), and niacin in 45 (20%). High ASM concentrations correlated with high concentrations of UMFA and inactive folate metabolites, and with low concentrations of riboflavin and metabolically active pyridoxine. There was no association between ASM and niacin status. SIGNIFICANCE ASM concentrations during pregnancy were associated with vitamin B status in pregnant women with epilepsy. Additional studies are needed to determine the clinical impact of these findings, and to define the optimal vitamin doses that should be recommended to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Elisabeth Synnøve Nilsen Husebye
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Bettina Riedel
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anne-Lise Bjørke-Monsen
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Kjersti Daltveit
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Health Registries, Norwegian Institute of Public Health, Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Marte Helene Bjørk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
29
|
Maternal Mid-Gestation Cytokine Dysregulation in Mothers of Children with Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:3919-3932. [PMID: 34505185 PMCID: PMC9349096 DOI: 10.1007/s10803-021-05271-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterised by deficits in social interactions and communication, with stereotypical and repetitive behaviours. Recent evidence suggests that maternal immune dysregulation may predispose offspring to ASD. Independent samples t-tests revealed downregulation of IL-17A concentrations in cases, when compared to controls, at both 15 weeks (p = 0.02), and 20 weeks (p = 0.02), which persisted at 20 weeks following adjustment for confounding variables. This adds to the growing body of evidence that maternal immune regulation may play a role in foetal neurodevelopment.
Collapse
|
30
|
Hoxha B, Hoxha M, Domi E, Gervasoni J, Persichilli S, Malaj V, Zappacosta B. Folic Acid and Autism: A Systematic Review of the Current State of Knowledge. Cells 2021; 10:cells10081976. [PMID: 34440744 PMCID: PMC8394938 DOI: 10.3390/cells10081976] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Folic acid has been identified to be integral in rapid tissue growth and cell division during fetal development. Different studies indicate folic acid’s importance in improving childhood behavioral outcomes and underline its role as a modifiable risk factor for autism spectrum disorders. The aim of this systematic review is to both elucidate the potential role of folic acid in autism spectrum disorders and to investigate the mechanisms involved. Studies have pointed out a potential beneficial effect of prenatal folic acid maternal supplementation (600 µg) on the risk of autism spectrum disorder onset, but opposite results have been reported as well. Folic acid and/or folinic acid supplementation in autism spectrum disorder diagnosed children has led to improvements, both in some neurologic and behavioral symptoms and in the concentration of one-carbon metabolites. Several authors report an increased frequency of serum auto-antibodies against folate receptor alpha (FRAA) in autism spectrum disorder children. Furthermore, methylene tetrahydrofolate reductase (MTHFR) polymorphisms showed a significant influence on ASD risk. More clinical trials, with a clear study design, with larger sample sizes and longer observation periods are necessary to be carried out to better evaluate the potential protective role of folic acid in autism spectrum disorder risk.
Collapse
Affiliation(s)
- Bianka Hoxha
- Department of Chemical-Pharmaceutical and Biomolecular Technologies, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania;
| | - Malvina Hoxha
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (B.Z.)
- Correspondence: ; Tel.: +355-42-273-290
| | - Elisa Domi
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (B.Z.)
| | - Jacopo Gervasoni
- Area Diagnostica di Laboratorio UOC Chimica, Biochimica e Biologia Molecolare Clinica Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (J.G.); (S.P.)
| | - Silvia Persichilli
- Area Diagnostica di Laboratorio UOC Chimica, Biochimica e Biologia Molecolare Clinica Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (J.G.); (S.P.)
| | - Visar Malaj
- Department of Economics, Faculty of Economy, University of Tirana, 1000 Tirana, Albania;
| | - Bruno Zappacosta
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University “Our Lady of Good Counsel”, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (B.Z.)
| |
Collapse
|
31
|
Friel C, Leyland AH, Anderson JJ, Havdahl A, Borge T, Shimonovich M, Dundas R. Prenatal Vitamins and the Risk of Offspring Autism Spectrum Disorder: Systematic Review and Meta-Analysis. Nutrients 2021; 13:2558. [PMID: 34444717 PMCID: PMC8398897 DOI: 10.3390/nu13082558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Prenatal nutrition is associated with offspring autism spectrum disorder (herein referred to as autism), yet, it remains unknown if the association is causal. Triangulation may improve causal inference by integrating the results of conventional multivariate regression with several alternative approaches that have unrelated sources of bias. We systematically reviewed the literature on the relationship between prenatal multivitamin supplements and offspring autism, and evidence for the causal approaches applied. Six databases were searched up to 8 June 2020, by which time we had screened 1309 titles/abstracts, and retained 12 articles. Quality assessment was guided using Newcastle-Ottawa in individual studies, and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) for the body of evidence. The effect estimates from multivariate regression were meta-analysed in a random effects model and causal approaches were narratively synthesised. The meta-analysis of prenatal multivitamin supplements involved 904,947 children (8159 cases), and in the overall analysis showed no robust association with offspring autism; however, a reduced risk was observed in the subgroup of high-quality observational studies (RR 0.77, 95% CI (0.62, 0.96), I2 = 62.4%), early pregnancy (RR 0.76, 95% CI (0.58; 0.99), I2 = 79.8%) and prospective studies (RR 0.69, 95% CI (0.48, 1.00), I2 = 95.9%). The quality of evidence was very low, and triangulation was of limited utility because alternative methods were used infrequently and often not robustly applied.
Collapse
Affiliation(s)
- Catherine Friel
- Medical Research Council/Chief Science Office Social and Public Health Sciences Unit, University of Glasgow, Glasgow G3 7HR, UK; (A.H.L.); (M.S.); (R.D.)
| | - Alastair H. Leyland
- Medical Research Council/Chief Science Office Social and Public Health Sciences Unit, University of Glasgow, Glasgow G3 7HR, UK; (A.H.L.); (M.S.); (R.D.)
| | - Jana J. Anderson
- Public Health Research Group, Institute of Health & Wellbeing, University of Glasgow, Glasgow G12 8RZ, UK;
| | - Alexandra Havdahl
- Department of Mental Disorders, Norwegian Institute of Public Health, 222 Skoyen, 0213 Oslo, Norway;
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Postboks 4970 Nydalen, 0440 Oslo, Norway
- Promenta Research Center, Department of Psychology, University of Oslo, Boks 1072 Blindern, 0316 Oslo, Norway
| | - Tiril Borge
- Division for Health Services, Cluster of Reviews and Health Technology Assessments, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, 0213 Oslo, Norway;
| | - Michal Shimonovich
- Medical Research Council/Chief Science Office Social and Public Health Sciences Unit, University of Glasgow, Glasgow G3 7HR, UK; (A.H.L.); (M.S.); (R.D.)
| | - Ruth Dundas
- Medical Research Council/Chief Science Office Social and Public Health Sciences Unit, University of Glasgow, Glasgow G3 7HR, UK; (A.H.L.); (M.S.); (R.D.)
| |
Collapse
|
32
|
Abstract
Special considerations are required for women with epilepsy. These include issues such as catamenial exacerbation, concerns for contraception, teratogenesis (including both anatomical and neurodevelopmental effects), and other concerns for pregnancy complications such as increased seizures or adverse obstetric outcomes. In this manuscript, several cases are presented and discussed addressing some of the important issues in the management of women with epilepsy.
Collapse
|
33
|
Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes (Basel) 2021; 12:genes12050782. [PMID: 34065323 PMCID: PMC8161134 DOI: 10.3390/genes12050782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.
Collapse
|
34
|
Vynckier AK, Ceulemans D, Vanheule G, De Mulder P, Van Den Driessche M, Devlieger R. Periconceptional Folate Supplementation in Women after Bariatric Surgery-A Narrative Review. Nutrients 2021; 13:nu13051557. [PMID: 34063091 PMCID: PMC8147946 DOI: 10.3390/nu13051557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 11/04/2022] Open
Abstract
The prevalence of obesity is increasing globally, and along with it, there is a growing number of patients opting to undergo bariatric surgery to treat this condition. Whilst it has many advantages, bariatric surgery is known to induce micronutrient deficiency, with possible deleterious effects on overall health. This topic becomes even more relevant during pregnancy, where deficiencies can also affect the developing fetus, possibly being the cause of an increase in congenital anomalies. Most notably amongst these micronutrients is folate, or vitamin B9, which plays an essential role in development, gene expression and genomic stability. As insufficient levels of folate are associated with neural tube defects in the fetus, preventing and treating folate deficiencies during pregnancies after bariatric surgery is a relevant issue. Unfortunately, folate supplementation recommendations for bariatric patients who wish to become pregnant are not clear. In this narrative review, we discuss whether the recommendations for the general population are still valid for bariatric patients. Furthermore, we discuss the role of folate in the human body, folate status in both non-bariatric and bariatric patients, the various types of folate that are available for substitution and the risk associated with over-supplementation.
Collapse
Affiliation(s)
- An-Katrien Vynckier
- Metagenics Europe, Edward Vlietinckstraat 20, 8400 Oostende, Belgium; (A.-K.V.); (G.V.); (M.V.D.D.)
| | - Dries Ceulemans
- Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Greet Vanheule
- Metagenics Europe, Edward Vlietinckstraat 20, 8400 Oostende, Belgium; (A.-K.V.); (G.V.); (M.V.D.D.)
| | - Paulien De Mulder
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Gent, Belgium;
| | - Mieke Van Den Driessche
- Metagenics Europe, Edward Vlietinckstraat 20, 8400 Oostende, Belgium; (A.-K.V.); (G.V.); (M.V.D.D.)
| | - Roland Devlieger
- Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Obstetrics, Gynaecology and Reproduction, St-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk, Belgium
- Correspondence:
| |
Collapse
|
35
|
Anitha A, Viswambharan V, Thanseem I, Iype M, Parakkal R, Surendran SP, Mundalil MV. Vitamins and Cognition: A Nutrigenomics Perspective. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200901180443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rise in the prevalence of neurodegenerative and neurodevelopmental cognitive disorders
combined with a lack of efficient therapeutic strategies has necessitated the need to develop alternate
approaches. Dietary supplements are now being considered as a complementary and alternative
medicine for cognitive impairments. Considerable evidence suggests the role of vitamins in
modulating the genetic and epigenetic factors implicated in neuropsychiatric, neurodevelopmental
and neurodegenerative disorders. In this review, we provide an overview of the implications of nutrigenomics
with reference to vitamins that are suggested to boost cognitive functions (nootropic vitamins).
Several vitamins have been found to possess antioxidant and anti-inflammatory properties
which make them potential candidates in preventing or delaying age-related neurodegeneration and
cognitive decline. Well-designed longitudinal studies are essential to examine the association between
vitamins and cognitive functions. Future studies linking nutrition with advances in neuroscience,
genomics and epigenomics would provide novel approaches to managing cognitive disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mary Iype
- Government Medical College, Thiruvananthapuram 695 011, Kerala, India
| | - Rahna Parakkal
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Sumitha P. Surendran
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mahesh V. Mundalil
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
36
|
Ford SM, Pedersen CJ, Ford MR, Kim JW, Karunamuni GH, McPheeters MT, Jawaid S, Jenkins MW, Rollins AM, Watanabe M. Folic acid prevents functional and structural heart defects induced by prenatal ethanol exposure. Am J Physiol Heart Circ Physiol 2021. [DOI: 10.1152/ajpheart.00817.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
State-of-the-art biophotonic tools captured blood flow and endocardial cushion volumes in tiny beating quail embryo hearts, an accessible model for studying four-chambered heart development. Both hemodynamic flow and endocardial cushion volumes were altered with ethanol exposure but normalized when folic acid was introduced with ethanol. Folic acid supplementation preserved hemodynamic function that is intimately involved in sculpting the heart from the earliest stages of heart development.
Collapse
Affiliation(s)
- Stephanie M. Ford
- Division of Neonatology, Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Cameron J. Pedersen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Matthew R. Ford
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland Ohio
| | - Jun W. Kim
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ganga H. Karunamuni
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Matthew T. McPheeters
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Safdar Jawaid
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michael W. Jenkins
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michiko Watanabe
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
37
|
ŞİMŞEK H, KARAAĞAÇ Y, TUNÇER E, YARDIMCI H. Gebelikte Folik Asit, B12 Vitamini, D Vitamini ve İyot Destekleri Kullanmak Gerekli Midir?: Olası Riskler. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2021. [DOI: 10.17517/ksutfd.832401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Craenen K, Verslegers M, Callaerts-Vegh Z, Craeghs L, Buset J, Govaerts K, Neefs M, Gsell W, Baatout S, D'Hooge R, Himmelreich U, Moons L, Benotmane MA. Folic Acid Fortification Prevents Morphological and Behavioral Consequences of X-Ray Exposure During Neurulation. Front Behav Neurosci 2021; 14:609660. [PMID: 33488367 PMCID: PMC7820780 DOI: 10.3389/fnbeh.2020.609660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Previous studies suggested a causal link between pre-natal exposure to ionizing radiation and birth defects such as microphthalmos and exencephaly. In mice, these defects arise primarily after high-dose X-irradiation during early neurulation. However, the impact of sublethal (low) X-ray doses during this early developmental time window on adult behavior and morphology of central nervous system structures is not known. In addition, the efficacy of folic acid (FA) in preventing radiation-induced birth defects and persistent radiation-induced anomalies has remained unexplored. To assess the efficacy of FA in preventing radiation-induced defects, pregnant C57BL6/J mice were X-irradiated at embryonic day (E)7.5 and were fed FA-fortified food. FA partially prevented radiation-induced (1.0 Gy) anophthalmos, exencephaly and gastroschisis at E18, and reduced the number of pre-natal deaths, fetal weight loss and defects in the cervical vertebrae resulting from irradiation. Furthermore, FA food fortification counteracted radiation-induced impairments in vision and olfaction, which were evidenced after exposure to doses ≥0.1 Gy. These findings coincided with the observation of a reduction in thickness of the retinal ganglion cell and nerve fiber layer, and a decreased axial length of the eye following exposure to 0.5 Gy. Finally, MRI studies revealed a volumetric decrease of the hippocampus, striatum, thalamus, midbrain and pons following 0.5 Gy irradiation, which could be partially ameliorated after FA food fortification. Altogether, our study is the first to offer detailed insights into the long-term consequences of X-ray exposure during neurulation, and supports the use of FA as a radioprotectant and antiteratogen to counter the detrimental effects of X-ray exposure during this crucial period of gestation.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Livine Craeghs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Kristof Govaerts
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mieke Neefs
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Willy Gsell
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Molecular Small Animal Imaging Center, Biomedical MRI Unit, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lieve Moons
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, Faculty of Science, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (Studiecentrum voor Kernenergie; Centre d'étude de l'énergie nucléaire), Mol, Belgium
| |
Collapse
|
39
|
Harlan De Crescenzo A, Panoutsopoulos AA, Tat L, Schaaf Z, Racherla S, Henderson L, Leung KY, Greene NDE, Green R, Zarbalis KS. Deficient or Excess Folic Acid Supply During Pregnancy Alter Cortical Neurodevelopment in Mouse Offspring. Cereb Cortex 2021; 31:635-649. [PMID: 32995858 PMCID: PMC7727343 DOI: 10.1093/cercor/bhaa248] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Folate is an essential micronutrient required for both cellular proliferation through de novo nucleotide synthesis and epigenetic regulation of gene expression through methylation. This dual requirement places a particular demand on folate availability during pregnancy when both rapid cell generation and programmed differentiation of maternal, extraembryonic, and embryonic/fetal tissues are required. Accordingly, prenatal neurodevelopment is particularly susceptible to folate deficiency, which can predispose to neural tube defects, or when effective transport into the brain is impaired, cerebral folate deficiency. Consequently, adequate folate consumption, in the form of folic acid (FA) fortification and supplement use, is widely recommended and has led to a substantial increase in the amount of FA intake during pregnancy in some populations. Here, we show that either maternal folate deficiency or FA excess in mice results in disruptions in folate metabolism of the offspring, suggesting diversion of the folate cycle from methylation to DNA synthesis. Paradoxically, either intervention causes comparable neurodevelopmental changes by delaying prenatal cerebral cortical neurogenesis in favor of late-born neurons. These cytoarchitectural and biochemical alterations are accompanied by behavioral abnormalities in FA test groups compared with controls. Our findings point to overlooked potential neurodevelopmental risks associated with excessively high levels of prenatal FA intake.
Collapse
Affiliation(s)
- Angelo Harlan De Crescenzo
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Lyvin Tat
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
| | - Zachary Schaaf
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Shailaja Racherla
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
| | - Lyle Henderson
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Kit-Yi Leung
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, University of California, Davis, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
- MIND Institute, University of California, Davis, CA 95817, USA
| |
Collapse
|
40
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
41
|
Virolainen S, Hussien W, Dalibalta S. Autism spectrum disorder in the United Arab Emirates: potential environmental links. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:359-369. [PMID: 32663174 DOI: 10.1515/reveh-2020-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Autism spectrum disorder (ASD) has been experiencing an increase in global prevalence in recent decades. While many factors could account for this reality, certain environmental links have been shown to contribute to ASD development and etiology. The Middle East has had relatively little published research on ASD etiology although statistics indicate that ASD affects 1 in 146 births in the United Arab Emirates (UAE). This review therefore aims to examine potential causes of ASD within the UAE specifically, focusing on environmental links that may contribute to the rise in ASD cases in this population. Significantly, suboptimal breastfeeding practices, high levels of vitamin D deficiency, increased exposure to pollution, pesticides and heavy metals within the UAE may all be potentially important contributing factors to ASD in this population. Our findings support the notion that there are key links between various environmental factors and ASD prevalence in the UAE. The lack of knowledge and much research on ASD within the UAE deeply necessitates further studies on its etiology as it poses a serious public health challenge in the region and globally.
Collapse
Affiliation(s)
| | - Wejdan Hussien
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Sarah Dalibalta
- Department of Biology, Chemistry & Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| |
Collapse
|
42
|
Hormonal contraceptives and autism epidemics. Med Hypotheses 2020; 141:109729. [DOI: 10.1016/j.mehy.2020.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 11/18/2022]
|
43
|
How 25(OH)D Levels during Pregnancy Affect Prevalence of Autism in Children: Systematic Review. Nutrients 2020; 12:nu12082311. [PMID: 32752078 PMCID: PMC7468823 DOI: 10.3390/nu12082311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of dysfunctions in social interaction, communication, and behaviors. The etiology of ASD is not yet fully understood; however, it consists of the interaction between genetics and the environment. An increasing amount of evidence points to the possibility that gestational and early-childhood vitamin D deficiency may be involved in the etiology of some cases of ASD. Herein, we systematically review the literature for studies on vitamin D status during pregnancy and ASD outcomes. Forty-three studies in the PubMed and 124 studies in EMBASE databases were initially found. After screening, 26 were identified as candidate studies for inclusion. Finally, 14 articles met the inclusion criteria, which originated from nine countries. The studies included 10 original research studies and four review studies conducted between 2012 and 2020. The strength of evidence that vitamin D levels during pregnancy increase the risk of developing autism is very low. This is because the evidence relies exclusively on observational studies that did not equally consider all important confounders and that assessed the indirect relationship between vitamin D as a surrogate for sunlight exposure and autism risk. The findings of this systematic review are consistent with the hypothesis that low vitamin D levels might contribute to the development of autism. However, we must also recognize the possible confusion bias and therefore experimental studies with very large sample sizes, given incidence of autism, that allow us to detect blood levels in pregnant women would be helpful to clarify this point.
Collapse
|
44
|
Karhu E, Zukerman R, Eshraghi RS, Mittal J, Deth RC, Castejon AM, Trivedi M, Mittal R, Eshraghi AA. Nutritional interventions for autism spectrum disorder. Nutr Rev 2020; 78:515-531. [PMID: 31876938 DOI: 10.1093/nutrit/nuz092] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder with considerable clinical heterogeneity. With no cure for the disorder, treatments commonly center around speech and behavioral therapies to improve the characteristic social, behavioral, and communicative symptoms of ASD. Gastrointestinal disturbances are commonly encountered comorbidities that are thought to be not only another symptom of ASD but to also play an active role in modulating the expression of social and behavioral symptoms. Therefore, nutritional interventions are used by a majority of those with ASD both with and without clinical supervision to alleviate gastrointestinal and behavioral symptoms. Despite a considerable interest in dietary interventions, no consensus exists regarding optimal nutritional therapy. Thus, patients and physicians are left to choose from a myriad of dietary protocols. This review, summarizes the state of the current clinical and experimental literature on nutritional interventions for ASD, including gluten-free and casein-free, ketogenic, and specific carbohydrate diets, as well as probiotics, polyunsaturated fatty acids, and dietary supplements (vitamins A, C, B6, and B12; magnesium and folate).
Collapse
Affiliation(s)
- Elisa Karhu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ryan Zukerman
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rebecca S Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | | |
Collapse
|
45
|
Post RM, Goldstein BI, Birmaher B, Findling RL, Frey BN, DelBello MP, Miklowitz DJ. Toward prevention of bipolar disorder in at-risk children: Potential strategies ahead of the data. J Affect Disord 2020; 272:508-520. [PMID: 32553395 PMCID: PMC8986089 DOI: 10.1016/j.jad.2020.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Despite the well-documented negative impact of untreated bipolar illness, approaches to early intervention in childhood-onset bipolar and related disorders are not well delineated. METHODS We reviewed the extant treatment literature on children at high risk for bipolar disorder, with definitions based on family history, childhood adversity, and prodromal symptoms. RESULTS A panoply of approaches have been described, but most interventions are based on an inadequate database to support their routine implementation. We classify early stage interventions as a function of their safety and tolerability with the hope that these might generate more rigorous study and a stronger database. LIMITATIONS Critics may rightly argue that identifying viable treatment methods is premature given our lack of ability to reliably predict illness trajectory in very young children. However, many of the psychosocial and pharmacological interventions we present could have nonspecific positive effects across a variety of symptoms, syndromes, and diagnoses, further enhancing the rationale for more rigorous study. CONCLUSIONS Early stage interventions have the potential to improve functioning in prodromal illness and exert long-term positive effects on the course of illness. Many of the safest interventions deserve consideration for implementation and dissemination studies.
Collapse
Affiliation(s)
- Robert M Post
- Bipolar Collaborative Network, Professor of Psychiatry George Washington Medical School, Bethesda, MD, Washington, DC, United States.
| | - Benjamin I Goldstein
- Departments of Psychiatry and Pharmacology, University of Toronto; Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Canada
| | - Boris Birmaher
- University of Pittsburgh School of Medicine, Psychiatry Research Pathway, United States
| | - Robert L Findling
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Benicio N Frey
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada
| | - Melissa P DelBello
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David J Miklowitz
- Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
46
|
Saxena R, Babadi M, Namvarhaghighi H, Roullet FI. Role of environmental factors and epigenetics in autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:35-60. [PMID: 32711816 DOI: 10.1016/bs.pmbts.2020.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder thought to be caused by predisposing high-risk genes that may be altered during the early development by environmental factors. The impact of maternal challenges during pregnancy on the prevalence of ASD has been widely studied in clinical and animal studies. Here, we review some clinical and pre-clinical evidence that links environmental factors (i.e., infection, air pollution, pesticides, valproic acid and folic acid) and the risk of ASD. Additionally, certain prenatal environmental challenges such as the valproate and folate prenatal exposures allow us to study mechanisms possibly linked to the etiology of ASD, for instance the epigenetic processes. These mechanistic pathways are also presented and discussed in this chapter.
Collapse
Affiliation(s)
- Roheeni Saxena
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Melika Babadi
- School of Interdisciplinary Science, McMaster University, Hamilton, ON, Canada
| | | | - Florence I Roullet
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
47
|
Folinic acid improves the score of Autism in the EFFET placebo-controlled randomized trial. Biochimie 2020; 173:57-61. [DOI: 10.1016/j.biochi.2020.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
|
48
|
Poornimai Abirami GP, Radhakrishnan RK, Johnson E, Roshan SA, Yesudhas A, Parveen S, Biswas A, Ravichandran VR, Muthuswamy A, Kandasamy M. The Regulation of Reactive Neuroblastosis, Neuroplasticity, and Nutraceuticals for Effective Management of Autism Spectrum Disorder. ADVANCES IN NEUROBIOLOGY 2020; 24:207-222. [PMID: 32006362 DOI: 10.1007/978-3-030-30402-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) encompasses a cluster of neurodevelopmental and genetic disorders that has been characterized mainly by social withdrawal, repetitive behavior, restricted interests, and deficits in language processing mainly in children. ASD has been known to severely impair behavioral patterns and cognitive functions including learning and memory due to defects in neuroplasticity. The biology of the ASD appears to be highly complex and heterogeneous, and thus, finding a therapeutic target for autism remains obscure. There has been no complete prevention or disease-modifying cure for this disorder. Recently, individuals with autism have been characterized by reactive neurogenesis, obstructions in axonal growth, heterotopia, resulting from dysplasia of neuroblasts in different brain regions. Therefore, it can be assumed that the aforementioned neuropathological correlates seen in the autistic individuals might originate from the defects mainly in the regulation of neuroblasts in the developing as well as adult brain. Nutrient deficiencies during early brain development and intake of certain allergic foods have been proposed as main reasons for the development of ASD. However, the integrated understanding of neurodevelopment and functional aspects of neuroplasticity working through neurogenesis in ASD is highly limited. Moreover, neurogenesis at the level of neuroblasts can be regulated by nutrition. Hence, defects in neuroblastosis underlying the severity of autism potentially could be rectified by appropriate implementation of nutraceuticals.
Collapse
Affiliation(s)
- G P Poornimai Abirami
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Esther Johnson
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Syed Aasish Roshan
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Ajisha Yesudhas
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Suhadha Parveen
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Abir Biswas
- Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Vijaya Roobini Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Anusuyadevi Muthuswamy
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. .,Molecular Gerontology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Mahesh Kandasamy
- School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. .,Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. .,Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| |
Collapse
|
49
|
Wang D, Zhang Y, Jiang Y, Ye Y, Ji M, Dou Y, Chen X, Li M, Ma X, Sheng W, Huang G, Yan W. Shanghai Preconception Cohort (SPCC) for the association of periconceptional parental key nutritional factors with health outcomes of children with congenital heart disease: a cohort profile. BMJ Open 2019; 9:e031076. [PMID: 31767586 PMCID: PMC6887077 DOI: 10.1136/bmjopen-2019-031076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
PURPOSE The Shanghai Preconception Cohort (SPCC) was initially established to investigate the associations of parental periconceptional nutritional factors with congenital heart disease (CHD) but has further analysed child growth and development and paediatric diseases. PARTICIPANTS Preparing-for-pregnancy couples who presented at Shanghai preconception examination clinics and early-pregnancy women before 14 gestational weeks were enrolled to comprise the periconceptional baseline study population. General characteristics, routine clinical data and consumption of diet supplements, such as folic acid and multivitamins, were collected. Blood samples were obtained at preconception and early, middle and late gestations using standard procedures. Multiple nutritional factors, including folate, homocysteine, vitamin A, vitamin D, vitamin E and metals, in the blood samples of participants selected using a case-control design were examined. Genomic DNA was extracted. FINDINGS TO DATE The baseline population included 8045 preconception couples, 3054 single women and 15 615 early-pregnancy women. Data from 12 402 births were collected, and follow-up of the cohort for other outcomes is ongoing. Currently, 151 cases of CHD were identified after birth. The pilot analysis in a small subgroup showed that approximately 20.0% of preconception women and 44.9% of early-pregnancy women had red blood cell (RBC) folate levels that met the international recommendation for preventing neural tube defects. FUTURE PLANS Once a sufficient number of CHD cases are achieved, we will investigate the quantitative association of preconception RBC folate levels with CHD using a nested case-control design. The SPCC will be followed up for 18 years to investigate extensive outcomes of growth, development, obesity, and common and rare diseases during childhood and adolescence according to our plan. Blood nutritional factors will be examined in participants selected for specific aims. The SPCC will also allow for prospective cohort studies on extensive research questions. TRIAL REGISTRATION NUMBER NCT02737644.
Collapse
Affiliation(s)
- Dingmei Wang
- Children's Hospital of Fudan University, Shanghai, China
| | - Yi Zhang
- Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yuang Jiang
- Children's Hospital of Fudan University, Shanghai, China
| | - Ying Ye
- Children's Hospital of Fudan University, Shanghai, China
| | - Mi Ji
- Children's Hospital of Fudan University, Shanghai, China
| | - Yalan Dou
- Children's Hospital of Fudan University, Shanghai, China
| | - Xiaotian Chen
- Children's Hospital of Fudan University, Shanghai, China
| | - Mengru Li
- Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Weili Yan
- Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defect, Shanghai, China
| |
Collapse
|
50
|
Moore CJ, Perreault M, Mottola MF, Atkinson SA. Diet in Early Pregnancy: Focus on Folate, Vitamin B12, Vitamin D, and Choline. CAN J DIET PRACT RES 2019; 81:58-65. [PMID: 31512510 DOI: 10.3148/cjdpr-2019-025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Purpose: Prenatal multivitamins are recommended in pregnancy. This study assessed food and supplement intakes of folate, vitamin B12 (B12), vitamin D, and choline in pregnant women living in Southern Ontario in comparison with current recommendations. Methods: Women recruited to the Be Healthy in Pregnancy RCT (NCT01693510) completed 3-day diet/supplement records at 12-17 weeks gestation. Intakes of folate, B12, vitamin D, and choline were quantified and compared with recommendations for pregnant women. Results: Folate intake (median (min, max)) was 1963 μg/day dietary folate equivalents (153, 10 846); 90% of women met the Estimated Average Requirement (EAR) but 77% exceeded the Tolerable Upper Intake Level (UL) (n = 232). B12 intake was 12.1 μg/day (0.3, 2336); 96% of women met the EAR with 7% exceeding the EAR 100-fold (n = 232). Vitamin D intake was 564 IU/day (0.0, 11 062); 83% met the EAR, whereas 1.7% exceeded the UL (n = 232). Choline intake was 338 mg/day (120, 1016); only 18% met the Adequate Intake and none exceeded the UL (n = 158). Conclusion: To meet the nutrient requirements of pregnancy many women rely on prenatal vitamins. Reformulating prenatal multivitamin supplements to provide doses of vitamins within recommendations to complement a balanced healthy diet would ensure appropriate micronutrient intakes for pregnant women.
Collapse
|