1
|
Xu Y, Zhang T, Li Z, Gao W, Guo K, Zhang Z, Zhang Z, Liu P. Fluorescence Endoscopy with Second Window Indocyanine Green for Surgical Resection of Malignant Brain Tumors. World Neurosurg 2025; 196:123766. [PMID: 39955047 DOI: 10.1016/j.wneu.2025.123766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE This study aimed to validate the clinical feasibility, safety, and effectiveness of using the fluorescence endoscopy with second window indocyanine green (FESWICG) technique for resection of malignant brain tumors. METHODS Twenty-two patients undergoing surgery for malignant brain tumor resection were examined. Intravenous ICG (250 mg) was administered within 24 hours prior to surgery. All procedures were performed under endoscopic guidance. The fluorescence intensity of the tumors was monitored using fluorescence mode endoscopy. Specimens including resection margins were harvested and submitted for histopathological analysis. The sensitivity and specificity of FESWICG were validated using contrast-enhanced cranial magnetic resonance imaging performed within 24 hours of surgery and histopathology. The Karnofsky performance scale was used to assess overall functional status before and after surgery. RESULTS The tumor diagnoses were as follows: glioma (n = 14), ependymoma (n = 1), metastasis (n = 5), lymphoma (n = 1), and choroid plexus papilloma (n = 1). Intraoperative tumor fluorescence was strong in 20 patients and weak in 2. Postoperative contrast-enhanced imaging revealed complete tumor resection in 18 patients (81.82%). Sixty-four tumor specimens were collected, including 42 obtained from tumor margins. Using histopathology as the reference, the sensitivity, specificity, positive predictive value, and negative predictive value of FESWICG for detection of malignant brain tumors were 91.42%, 41.38%, 65.31%, and 80%, respectively. The median Karnofsky performance scale score was 85 before surgery and 93 at the 3-month follow-up. CONCLUSIONS SWICG notably enhanced intraoperative visualization of malignant brain tumors, particularly the delineation between tumor and normal brain. Its utility for margin detection is promising. When utilized in conjunction with a full endoscopic system, the visual acuity and overall effectiveness of surgical procedures can be substantially enhanced. However, ICG remains a low-specificity technique.
Collapse
Affiliation(s)
- Yongqiang Xu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhuoqun Li
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wenbo Gao
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ke Guo
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhao Zhang
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zhirou Zhang
- Department of Rehabilitation Therapeutics, Binzhou Medical University, Yantai, Shandong, China
| | - Pengfei Liu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
2
|
Kuroda H, Okita Y, Arisawa A, Utsugi R, Murakami K, Hirayama R, Kijima N, Arita H, Kinoshita M, Fujimoto Y, Nakamura H, Kagawa N, Tomiyama N, Kishima H. Cerebral blood flow and histological analysis for the accurate differentiation of infiltrating tumor and vasogenic edema in glioblastoma. PLoS One 2025; 20:e0316168. [PMID: 39792964 PMCID: PMC11723604 DOI: 10.1371/journal.pone.0316168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images. METHODS Data were retrospectively collected from 48 patients with primary IDH-wild-type glioblastoma and 24 patients with meningiomas (Edemas-M). First, we attempted histological verification of cell density, Ki-67 index, and microvessel areas to distinguish between non-contrast-enhancing tumors (NETs) and edema (Edemas) which were obtained from stereotactically fused T2-weighted and perfusion images. This was performed for evaluating enhancing tumors (ETs), NETs, and Edemas. Second, we also performed radiological verification to distinguish NETs from Edemas. Two neurosurgeons manually assigned the regions of interests (ROIs) to ETs, NETs, and Edemas. The DSC-MR perfusion imaging-derived parameters calculated for each ROI included the cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT). RESULTS Cell density and microvessel area were significantly higher in NETs than those in Edemas (p<0.01 and p<0.05, respectively). Regarding radiological analysis, the mean CBF ratio for Edemas was significantly lower than that for NETs (p<0.01). The mean MTT ratio for Edemas was significantly higher than that for NETs. The receiver operating characteristic (ROC) analysis showed that CBF (area under the curve [AUC] = 0.890) could effectively distinguish between NETs and Edemas. The ROC analysis also showed that MTT (AUC = 0.946) could effectively distinguish between NETs and Edemas. CONCLUSIONS DSC-MR perfusion images may prove useful in differentiating NETs from Edemas in non-contrast T2 hyperintensity regions of glioblastoma.
Collapse
Affiliation(s)
- Hideki Kuroda
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuko Arisawa
- Department of Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Reina Utsugi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yasunori Fujimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Neurosurgery, Osaka Rosai Hospital, Sakai, Osaka, Japan
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Aleid AM, Alrasheed AS, Aldanyowi SN, Almalki SF. Advanced magnetic resonance imaging for glioblastoma: Oncology-radiology integration. Surg Neurol Int 2024; 15:309. [PMID: 39246787 PMCID: PMC11380898 DOI: 10.25259/sni_498_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Background Aggressive brain tumors like glioblastoma multiforme (GBM) pose a poor prognosis. While magnetic resonance imaging (MRI) is crucial for GBM management, distinguishing it from other lesions using conventional methods can be difficult. This study explores advanced MRI techniques better to understand GBM properties and their link to patient outcomes. Methods We studied MRI scans of 157 GBM surgery patients from January 2020 to March 2024 to extract radiomic features and analyze the impact of fluid-attenuated inversion recovery (FLAIR) resection on survival using statistical methods, proportional hazards regression, and Kaplan-Meier survival analysis. Results Predictive models achieved high accuracy (area under the curve of 0.902) for glioma-grade prediction. FLAIR abnormality resection significantly improved survival, while diffusion-weighted image best-depicted tumor infiltration. Glioblastoma infiltration was best seen with advanced MRI compared to metastasis. Glioblastomas showed distinct features, including irregular shape, margins, and enhancement compared to metastases, which were oval or round, with clear edges and even contrast, and extensive peritumoral changes. Conclusion Advanced radiomic and machine learning analysis of MRI can provide noninvasive glioma grading and characterization of tumor properties with clinical relevance. Combining advanced neuroimaging with histopathology may better integrate oncology and radiology for optimized glioblastoma management. However, further studies are needed to validate these findings with larger datasets and assess additional MRI sequences and radiomic features.
Collapse
Affiliation(s)
| | | | - Saud Nayef Aldanyowi
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| | - Sami Fadhel Almalki
- Department of Surgery, College of Medicine, King Faisal University, AlAhsa, Saudi Arabia
| |
Collapse
|
4
|
Stuebs FA, Beckmann MW, Dannecker C, Follmann M, Nothacker M, Schnürch HG, Woelber L, Wesselmann S. Implementation of quality indicators for vulvar cancer in gynaecological cancer centres certified by the German Cancer Society (DKG). J Cancer Res Clin Oncol 2024; 150:250. [PMID: 38727842 PMCID: PMC11087317 DOI: 10.1007/s00432-024-05769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE In 2018, the first guideline-based quality indicators (QI) for vulvar cancer were implemented in the data-sheets of certified gynaecological cancer centres. The certification process includes guideline-based QIs as a fundamental component. These indicators are specifically designed to evaluate the level of care provided within the centres. This article aims to give an overview of the developing process of guideline based-QIs for women with vulvar cancer and presents the QIs results from the certified gynaecological cancer centres. METHODS The QIs were derived in a standardized multiple step process during the update of the 2015 S2k guideline "Diagnosis, Therapy, and Follow-Up Care of Vulvar Cancer and its Precursors" (registry-number: no. 015/059) and are based on strong recommendations. RESULTS In total, there are eight guideline-based QIs for vulvar cancer. Four QIs are part of the certification process. In the treatment year 2021, 2.466 cases of vulvar cancer were treated in 177 centres. The target values in the centres for pathology reports on tumour resection and lymphadenectomy as well as sentinel lymph nodes have increased since the beginning of the certification process and have been above 90% over the past three treatment years (2019-2021). DISCUSSION QIs based on strong guideline recommendations, play a crucial role in measuring and allowing to quantify essential aspects of patient care. By utilizing QIs, centres are able to identify areas for process optimization and draw informed conclusions. Over the years the quality of treatment of vulvar cancer patients measured by the QIs was improved. The certification system is continuously reviewed to enhance patient care even further by using the outcomes from QIs revaluation.
Collapse
Affiliation(s)
- Frederik A Stuebs
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Centre Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Universitaetsstrasse 21-23, 91054, Erlangen, Germany.
| | - Matthias W Beckmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Centre Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Universitaetsstrasse 21-23, 91054, Erlangen, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynaecology, University, Hospital Augsburg, 86156, Augsburg, Germany
| | | | - Monika Nothacker
- AWMF-Institute for Medical Knowledge Management c/o Philipps-University Marburg, Karl-von-Frisch-Straße 1, 35043, Marburg, Germany
| | | | - Linn Woelber
- Department of Gynaecology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Dysplasia Centre Hamburg, Colposcopy Clinic at the Jerusalem Hospital, Hamburg, Germany
| | | |
Collapse
|
5
|
Stuebs FA, Beckmann MW, Fehm T, Dannecker C, Follmann M, Langer T, Wesselmann S. Implementation and update of guideline-derived quality indicators for cervical cancer in gynecological cancer centers certified by the German Cancer Society (DKG). J Cancer Res Clin Oncol 2023; 149:12755-12764. [PMID: 37452203 PMCID: PMC10587177 DOI: 10.1007/s00432-023-05132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE In 2008, the first gynecological cancer centres were certified by the German Cancer Society (DKG). Guideline-based quality Indicators (QIs) are a core element of the certification process. These QI are defined to assess the quality of care within the centres and can serve to measure the implementation of guideline recommendation. This article aims to give an overview of the developing and updating process of guideline based-QIs for women with cervical cancer and presents the QI results from the certified gynaecological cancer centres. METHODS The QIs are derived in a multiple step review process and then implemented in the certification data sheet of the certified centres. The first set of QIs created in 2014 was revised in the update process of the S3-Guideline in 2020. QIs are based on strong recommendations of the evidence-based "Guideline for patients with Cervical Carcinoma" (registry-number: 032/033OL). RESULTS In total, there are nine guideline-based QIs for cervical cancer. Four QIs are part of the certification process. In the treatment year 2020, 3.522 cases of cervical cancer were treated in 169 centers. The target values for the four QIs were met in at least 95% of the certified centers. In the guideline update in 2020, a new QI was added to the set of QIs "Complete pathological report on conization findings" and the QI "Exenteration" was removed. CONCLUSIONS QIs derived from strong recommendations of a guideline are an important tool to make essential parts of patient's care measurable and enable the centers to draw consequences in process optimization. Over the years, the number of certified centers has grown, and the quality was improved. The certification systems is under constant revision to further improve patient's care in the future, based on the results of the QI re-evaluation.
Collapse
Affiliation(s)
- Frederik A Stuebs
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054, Erlangen, Germany.
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitaetsstrasse 21-23, 91054, Erlangen, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University, Hospital Augsburg, 86156, Augsburg, Germany
| | | | | | | |
Collapse
|
6
|
Viozzi I, Overduin CG, Rijpma A, Rovers MM, Laan MT. MR-guided LITT therapy in patients with primary irresectable glioblastoma: a prospective, controlled pilot study. J Neurooncol 2023; 164:405-412. [PMID: 37505379 PMCID: PMC10522506 DOI: 10.1007/s11060-023-04371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Laser interstitial thermal therapy (LITT) is increasingly being used in the treatment of brain tumors, whereas high-quality evidence of its effectiveness is lacking. This pilot examined the feasibility of conducting a randomized controlled trial (RCT) in patients with irresectable newly diagnosed glioblastoma (nGBM), and generated data on technical feasibility and safety. METHODS We included patients with irresectable nGBM with KPS ≥ 70 and feasible trajectories to ablate ≥ 70% of the tumor volume. Patients were initially randomized to receive either biopsy combined with LITT or biopsy alone, followed by chemoradiation (CRT). Randomization was stopped after 9 patients as the feasibility endpoint with respect to willingness to be randomized was met. Main endpoints were feasibility of performing an RCT, technical feasibility of LITT and safety. Follow-up was 3 months. RESULTS A total of 15 patients were included, of which 10 patients received a biopsy followed by LITT and 5 patients a biopsy. Most patients were able to complete the follow-up procedures (93% clinical, 86% questionnaires, 78% MRI). Patients were planned within 3 weeks after consultation (median 12 days, range 8-16) and no delay was observed in referring patients for CRT (median 37 days, range 28-61). Two CD ≥ 3 complications occurred in the LITT arm and none in the biopsy arm. CONCLUSION An RCT to study the effectiveness of LITT in patients with an irresectable nGBM seems feasible with acceptable initial safety data. The findings from this pilot study helped to further refine the design of a larger full-scale multicenter RCT in the Netherlands. Protocol and study identifier: The current study is registered at clinicaltrials.gov (EMITT pilot study, NTR: NCT04596930).
Collapse
Affiliation(s)
- Ilaria Viozzi
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Christiaan G Overduin
- Department of Radiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Anne Rijpma
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Maroeska M Rovers
- Department of Health Evidence, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Department of Operating Rooms, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Neutel CLG, Viozzi I, Overduin CG, Rijpma A, Grutters JPC, Hannink G, van Eijsden P, Robe PA, Rovers MM, Ter Laan M. Study protocol for a multicenter randomised controlled trial on the (cost)effectiveness of biopsy combined with same-session MR-guided LITT versus biopsy alone in patients with primary irresectable glioblastoma (EMITT trial). BMC Cancer 2023; 23:788. [PMID: 37612610 PMCID: PMC10463911 DOI: 10.1186/s12885-023-11282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary, malignant brain tumour with a 5-year survival of 5%. If possible, a glioblastoma is resected and further treated with chemoradiation therapy (CRT), but resection is not feasible in about 30% of cases. Current standard of care in these cases is a biopsy followed by CRT. Magnetic resonance (MR) imaging-guided laser interstitial thermal therapy (LITT) has been suggested as a minimally invasive alternative when surgery is not feasible. However, high-quality evidence directly comparing LITT with standard of care is lacking, precluding any conclusions on (cost-)effectiveness. We therefore propose a multicenter randomized controlled study to assess the (cost-)effectiveness of MR-guided LITT as compared to current standard of care (EMITT trial). METHODS AND ANALYSIS The EMITT trial will be a multicenter pragmatic randomized controlled trial in the Netherlands. Seven Dutch hospitals will participate in this study. In total 238 patients will be randomized with 1:1 allocation to receive either biopsy combined with same-session MR-guided LITT therapy followed by CRT or the current standard of care being biopsy followed by CRT. The primary outcomes will be health-related quality of life (HR-QoL) (non-inferiority) using EORTC QLQ-C30 + BN20 scores at 5 months after randomization and overall survival (superiority). Secondary outcomes comprise cost-effectiveness (healthcare and societal perspective) and HR-QoL of life over an 18-month time horizon, progression free survival, tumour response, disease specific survival, longitudinal effects, effects on adjuvant treatment, ablation percentage and complication rates. DISCUSSION The EMITT trial will be the first RCT on the effectiveness of LITT in patients with glioblastoma as compared with current standard of care. Together with the Dutch Brain Tumour Patient association, we hypothesize that LITT may improve overall survival without substantially affecting patients' quality of life. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov (NCT05318612).
Collapse
Affiliation(s)
- Céline L G Neutel
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilaria Viozzi
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan G Overduin
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne Rijpma
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janneke P C Grutters
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerjon Hannink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter van Eijsden
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maroeska M Rovers
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Otsuji R, Hata N, Funakoshi Y, Kuga D, Togao O, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Sako A, Kikuchi K, Yoshitake T, Yamamoto H, Mizoguchi M, Yoshimoto K. Supramaximal Resection Can Prolong the Survival of Patients with Cortical Glioblastoma: A Volumetric Study. Neurol Med Chir (Tokyo) 2023; 63:364-374. [PMID: 37423755 PMCID: PMC10482486 DOI: 10.2176/jns-nmc.2022-0351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 07/11/2023] Open
Abstract
We aimed to retrospectively determine the resection rate of fluid-attenuated inversion recovery (FLAIR) lesions to evaluate the clinical effects of supramaximal resection (SMR) on the survival of patients with glioblastoma (GBM). Thirty-three adults with newly diagnosed GBM who underwent gross total tumor resection were enrolled. The tumors were classified into cortical and deep-seated groups according to their contact with the cortical gray matter. Pre- and postoperative FLAIR and gadolinium-enhanced T1-weighted imaging tumor volumes were measured using a three-dimensional imaging volume analyzer, and the resection rate was calculated. To evaluate the association between SMR rate and outcome, we subdivided patients whose tumors were totally resected into the SMR and non-SMR groups by moving the threshold value of SMR in 10% increments from 0% and compared their overall survival (OS) change. An improvement in OS was observed when the threshold value of SMR was 30% or more. In the cortical group (n = 23), SMR (n = 8) tended to prolong OS compared with gross total resection (GTR) (n = 15), with the median OS of 69.6 and 22.1 months, respectively (p = 0.0945). Contrastingly, in the deep-seated group (n = 10), SMR (n = 4) significantly shortened OS compared with GTR (n = 6), with median OS of 10.2 and 27.9 months, respectively (p = 0.0221). SMR could help prolong OS in patients with cortical GBM when 30% or more volume reduction is achieved in FLAIR lesions, although the impact of SMR for deep-seated GBM must be validated in larger cohorts.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
- Department of Neurosurgery, Oita University Faculty of Medicine
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University
| | - Hidetaka Yamamoto
- Department of Pathology, Graduate School of Medical Sciences, Kyushu University
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
9
|
Zhang W, Ille S, Schwendner M, Wiestler B, Meyer B, Krieg SM. The Impact of ioMRI on Glioblastoma Resection and Clinical Outcomes in a State-of-the-Art Neuro-Oncological Setup. Cancers (Basel) 2023; 15:3563. [PMID: 37509226 PMCID: PMC10377519 DOI: 10.3390/cancers15143563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Intraoperative magnetic resonance imaging (ioMRI) aims to improve gross total resection (GTR) in glioblastoma (GBM) patients. Despite some older randomized data on safety and feasibility, ioMRI's actual impact in a modern neurosurgical setting utilizing a larger armamentarium of techniques has not been sufficiently investigated to date. We therefore aimed to analyze its effects on residual tumor, patient outcome, and progression-free survival (PFS) in GBM patients in a modern high-volume center. Patients undergoing ioMRI for resection of supratentorial GBM were enrolled between March 2018 and June 2020. ioMRI was performed in all cases at the end of resection when surgeons expected complete macroscopic tumor removal. Extent of resection (EOR) was performed by volumetric analysis, with GTR defined as an EOR ≥ 95%, respectively. Progression-free survival (PFS) was analyzed through univariate and multivariate Cox proportional regression analyses. In total, we enrolled 172 patients. Mean EOR increased from 93.9% to 98.3% (p < 0.0001) due to ioMRI, equaling an increase in GTR rates from 78.5% to 93.0% (p = 0.0002). Residual tumor volume decreased from 1.3 ± 4.2 cm3 to 0.6 ± 2.5 cm3 (p = 0.0037). Logistic regression revealed recurrent GBM as a risk factor leading to subtotal resection (STR) (odds ratio (OR) = 3.047, 95% confidence interval (CI) 1.165-7.974, p = 0.023). Additional resection after ioMRI led to equally long PFS compared to patients with complete tumor removal before ioMRI (hazard ratio (HR) = 0.898, 95%-CI 0.543-1.483, p = 0.67). ioMRI considerably reduces residual tumor volume and helps to achieve comparable PFS, even in patients with unexpected residual tumor after initial resection before ioMRI.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
10
|
Trivedi AG, Ramesh KK, Huang V, Mellon EA, Barker PB, Kleinberg LR, Weinberg BD, Shu HKG, Shim H. Spectroscopic MRI-Based Biomarkers Predict Survival for Newly Diagnosed Glioblastoma in a Clinical Trial. Cancers (Basel) 2023; 15:3524. [PMID: 37444634 PMCID: PMC10340675 DOI: 10.3390/cancers15133524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Despite aggressive treatment, glioblastoma has a poor prognosis due to its infiltrative nature. Spectroscopic MRI-measured brain metabolites, particularly the choline to N-acetylaspartate ratio (Cho/NAA), better characterizes the extent of tumor infiltration. In a previous pilot trial (NCT03137888), brain regions with Cho/NAA ≥ 2x normal were treated with high-dose radiation for newly diagnosed glioblastoma patients. This report is a secondary analysis of that trial where spectroscopic MRI-based biomarkers are evaluated for how they correlate with progression-free and overall survival (PFS/OS). Subgroups were created within the cohort based on pre-radiation treatment (pre-RT) median cutoff volumes of residual enhancement (2.1 cc) and metabolically abnormal volumes used for treatment (19.2 cc). We generated Kaplan-Meier PFS/OS curves and compared these curves via the log-rank test between subgroups. For the subgroups stratified by metabolic abnormality, statistically significant differences were observed for PFS (p = 0.019) and OS (p = 0.020). Stratification by residual enhancement did not lead to observable differences in the OS (p = 0.373) or PFS (p = 0.286) curves. This retrospective analysis shows that patients with lower post-surgical Cho/NAA volumes had significantly superior survival outcomes, while residual enhancement, which guides high-dose radiation in standard treatment, had little significance in PFS/OS. This suggests that the infiltrating, non-enhancing component of glioblastoma is an important factor in patient outcomes and should be treated accordingly.
Collapse
Affiliation(s)
- Anuradha G. Trivedi
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Karthik K. Ramesh
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vicki Huang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eric A. Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 45056, USA
| | - Peter B. Barker
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brent D. Weinberg
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Chen AT, Xiao Y, Tang X, Baqri M, Gao X, Reschke M, Sheu WC, Long G, Zhou Y, Deng G, Zhang S, Deng Y, Bai Z, Kim D, Huttner A, Kunes R, Günel M, Moliterno J, Saltzman WM, Fan R, Zhou J. Cross-platform analysis reveals cellular and molecular landscape of glioblastoma invasion. Neuro Oncol 2023; 25:482-494. [PMID: 35901838 PMCID: PMC10013636 DOI: 10.1093/neuonc/noac186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Improved treatment of glioblastoma (GBM) needs to address tumor invasion, a hallmark of the disease that remains poorly understood. In this study, we profiled GBM invasion through integrative analysis of histological and single-cell RNA sequencing (scRNA-seq) data from 10 patients. METHODS Human histology samples, patient-derived xenograft mouse histology samples, and scRNA-seq data were collected from 10 GBM patients. Tumor invasion was characterized and quantified at the phenotypic level using hematoxylin and eosin and Ki-67 histology stains. Crystallin alpha B (CRYAB) and CD44 were identified as regulators of tumor invasion from scRNA-seq transcriptomic data and validated in vitro, in vivo, and in a mouse GBM resection model. RESULTS At the cellular level, we found that invasive GBM are less dense and proliferative than their non-invasive counterparts. At the molecular level, we identified unique transcriptomic features that significantly contribute to GBM invasion. Specifically, we found that CRYAB significantly contributes to postoperative recurrence and is highly co-expressed with CD44 in invasive GBM samples. CONCLUSIONS Collectively, our analysis identifies differentially expressed features between invasive and nodular GBM, and describes a novel relationship between CRYAB and CD44 that contributes to tumor invasiveness, establishing a cellular and molecular landscape of GBM invasion.
Collapse
Affiliation(s)
| | | | | | - Mehdi Baqri
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xingchun Gao
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Melanie Reschke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Gretchen Long
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Russell Kunes
- Department of Statistics, Columbia University, New York, NY, USA
| | - Murat Günel
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Rong Fan
- Corresponding Authors: Rong Fan, PhD, Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA (); Jiangbing Zhou, PhD, Department of Neurosurgery, Yale University, 310 Cedar Street, New Haven, CT 06510, USA ()
| | - Jiangbing Zhou
- Corresponding Authors: Rong Fan, PhD, Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA (); Jiangbing Zhou, PhD, Department of Neurosurgery, Yale University, 310 Cedar Street, New Haven, CT 06510, USA ()
| |
Collapse
|
12
|
Wolfert C, Rohde V, Hussein A, Fiss I, Hernández-Durán S, Malzahn D, Bleckmann A, Mielke D, Schatlo B. Surgery for brain metastases: radiooncology scores predict survival-score index for radiosurgery, graded prognostic assessment, recursive partitioning analysis. Acta Neurochir (Wien) 2023; 165:231-238. [PMID: 36152217 PMCID: PMC9840567 DOI: 10.1007/s00701-022-05356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Radiooncological scores are used to stratify patients for radiation therapy. We assessed their ability to predict overall survival (OS) in patients undergoing surgery for metastatic brain disease. METHODS We performed a post-hoc single-center analysis of 175 patients, prospectively enrolled in the MetastaSys study data. Score index of radiosurgery (SIR), graded prognostic assessment (GPA), and recursive partitioning analysis (RPA) were assessed. All scores consider age, systemic disease, and performance status prior to surgery. Furthermore, GPA and SIR include the number of intracranial lesions while SIR additionally requires metastatic lesion volume. Predictive values for case fatality at 1 year after surgery were compared among scoring systems. RESULTS All scores produced accurate reflections on OS after surgery (p ≤ 0.003). Median survival was 21-24 weeks in patients scored in the unfavorable cohorts, respectively. In cohorts with favorable scores, median survival ranged from 42 to 60 weeks. Favorable SIR was associated with a hazard ratio (HR) of 0.44 [0.29, 0.66] for death within 1 year. For GPA, the HR amounted to 0.44 [0.25, 0.75], while RPA had a HR of 0.30 [0.14, 0.63]. Overall test performance was highest for the SIR. CONCLUSIONS All scores proved useful in predicting OS. Considering our data, we recommend using the SIR for preoperative prognostic evaluation and counseling.
Collapse
Affiliation(s)
- Christina Wolfert
- Department of Neurosurgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Abdelhalim Hussein
- Department of Neurosurgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ingo Fiss
- Department of Neurosurgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Silvia Hernández-Durán
- Department of Neurosurgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Dörthe Malzahn
- mzBiostatistics, Statistical Consultancy, 37075, Göttingen, Germany
| | - Annalen Bleckmann
- Clinic for Hematology/ Medical Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Medical Clinic A, Haematology, Haemostasiology, Oncology and Pulmonology, University Hospital Münster, 48149, Münster, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Bawarjan Schatlo
- Department of Neurosurgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
13
|
Schebesch KM, Höhne J, Rosengarth K, Noeva E, Schmidt NO, Proescholdt M. Fluorescein-guided resection of newly diagnosed high-grade glioma: Impact on extent of resection and outcome. BRAIN & SPINE 2022; 2:101690. [PMID: 36506293 PMCID: PMC9729812 DOI: 10.1016/j.bas.2022.101690] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Introduction Maximal resection of high-grade glioma (HGG) improves progression-free survival (PFS) and overall survival (OS). Fluorescein sodium (FL) in combination with the YELLOW 560 nm filter (Carl Zeiss Meditec, Germany) is a safe and feasible method of visualizing residual tumor tissue during brain tumor resection. Research question We hypothesized that use of FL positively influenced the volumetric extent of resection (EOR), PFS, and OS in patients undergoing resection of a newly diagnosed HGG. Materials and method Using a prospective HGG registry, we identified 347 patients (median age 62.4 years; 141 women) with preoperative high-quality magnetic resonance images for volumetric analysis. Resection was performed under white light in n = 151 (43.5%, white-light group) and under FL-guidance in n = 196 (56.5%, FL group). Sex, age, presurgical Karnofsky Performance Index (KPI), O6-Methylguanin-DNA-Methyltransferase-Gene (MGMT) status, and adjuvant treatment modalities were well balanced between the groups. Volumetric analysis was performed by quantifying pre- and postoperative tumor volume based on gadolinium-enhanced T1 sequences in a blinded fashion. Results In the FL group, postoperative tumor volume was significantly smaller (p = 0.003); accordingly, quantitative EOR was significantly larger (p = 0.003). Significantly more complete resections were achieved in the FL group than in the white-light group (p = 0.003). The FL group showed significantly longer PFS (p = 0.020) and OS (p = 0.015, log rank testing). Multivariate Cox regression modelling showed age, presurgical KPI, MGMT status, and FL-guided resection to be independent prognostic factors for survival. Discussion and conclusion Compared to white-light resection, FL-guided resection of newly diagnosed HGG significantly improved EOR and prolonged OS.
Collapse
Affiliation(s)
- Karl-Michael Schebesch
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany,Wilhelm-Sander Neuro-Oncology Unit, University Medical Center Regensburg, Regensburg, Germany,Corresponding author. Department of Neurosurgery, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
| | - Julius Höhne
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany,Wilhelm-Sander Neuro-Oncology Unit, University Medical Center Regensburg, Regensburg, Germany
| | - Katharina Rosengarth
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany,Wilhelm-Sander Neuro-Oncology Unit, University Medical Center Regensburg, Regensburg, Germany
| | - Ekaterina Noeva
- Neuroradiology Branch, Department of Radiology, University Medical Center Regensburg, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany,Wilhelm-Sander Neuro-Oncology Unit, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany,Wilhelm-Sander Neuro-Oncology Unit, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, Manbachi A, Tyler BM. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers (Basel) 2022; 14:4920. [PMID: 36230843 PMCID: PMC9563027 DOI: 10.3390/cancers14194920] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
McAleavey PG, Walls GM, Chalmers AJ. Radiotherapy-drug combinations in the treatment of glioblastoma: a brief review. CNS Oncol 2022; 11:CNS86. [PMID: 35603818 PMCID: PMC9134931 DOI: 10.2217/cns-2021-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) accounts for over 50% of gliomas and carries the worst prognosis of all solid tumors. Owing to the limited local control afforded by surgery alone, efficacious adjuvant treatments such as radiotherapy (RT) and chemotherapy are fundamental in achieving durable disease control. The best clinical outcomes are achieved with tri-modality treatment consisting of surgery, RT and systemic therapy. While RT-chemotherapy combination regimens are well established in oncology, this approach was largely unsuccessful in GBM until the introduction of temozolomide. The success of this combination has stimulated the search for other candidate drugs for concomitant use with RT in GBM. This review seeks to collate the current evidence for these agents and synthesize possible future directions for the field.
Collapse
Affiliation(s)
- Patrick G McAleavey
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, N. Ireland
| | - Gerard M Walls
- Cancer Centre Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, N. Ireland
- Patrick G Johnston Centre for Cancer Research, Jubilee Road, Belfast, BT9 7AE, N. Ireland
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1QH, Scotland
| |
Collapse
|
16
|
Chaulagain D, Smolanka V, Smolanka A, Munakomi S. The Impact of Extent of Resection on the Prognosis of Glioblastoma Multiforme: A Systematic Review and Meta-analysis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose:
To investigate the predictor factors of mortality describing the prognosis of primary surgical resection of Glioblastoma Multiforme (GBM).
Materials and Methods:
A systemic search was conducted from electronic databases (PubMed/Medline, Cochrane Library, and Google Scholar) from inception to 12th September 2021. All statistical analysis was conducted in Review Manager 5.4.1. Studies meeting inclusion criteria were selected. A random-effect model was used when heterogeneity was seen to pool the studies, and the result were reported in the Hazards Ratio (HR) and corresponding 95% Confidence interval (CI).
Result:
Twenty-three cohort studies were selected for meta-analysis. There was statistically significant effect of extent of resection on prognosis of surgery in GBM patients (HR= 0.90 [0.86, 0.95]; p< 0.0001; I2= 96%), male gender (HR= 1.19 [1.06, 1.34]; p= 0.002; I2= 0%) and decrease Karnofsky Performance Status (HR= 0.97 [0.95, 0.99]; p= 0.003; I2= 90%). Age and tumor volume was also analyzed in the study.
Conclusion:
The results of our meta-analysis suggested that age, gender, pre-operative KPS score and extent of resection have significant effects on the post-surgical mortality rate, therefore, these factors can be used significant predictor of mortality in GBM patients.
Collapse
|
17
|
Das A, Gunasekaran A, Stephens HR, Mark J, Lindhorst SM, Cachia D, Patel SJ, Frankel BM. Establishing a standardized method for the effective intraoperative collection and biological preservation of brain tumor tissue samples using a novel tissue preservation system: A pilot study. World Neurosurg 2022; 161:e61-e74. [PMID: 35032716 DOI: 10.1016/j.wneu.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GB) is an aggressive tumor exhibiting extensive inter- and intratumoral heterogeneity. Several possible reasons contribute to the historical inability to develop effective therapeutic strategies for treatment of GB. One such challenge is the inability to consistently procure high quality biologically preserved specimens for use in molecular research and patient derived xenograft (PDX) model development. Currently, no scientifically derived standardized method exists for intraoperative tissue collection specifically designed with the fragility of ribonucleic acid (RNA) in mind. In this investigation, we set out to characterize matched specimens from six GB patients comparing the traditional handling and collection processes of intraoperative tissue used in most neurosurgical operating rooms (ORs) versus an automated resection, collection, and biological preservation system (APS) which captures, preserves, and biologically maintains tissue in a prescribed and controlled microenvironment. Matched specimens were processed in parallel at various time points and temperatures, evaluating viability, RNA and protein concentrations, and isolation of GB cell lines. We found that APS-derived GB slices stored in an APS modified medium remained viable and maintained high quality RNA and protein concentration for up to 24 hours. Our results demonstrated that primary GB cell cultures derived in this manner had improved growth over widely used collection and preservation methods. By implementing an automated intraoperative system, we also eliminated inconsistencies in methodology of tissue collection, handling and biological preservation, establishing a repeatable and standardized practice that does not require additional staff or a lab technician to manage.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Arunprasad Gunasekaran
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Joseph Mark
- NICO Corporation, Indianapolis, Indiana, USA
| | - Scott M Lindhorst
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Cachia
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sunil J Patel
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bruce M Frankel
- Department of Neurosurgery (Neuro-oncology Division), Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
18
|
Zhylka A, Sollmann N, Kofler F, Radwan A, De Luca A, Gempt J, Wiestler B, Menze B, Krieg SM, Zimmer C, Kirschke JS, Sunaert S, Leemans A, Pluim JPW. Tracking the Corticospinal Tract in Patients With High-Grade Glioma: Clinical Evaluation of Multi-Level Fiber Tracking and Comparison to Conventional Deterministic Approaches. Front Oncol 2021; 11:761169. [PMID: 34970486 PMCID: PMC8712728 DOI: 10.3389/fonc.2021.761169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
While the diagnosis of high-grade glioma (HGG) is still associated with a considerably poor prognosis, neurosurgical tumor resection provides an opportunity for prolonged survival and improved quality of life for affected patients. However, successful tumor resection is dependent on a proper surgical planning to avoid surgery-induced functional deficits whilst achieving a maximum extent of resection (EOR). With diffusion magnetic resonance imaging (MRI) providing insight into individual white matter neuroanatomy, the challenge remains to disentangle that information as correctly and as completely as possible. In particular, due to the lack of sensitivity and accuracy, the clinical value of widely used diffusion tensor imaging (DTI)-based tractography is increasingly questioned. We evaluated whether the recently developed multi-level fiber tracking (MLFT) technique can improve tractography of the corticospinal tract (CST) in patients with motor-eloquent HGGs. Forty patients with therapy-naïve HGGs (mean age: 62.6 ± 13.4 years, 57.5% males) and preoperative diffusion MRI [repetition time (TR)/echo time (TE): 5000/78 ms, voxel size: 2x2x2 mm3, one volume at b=0 s/mm2, 32 volumes at b=1000 s/mm2] underwent reconstruction of the CST of the tumor-affected and unaffected hemispheres using MLFT in addition to deterministic DTI-based and deterministic constrained spherical deconvolution (CSD)-based fiber tractography. The brain stem was used as a seeding region, with a motor cortex mask serving as a target region for MLFT and a region of interest (ROI) for the other two algorithms. Application of the MLFT method substantially improved bundle reconstruction, leading to CST bundles with higher radial extent compared to the two other algorithms (delineation of CST fanning with a wider range; median radial extent for tumor-affected vs. unaffected hemisphere - DTI: 19.46° vs. 18.99°, p=0.8931; CSD: 30.54° vs. 27.63°, p=0.0546; MLFT: 81.17° vs. 74.59°, p=0.0134). In addition, reconstructions by MLFT and CSD-based tractography nearly completely included respective bundles derived from DTI-based tractography, which was however favorable for MLFT compared to CSD-based tractography (median coverage of the DTI-based CST for affected vs. unaffected hemispheres - CSD: 68.16% vs. 77.59%, p=0.0075; MLFT: 93.09% vs. 95.49%; p=0.0046). Thus, a more complete picture of the CST in patients with motor-eloquent HGGs might be achieved based on routinely acquired diffusion MRI data using MLFT.
Collapse
Affiliation(s)
- Andrey Zhylka
- Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Florian Kofler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Ahmed Radwan
- Department of Imaging and Pathology, Translational MRI, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alberto De Luca
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- Neurology Department, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jens Gempt
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Bjoern Menze
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich (UZ), Zurich, Switzerland
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Sunaert
- Department of Imaging and Pathology, Translational MRI, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute (LBI), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Department of Radiology, Universitair Ziekenhuis (UZ) Leuven, Leuven, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Josien P. W. Pluim
- Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
19
|
A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma. Lasers Med Sci 2021; 37:789-797. [PMID: 34581904 DOI: 10.1007/s10103-021-03426-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Glioma is the most common primary central nervous system tumor; many methods are currently being used to research and treat glioma. In recent years, fluorescent-guided resection (FGR) and photodynamic therapy (PDT) have become hot spots in the treatment of glioma. Based on the existing literatures regarding the FGR enhancing resection rate and regarding efficacy of PDT for the treatment of glioma, this paper made a systematic review of FGR for gross total resection of patients and the PDT for the survival of patients with glioma. Meta-analysis of eligible studies was performed to derive precise estimation of PDT on the prognosis of patients with glioma by searching all related literatures in PubMed, EMBASE, Cochrane, and Web of Science databases, and further to evaluate (GTR) under FGR and the efficacy of PDT therapy, including 1-year and 2-year survival rates, overall survival (OS), and progression-free survival (PFS). According to the inclusion and exclusion criteria, a total of 1294 patients with glioma were included in the final analysis of 31 articles, among which a 73.00% (95% CI, 68.00 ~ 79.00%, P < 0.01) rate of GTR in 27 groups included in 23 articles was reported for those receiving FGR. The OS was 17.78 months (95% CI, 8.89 ~ 26.67, P < 0.01) in 5 articles on PDT-treated patients with glioma, and the mean difference of OS was 6.18 (95% CI, 3.3 ~ 9.06, P < 0.01) between PDT treatment and conventional glioma surgery, showing a statistically significant difference (P < 0.01). The PFS was 10.82 months (95% CI, 7.04 ~ 14.61, P < 0.01) in 5 articles on PDT-treated patients with glioma. A 1-year survival rate of 59.00% (95% CI, 38.00 ~ 77.00%, P < 0.01) in 10 groups included in 8 articles and 2-year survival rate of 25.00% (95% CI, 15.00 ~ 36.00%, P < 0.01) in 7 groups included in 6 articles were reported for those with PDT. FGR and PDT are feasible for treatment of patients with glioma, because FGR can effectively increase the resection rate, at the same time, PDT can prolong the survival time. However, due to the limitation of small sample size in the existing studies, larger samples and randomized controlled clinical trials are needed to analyze the resection under FGR and efficacy of PDT in patients with glioma.
Collapse
|
20
|
Wang Y, Zhang J, Li W, Jiang T, Qi S, Chen Z, Kang J, Huo L, Wang Y, Zhuge Q, Gao G, Wu Y, Feng H, Zhao G, Yang X, Zhao H, Wang Y, Yang H, Kang D, Su J, Li L, Jiang C, Li G, Qiu Y, Wang W, Wang H, Xu Z, Zhang L, Wang R. Guideline conformity to the Stupp regimen in patients with newly diagnosed glioblastoma multiforme in China. Future Oncol 2021; 17:4571-4582. [PMID: 34519220 DOI: 10.2217/fon-2021-0435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aims: To determine how consistently Chinese glioblastoma multiforme (GBM) patients were treated according to the Stupp regimen. Patients and methods: The proportion of treatments conforming to the Stupp regimen and reasons for nonconformity were evaluated in 202 newly diagnosed GBM patients. Results: Only 15.8% of GBM patients received treatments compliant with the Stupp regimen. The main deviations were temozolomide dosages >75 mg/m2 (58/120; 48.3%) and treatment durations <42 days (84/120; 70.0%) in the concomitant phase and temozolomide dosages <150 mg/m2 (89/101; 88.1%) in the maintenance phase. Median overall survival (27.09 vs 18.21 months) and progression-free survival (14.27 vs 12.10 months) were longer in patients who received Stupp regimen-compliant treatments. Conclusion: Increased conformity to the Stupp regimen is needed for GBM patients in China.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100010, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 310009, China
| | - Wenbin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, China
| | - Taipeng Jiang
- Department of Neurosurgery, Shenzhen Second People's Hospital, 518035, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital Southern Medical University, 510515, China
| | - Zhongping Chen
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, 510060, China
| | - Jingbo Kang
- Tumor Diagnosis & Treatment Center, The Sixth Medical Center of PLA General Hospital, 100048, China
| | - Lei Huo
- Department of Neurosurgery, Xiangya Hospital Central South University, 410008, China
| | - Yunjie Wang
- Department of Neurosurgery, The First Hospital of China Medical University, 110001, China
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, 325000, China
| | - Guodong Gao
- Department of Neurosurgery, The Fourth Military University Tangdu Hospital, 710032, China
| | - Yuping Wu
- Department of Craniobasal Neurology, Sichuan Cancer Hospital & Institute, The Affiliated Cancer Hospital, School of Medicine, UESTC, 610041, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, The First Affiliated Hospital of Army Medical University, 400038, China
| | - Gang Zhao
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, 130021, China
| | - Xiaopeng Yang
- Department of Neurosurgery, People's Hospital of Xinjiang Uygur Autonomous Region, 830001, China
| | - Hui Zhao
- Department of Radiotherapy, People's Hospital of Xinjiang Uygur Autonomous Region, 830001, China
| | - Yirong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital of Army Medical University, 400037, China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, 350005, China
| | - Jun Su
- Department of Neurosurgery, Tumor Hospital of Harbin Medical University, 150081, China
| | - Liang Li
- Department of Neurosurgery, Peking University First Hospital, 100034, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 150001, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 250012, China
| | - Yongming Qiu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, China
| | - Weimin Wang
- Department of Neurosurgery, General Hospital of Southern Theatre Command, 510010, China
| | - Handong Wang
- Department of Neurosurgery, General Hospital of Eastern Theatre Command, 210002, China
| | - Zaihua Xu
- Department of Neurosurgery, General Hospital of Northern Theatre Command, 110840, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 100070, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100010, China
| |
Collapse
|
21
|
Rückher J, Lobitz J, Follmann M, Derenz S, Schmidt S, Mensah J, Wesselmann S. Guideline-Based Quality Indicators for Kidney and Bladder Cancer in Germany: Development and Implementation. Urol Int 2021; 106:360-367. [PMID: 34384078 DOI: 10.1159/000517893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION As part of the development of the evidence-based (S3) clinical practice guidelines for kidney and bladder cancer by the German Guideline Program in Oncology, quality indicators (QIs) were defined to measure the quality of care. Based on these guidelines and QIs, the German Cancer Society (DKG) developed two new certification systems. The aim of this article is to show the process of development and implementation of QIs in certified cancer centres. METHODS Based on strong recommendations of each guideline and an additional systematic literature review for national and international QIs, two sets of QIs were derived in a multistep standardized approach. These QIs were implemented in the centres in certification data sheets to measure their outcomes. First results of treatment years 2018 and 2019 are available. RESULTS The final sets include 9 QIs for kidney cancer and 12 QIs for bladder cancer. Two-thirds of the QIs were transferred to the data sheets. In 2018 and 2019, the results of all but one QI are within the plausibility limits. From 2020 on, they are replaced by stricter target values that will challenge centres to improve their outcomes. CONCLUSIONS Guideline-derived QIs make relevant aspects of patient care measurable and consequently improvable. The first QI results are encouraging. However, the DKG certification system and the methods of measuring quality are under ongoing development. Systematic QI implementation and evaluation may help to generate broader databases and thus expand knowledge.
Collapse
|
22
|
Sollmann N, Krieg SM, Säisänen L, Julkunen P. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci 2021; 11:brainsci11070897. [PMID: 34356131 PMCID: PMC8305823 DOI: 10.3390/brainsci11070897] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) has developed into a reliable non-invasive clinical and scientific tool over the past decade. Specifically, it has undergone several validating clinical trials that demonstrated high agreement with intraoperative direct electrical stimulation (DES), which paved the way for increasing application for the purpose of motor mapping in patients harboring motor-eloquent intracranial neoplasms. Based on this clinical use case of the technique, in this article we review the evidence for the feasibility of motor mapping and derived models (risk stratification and prediction, nTMS-based fiber tracking, improvement of clinical outcome, and assessment of functional plasticity), and provide collected sets of evidence for the applicability of quantitative mapping with nTMS. In addition, we provide evidence-based demonstrations on factors that ensure methodological feasibility and accuracy of the motor mapping procedure. We demonstrate that selection of the stimulation intensity (SI) for nTMS and spatial density of stimuli are crucial factors for applying motor mapping accurately, while also demonstrating the effect on the motor maps. We conclude that while the application of nTMS motor mapping has been impressively spread over the past decade, there are still variations in the applied protocols and parameters, which could be optimized for the purpose of reliable quantitative mapping.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA 94143, USA
- Correspondence:
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
23
|
Revilla-Pacheco F, Rodríguez-Salgado P, Barrera-Ramírez M, Morales-Ruiz MP, Loyo-Varela M, Rubalcava-Ortega J, Herrada-Pineda T. Extent of resection and survival in patients with glioblastoma multiforme: Systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26432. [PMID: 34160432 PMCID: PMC8238332 DOI: 10.1097/md.0000000000026432] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) owes an ominous prognosis: its mean overall survival is 14 months. The extent of surgical resection (ESR) highlights among factors in which an association has been found to a somewhat better prognosis. However, the association between greater ESR and prolonged overall (OS) survival is not a constant finding nor a proven cause-and-effect phenomenon. To our objective is to establish the strength of association between ESR and OS in patients with GBM through a systematic review and meta-analysis. METHODS In accordance with PRISMA-P recommendations, we conducted a systematic literature search; we included studies with adult patients who had undergone craniotomy for GBM. Our primary outcome is overall postoperative survival at 12 and 24 months. We reviewed 180 studies, excluded 158, and eliminated 8; 14 studies that suited our requirements were analyzed. RESULTS The initial level of evidence of all studies is low, and it may be degraded to very low according to GRADE criteria because of design issues. The definition of different levels of the extent of resection is heterogeneous and poorly defined. We found a great amount of variation in the methodology of the operation and the adjuvant treatment protocol. The combined result for relative risk (RR) for OS for 12 months analysis is 1.25 [95% confidence interval (95% CI) 1.14-1.36, P < .01], absolute risk reduction (ARR) of 15.7% (95% CI 11.9-19.4), relative risk reduction (RRR) of 0.24 (95% CI 0.18-0.31), number needed to treat (NNT) 6; for 24-month analysis RR is 1.59 (95% CI 1.11-2.26, P < .01) ARR of 11.5% (95% CI 7.7-15.1), relative risk reduction (RRR) of 0.53 (95% CI 0.33-0.76), (NNT) 9. In each term analysis, the proportion of alive patients who underwent more extensive resection is significantly higher than those who underwent subtotal resection. CONCLUSION Our results sustain a weak but statistically significant association between the ESR and OS in patients with GBM obtained from observational studies with a very low level of evidence according to GRADE criteria. As a consequence, any estimate of effect is very uncertain. Current information cannot sustain a cause-and-effect relationship between these variables.
Collapse
|
24
|
Schupper AJ, Rao M, Mohammadi N, Baron R, Lee JYK, Acerbi F, Hadjipanayis CG. Fluorescence-Guided Surgery: A Review on Timing and Use in Brain Tumor Surgery. Front Neurol 2021; 12:682151. [PMID: 34220688 PMCID: PMC8245059 DOI: 10.3389/fneur.2021.682151] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Fluorescence-guided surgery (FGS) allows surgeons to have improved visualization of tumor tissue in the operating room, enabling maximal safe resection of malignant brain tumors. Over the past two decades, multiple fluorescent agents have been studied for FGS, including 5-aminolevulinic acid (5-ALA), fluorescein sodium, and indocyanine green (ICG). Both non-targeted and targeted fluorescent agents are currently being used in clinical practice, as well as under investigation, for glioma visualization and resection. While the efficacy of intraoperative fluorescence in studied fluorophores has been well established in the literature, the effect of timing on fluorophore administration in glioma surgery has not been as well depicted. In the past year, recent studies of 5-ALA use have shown that intraoperative fluorescence may persist beyond the previously studied window used in prior multicenter trials. Additionally, the use of fluorophores for different brain tumor types is discussed in detail, including a discussion of choosing the right fluorophore based on tumor etiology. In the following review, the authors will describe the temporal nature of the various fluorophores used in glioma surgery, what remains uncertain in FGS, and provide a guide for using fluorescence as a surgical adjunct in brain tumor surgery.
Collapse
Affiliation(s)
- Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Manasa Rao
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicki Mohammadi
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rebecca Baron
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|
25
|
Vivas-Buitrago T, Domingo RA, Tripathi S, De Biase G, Brown D, Akinduro OO, Ramos-Fresnedo A, Sabsevitz DS, Bendok BR, Sherman W, Parney IF, Jentoft ME, Middlebrooks EH, Meyer FB, Chaichana KL, Quinones-Hinojosa A. Influence of supramarginal resection on survival outcomes after gross-total resection of IDH-wild-type glioblastoma. J Neurosurg 2021; 136:1-8. [PMID: 34087795 DOI: 10.3171/2020.10.jns203366] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors' goal was to use a multicenter, observational cohort study to determine whether supramarginal resection (SMR) of FLAIR-hyperintense tumor beyond the contrast-enhanced (CE) area influences the overall survival (OS) of patients with isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma after gross-total resection (GTR). METHODS The medical records of 888 patients aged ≥ 18 years who underwent resection of GBM between January 2011 and December 2017 were reviewed. Volumetric measurements of the CE tumor and surrounding FLAIR-hyperintense tumor were performed, clinical variables were obtained, and associations with OS were analyzed. RESULTS In total, 101 patients with newly diagnosed IDH-wt GBM who underwent GTR of the CE tumor met the inclusion criteria. In multivariate analysis, age ≥ 65 years (HR 1.97; 95% CI 1.01-2.56; p < 0.001) and contact with the lateral ventricles (HR 1.59; 95% CI 1.13-1.78; p = 0.025) were associated with shorter OS, but preoperative Karnofsky Performance Status ≥ 70 (HR 0.47; 95% CI 0.27-0.89; p = 0.006), MGMT promotor methylation (HR 0.63; 95% CI 0.52-0.99; p = 0.044), and increased percentage of SMR (HR 0.99; 95% CI 0.98-0.99; p = 0.02) were associated with longer OS. Finally, 20% SMR was the minimum percentage associated with beneficial OS (HR 0.56; 95% CI 0.35-0.89; p = 0.01), but > 60% SMR had no significant influence (HR 0.74; 95% CI 0.45-1.21; p = 0.234). CONCLUSIONS SMR is associated with improved OS in patients with IDH-wt GBM who undergo GTR of CE tumor. At least 20% SMR of the CE tumor was associated with beneficial OS, but greater than 60% SMR had no significant influence on OS.
Collapse
Affiliation(s)
| | | | | | | | - Desmond Brown
- 2Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota; and
| | | | | | | | | | | | - Ian F Parney
- 2Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota; and
| | | | | | - Fredric B Meyer
- 2Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota; and
| | | | | |
Collapse
|
26
|
Grossman SA, Romo CG, Rudek MA, Supko J, Fisher J, Nabors LB, Wen PY, Peereboom DM, Ellingson BM, Elmquist W, Barker FG, Kamson D, Sarkaria JN, Timmer W, Bindra RS, Ye X. Baseline requirements for novel agents being considered for phase II/III brain cancer efficacy trials: conclusions from the Adult Brain Tumor Consortium's first workshop on CNS drug delivery. Neuro Oncol 2021; 22:1422-1424. [PMID: 32506123 DOI: 10.1093/neuonc/noaa142] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | - Jeffrey Supko
- Massachusetts General Hospital, Boston, Massachusetts
| | - Joy Fisher
- Johns Hopkins University, Baltimore, Maryland
| | - L Burt Nabors
- University of Alabama Birmingham, Birmingham, Alabama
| | | | | | | | | | - Fred G Barker
- Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | - Xiaobu Ye
- Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
27
|
Garcia-Garcia S, García-Lorenzo B, Ramos PR, Gonzalez-Sanchez JJ, Culebras D, Restovic G, Alcover E, Pons I, Torales J, Reyes L, Sampietro-Colom L, Enseñat J. Cost-Effectiveness of Low-Field Intraoperative Magnetic Resonance in Glioma Surgery. Front Oncol 2020; 10:586679. [PMID: 33224884 PMCID: PMC7667256 DOI: 10.3389/fonc.2020.586679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 12/01/2022] Open
Abstract
Object Low-field intraoperative magnetic resonance (LF-iMR) has demonstrated a slight increase in the extent of resection of intra-axial tumors while preserving patient`s neurological outcomes. However, whether this improvement is cost-effective or not is still matter of controversy. In this clinical investigation we sought to evaluate the cost-effectiveness of the implementation of a LF-iMR in glioma surgery. Methods Patients undergoing LF-iMR guided glioma surgery with gross total resection (GTR) intention were prospectively collected and compared to an historical cohort operated without this technology. Socio-demographic and clinical variables (pre and postoperative KPS; histopathological classification; Extent of resection; postoperative complications; need of re-intervention within the first year and 1-year postoperative survival) were collected and analyzed. Effectiveness variables were assessed in both groups: Postoperative Karnofsky performance status scale (pKPS); overall survival (OS); Progression-free survival (PFS); and a variable accounting for the number of patients with a greater than subtotal resection and same or higher postoperative KPS (R-KPS). All preoperative, procedural and postoperative costs linked to the treatment were considered for the cost-effectiveness analysis (diagnostic procedures, prosthesis, operating time, hospitalization, consumables, LF-iMR device, etc). Deterministic and probabilistic simulations were conducted to evaluate the consistency of our analysis. Results 50 patients were operated with LF-iMR assistance, while 146 belonged to the control group. GTR rate, pKPS, R-KPS, PFS, and 1-year OS were respectively 13,8% (not significative), 7 points (p < 0.05), 17% (p < 0.05), 38 days (p < 0.05), and 3.7% (not significative) higher in the intervention group. Cost-effectiveness analysis showed a mean incremental cost per patient of 789 € in the intervention group. Incremental cost-effectiveness ratios were 111 € per additional point of pKPS, 21 € per additional day free of progression, and 46 € per additional percentage point of R-KPS. Conclusion Glioma patients operated under LF-iMR guidance experience a better functional outcome, higher resection rates, less complications, better PFS rates but similar life expectancy compared to conventional techniques. In terms of efficiency, LF-iMR is very close to be a dominant technology in terms of R-KPS, PFS and pKPS.
Collapse
Affiliation(s)
| | - Borja García-Lorenzo
- Assessment of Innovations and New Technologies Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | | | - Diego Culebras
- Department of Neurological Surgery, Hospital Clinic, Barcelona, Spain
| | - Gabriela Restovic
- Assessment of Innovations and New Technologies Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Estanis Alcover
- Economic and Financial Management Department, Hospital Clinic, Barcelona, Spain
| | - Imma Pons
- Economic and Financial Management Department, Hospital Clinic, Barcelona, Spain
| | - Jorge Torales
- Department of Neurological Surgery, Hospital Clinic, Barcelona, Spain
| | - Luis Reyes
- Department of Neurological Surgery, Hospital Clinic, Barcelona, Spain
| | - Laura Sampietro-Colom
- Assessment of Innovations and New Technologies Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Joaquim Enseñat
- Department of Neurological Surgery, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
28
|
Finck T, Gempt J, Zimmer C, Kirschke JS, Sollmann N. MR imaging by 3D T1-weighted black blood sequences may improve delineation of therapy-naive high-grade gliomas. Eur Radiol 2020; 31:2312-2320. [PMID: 33037913 PMCID: PMC7979590 DOI: 10.1007/s00330-020-07314-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022]
Abstract
Objectives To investigate the value of contrast-enhanced (CE) turbo spin echo black blood (BB) sequences for imaging of therapy-naive high-grade gliomas (HGGs). Methods Consecutive patients with histopathologically confirmed World Health Organization (WHO) grade III or IV gliomas and no oncological treatment prior to index imaging (March 2019 to January 2020) were retrospectively included. Magnetic resonance imaging (MRI) at 3 Tesla comprised CE BB and CE turbo field echo (TFE) sequences. The lack/presence of tumor-related contrast enhancement and satellite lesions were evaluated by two readers. Sharper delineation of tumor boundaries (1, bad; 2, intermediate; 3, good delineation) and vaster expansion of HGGs into the adjacent brain parenchyma on CE BB imaging were the endpoints. Furthermore, contrast-to-noise ratios (CNRs) were calculated and compared between sequences. Results Fifty-four patients were included (mean age: 61.2 ± 15.9 years, 64% male). The vast majority of HGGs (51/54) showed contrast enhancement in both sequences, while two HGGs as well as one of six detected satellite lesions were depicted in CE BB imaging only. Tumor boundaries were significantly sharper (R1: 2.43 ± 0.71 vs. 2.73 ± 0.62, p < 0.001; R2: 2.44 ± 0.74 vs. 2.77 ± 0.60, p = 0.001), while the spread of HGGs into the adjacent parenchyma was larger when considering CE BB sequences according to both readers (larger spread in CE BB sequences: R1: 23 patients; R2: 20 patients). The CNR for CE BB sequences significantly exceeded that of CE TFE sequences (43.4 ± 27.1 vs. 32.5 ± 25.0, p = 0.0028). Conclusions Our findings suggest that BB imaging may considerably improve delineation of therapy-naive HGGs when compared with established TFE imaging. Thus, CE BB sequences might supplement MRI protocols for brain tumors. Key Points • This study investigated contrast-enhanced (CE) T1-weighted black blood (BB) sequences for improved MRI in patients with therapy-naive high-grade gliomas (HGGs). • Compared with conventionally used turbo field echo (TFE) sequences, CE BB sequences depicted tumor boundaries and spread of HGGs into adjacent parenchyma considerably better, which also showed higher CNRs. • Two enhancing tumor masses and one satellite lesion were exclusively identified in CE BB sequences, but remained undetected in conventionally used CE TFE sequences.
Collapse
Affiliation(s)
- Tom Finck
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
29
|
Take Advantage of Glutamine Anaplerosis, the Kernel of the Metabolic Rewiring in Malignant Gliomas. Biomolecules 2020; 10:biom10101370. [PMID: 32993063 PMCID: PMC7599606 DOI: 10.3390/biom10101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamine is a non-essential amino acid that plays a key role in the metabolism of proliferating cells including neoplastic cells. In the central nervous system (CNS), glutamine metabolism is particularly relevant, because the glutamine-glutamate cycle is a way of controlling the production of glutamate-derived neurotransmitters by tightly regulating the bioavailability of the amino acids in a neuron-astrocyte metabolic symbiosis-dependent manner. Glutamine-related metabolic adjustments have been reported in several CNS malignancies including malignant gliomas that are considered ‘glutamine addicted’. In these tumors, glutamine becomes an essential amino acid preferentially used in energy and biomass production including glutathione (GSH) generation, which is crucial in oxidative stress control. Therefore, in this review, we will highlight the metabolic remodeling that gliomas undergo, focusing on glutamine metabolism. We will address some therapeutic regimens including novel research attempts to target glutamine metabolism and a brief update of diagnosis strategies that take advantage of this altered profile. A better understanding of malignant glioma cell metabolism will help in the identification of new molecular targets and the design of new therapies.
Collapse
|
30
|
Assessment of the Extent of Resection in Surgery of High-Grade Glioma-Evaluation of Black Blood Sequences for Intraoperative Magnetic Resonance Imaging at 3 Tesla. Cancers (Basel) 2020; 12:cancers12061580. [PMID: 32549304 PMCID: PMC7352835 DOI: 10.3390/cancers12061580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/17/2023] Open
Abstract
Achieving an optimal extent of resection (EOR) whilst keeping lasting neurological decline to a minimum is paramount for modern neurosurgery in patients with high-grade glioma (HGG). To improve EOR assessment, this study introduces Black Blood (BB) imaging, which uses a selective saturation pulse to suppress the blood signal, to 3-Tesla intraoperative magnetic resonance imaging (iMRI). Seventy-three patients (56.4 ± 13.9 years, 64.4% male) with contrast-enhancing HGGs underwent iMRI, including contrast-enhanced (CE) and non-CE 3D turbo field-echo imaging (TFE; acquisition time: 4:20 min per sequence) and CE and non-CE 3D BB imaging (acquisition time: 1:36 min per sequence). Two readers (R1 and R2) retrospectively evaluated the EOR and diagnostic confidence (1—very inconfident to 5—very confident) as well as the delineation of tumor boarders and spread of contrast-enhancing tumor components (in case of contrast-enhancing tumor residuals). Furthermore, the contrast-to-noise ratio (CNR) was measured for contrast-enhancing tumor residuals. Both BB and conventional TFE imaging allowed for the correct detection of all contrast-enhancing tumor residuals intraoperatively (considering postsurgical MRI and histopathological evaluation as the ground truth for determination of the lack/presence of contrast-enhancing tumor residuals), but BB imaging showed significantly higher diagnostic confidence (R1: 4.65 ± 0.53 vs. 3.88 ± 1.02, p < 0.0001; R2: 4.75 ± 0.50 vs. 4.25 ± 0.81, p < 0.0001). Delineation of contrast-enhancing tumor residuals and detection of their spread into adjacent brain parenchyma was better for BB imaging. Accordingly, significantly higher CNRs were noted for BB imaging (48.1 ± 32.1 vs. 24.4 ± 15.3, p < 0.0001). In conclusion, BB imaging is not inferior to conventional TFE imaging for EOR assessment, but may significantly reduce scanning time for iMRI whilst increasing diagnostic confidence. Furthermore, given the better depiction of contrast-enhancing tumor residual spread and borders, BB imaging could support achieving complete macroscopic resection in patients suffering from HGG, which is clinically relevant as an optimal EOR is correlated to prolonged survival.
Collapse
|
31
|
Postoperative outcomes following glioblastoma resection using a robot-assisted digital surgical exoscope: a case series. J Neurooncol 2020; 148:519-527. [PMID: 32519286 DOI: 10.1007/s11060-020-03543-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Maximal extent of resection (EOR) of glioblastoma (GBM) is associated with greater progression free survival (PFS) and improved patient outcomes. Recently, a novel surgical system has been developed that includes a 2D, robotically-controlled exoscope and brain tractography display. The purpose of this study was to assess outcomes in a series of patients with GBM undergoing resections using this surgical exoscope. METHODS A retrospective review was conducted for robotic exoscope assisted GBM resections between 2017 and 2019. EOR was computed from volumetric analyses of pre- and post-operative MRIs. Demographics, pathology/MGMT status, imaging, treatment, and outcomes data were collected. The relationship between these perioperative variables and discharge disposition as well as progression-free survival (PFS) was explored. RESULTS A total of 26 patients with GBM (median age = 57 years) met inclusion criteria, comprising a total of 28 cases. Of these, 22 (79%) tumors were in eloquent regions, most commonly in the frontal lobe (14 cases, 50%). The median pre- and post-operative volumes were 24.0 cc and 1.3 cc, respectively. The median extent of resection for the cohort was 94.8%, with 86% achieving 6-month PFS. The most common neurological complication was a motor deficit followed by sensory loss, while 8 patients (29%) were symptom-free. CONCLUSIONS The robotic exoscope is safe and effective for patients undergoing GBM surgery, with a majority achieving large-volume resections. These patients experienced complication profiles similar to those undergoing treatment with the traditional microscope. Further studies are needed to assess direct comparisons between exoscope and microscope-assisted GBM resection.
Collapse
|
32
|
Leclerc P, Ray C, Mahieu-Williame L, Alston L, Frindel C, Brevet PF, Meyronet D, Guyotat J, Montcel B, Rousseau D. Machine learning-based prediction of glioma margin from 5-ALA induced PpIX fluorescence spectroscopy. Sci Rep 2020; 10:1462. [PMID: 31996727 PMCID: PMC6989497 DOI: 10.1038/s41598-020-58299-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Gliomas are infiltrative brain tumors with a margin difficult to identify. 5-ALA induced PpIX fluorescence measurements are a clinical standard, but expert-based classification models still lack sensitivity and specificity. Here a fully automatic clustering method is proposed to discriminate glioma margin. This is obtained from spectroscopic fluorescent measurements acquired with a recently introduced intraoperative set up. We describe a data-driven selection of best spectral features and show how this improves results of margin prediction from healthy tissue by comparison with the standard biomarker-based prediction. This pilot study based on 10 patients and 50 samples shows promising results with a best performance of 77% of accuracy in healthy tissue prediction from margin tissue.
Collapse
Affiliation(s)
- Pierre Leclerc
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France, 10 Rue Ada Byron, 69622, Villeurbanne, France.,CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France
| | - Cedric Ray
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France, 10 Rue Ada Byron, 69622, Villeurbanne, France
| | - Laurent Mahieu-Williame
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France
| | - Laure Alston
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France
| | - Carole Frindel
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France
| | - Pierre-François Brevet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France, 10 Rue Ada Byron, 69622, Villeurbanne, France
| | - David Meyronet
- Hospices Civils de Lyon, Centre de Pathologie et de Neuropathologie Est, Lyon, F-69003, France.,Cancer Research Centre of Lyon, Univ Lyon, INSERM U1052, CNRS UMR5286, Lyon, France, Université Claude Bernard Lyon 1, Lyon, France
| | - Jacques Guyotat
- Hospices Civils de Lyon, Centre de Pathologie et de Neuropathologie Est, Lyon, F-69003, France
| | - Bruno Montcel
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France.
| | - David Rousseau
- CREATIS, Univ Lyon, CNRS UMR5220, INSERM U1044, Université Claude Bernard Lyon1, INSA Lyon, Villeurbanne, France.,Laboratoire Angevin de Recherche en Ingénierie des Systèmes, UMR INRA IRHS, Université d'Angers, 62 avenue Notre Dame du Lac, 49000, Angers, France
| |
Collapse
|
33
|
Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020; 12:cancers12010111. [PMID: 31906280 PMCID: PMC7017054 DOI: 10.3390/cancers12010111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed malignant brain tumor in adults. The prognosis for patients with GBM remains poor and largely unchanged over the last 30 years, due to the limitations of existing therapies. Thus, new therapeutic approaches are desperately required. Sphingolipids are highly enriched in the brain, forming the structural components of cell membranes, and are major lipid constituents of the myelin sheaths of nerve axons, as well as playing critical roles in cell signaling. Indeed, a number of sphingolipids elicit a variety of cellular responses involved in the development and progression of GBM. Here, we discuss the role of sphingolipids in the pathobiology of GBM, and how targeting sphingolipid metabolism has emerged as a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Melinda N. Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
| | - Santosh I. Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, SA 5001, Australia;
- Adelaide Medical School and School of Biological Sciences, University of Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-8-8302-7832; Fax: +61-8-8302-9246
| |
Collapse
|
34
|
Abdullayev OA, Gaitan AS, Salim N, Sergeyev GS, Marmazeyev IV, Chesnulis E, Goryainov SA, Krivoshapkin AL. [Repetitive resection and intrasurgery radiation therapy of brain malignant gliomas: history of question and modern state of problem]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2019; 83:101-108. [PMID: 31825381 DOI: 10.17116/neiro201983051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Numerous studies have shown that the degree of primary resection of malignant gliomas of the brain (MG) directly correlates with rates of relapse-free and overall patient survival. Currently, there is no unequivocal opinion regarding the indications and effectiveness of repeated resection in relapse of MG after combined treatment. Surgical intervention, taking into account the pathomorphological features of these tumors, is not healing and should be supplemented with certain methods of adjuvant treatment. The article reviews and analyzes publications devoted to repeated resection and various methods of intraoperative radiation therapy in the treatment of MG. Based on the analysis, the authors of the article came to the conclusion that it is advisable to start their own research on the use of intraoperative balloon brachytherapy in the treatment of recurrent MG based on modern technological solutions.
Collapse
Affiliation(s)
- O A Abdullayev
- Novosibirsk State Medical University Ministry of Health, Novosibirsk, Russia; European Medical Center, Moscow, Russia
| | | | - N Salim
- European Medical Center, Moscow, Russia
| | | | | | - E Chesnulis
- Hirslanden Clinic, Center of Neurosurgery, Zurich, Switzerland
| | | | - A L Krivoshapkin
- Novosibirsk State Medical University Ministry of Health, Novosibirsk, Russia; European Medical Center, Moscow, Russia
| |
Collapse
|
35
|
Zusman E, Sidorov M, Ayala A, Chang J, Singer E, Chen M, Desprez PY, McAllister S, Salomonis N, Chetal K, Prasad G, Kang T, Mark J, Dickinson L, Soroceanu L. Tissues Harvested Using an Automated Surgical Approach Confirm Molecular Heterogeneity of Glioblastoma and Enhance Specimen's Translational Research Value. Front Oncol 2019; 9:1119. [PMID: 31750239 PMCID: PMC6843001 DOI: 10.3389/fonc.2019.01119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults. Designing effective individualized therapies for GBM requires quality fresh tissue specimens, and a comprehensive molecular profile of this highly heterogenous neoplasm. Novel neuro-surgical approaches, such as the automated resection NICO Myriad™ system, are increasingly used by neurosurgeons to better reach the invasive front of tumors. However, no information exists on how harvesting GBM tissue using this approach may impact the translational research value of the sample. Here, we set out to characterize matched specimens from 15 patients, where one tissue sample was obtained using traditional tumor de-bulking (herein referred to as “en bloc” sample), and the other sample was obtained using the MyriadTM System (herein referred to as “Myriad” sample). We investigated the fidelity of patient derived xenografts (PDXs) for each sample type to the corresponding human tissues and evaluated the added value of sequencing both samples for each patient. Matched en bloc and Myriad samples processed in parallel, were subjected to the following assays: cell viability, self-renewal, in vivo tumorigenicity using an orthotopic model of glioma, genomic sequencing, and pharmacological testing using PI3K-MTOR pathway inhibitors. Our results demonstrate that primary GBM cultures derived from matched specimens grew at similar rates (correlation coefficient R = 0.72), generated equivalent number of neurospheres, and had equivalent tumorigenic potential in vivo (mouse survival correlation coefficient R = 0.93). DNA Sequencing using the Illumina tumor panel amplicons revealed over 70% concordance in non-synonymous mutations between matched human GBM specimens. PDX genomic profiles were also highly concordant with the corresponding patient tissues (>70%). RNA sequencing of paired GBM samples revealed unique genomic variants and differential gene expression between the en bloc and Myriad specimens, with the former molecularly resembling the “tumor core” and the latter resembling the “invasive tumor front” signature. Functionally, we show that primary-derived GBM cells—obtained after fresh specimen's dissociation—are more effectively growth-inhibited by co-targeting non-overlapping mutations enriched in each sample type, suggesting that profiling both specimens more adequately capture the molecular heterogeneity of GBM and may enhance the design accuracy and efficacy of individualized therapies.
Collapse
Affiliation(s)
- Edie Zusman
- NorthBay Medical Center, Fairfield, CA, United States
| | - Maxim Sidorov
- California Pacific Medical Center (CPMC) Research Institute, San Francisco, CA, United States
| | - Alexandria Ayala
- Pacific Brain and Spine Medical Group, Eden Medical Center-Sutter Research, Castro Valley, CA, United States
| | - Jimmin Chang
- Pacific Brain and Spine Medical Group, Eden Medical Center-Sutter Research, Castro Valley, CA, United States
| | - Eric Singer
- California Pacific Medical Center (CPMC) Research Institute, San Francisco, CA, United States
| | - Michelle Chen
- California Pacific Medical Center (CPMC) Research Institute, San Francisco, CA, United States
| | - Pierre-Yves Desprez
- California Pacific Medical Center (CPMC) Research Institute, San Francisco, CA, United States
| | - Sean McAllister
- California Pacific Medical Center (CPMC) Research Institute, San Francisco, CA, United States
| | - Nathan Salomonis
- Cincinnati Children's Hospital Medical Center (CCHMC) Biomedical Informatics, Cincinnati, OH, United States
| | - Kashish Chetal
- Cincinnati Children's Hospital Medical Center (CCHMC) Biomedical Informatics, Cincinnati, OH, United States
| | - Gautam Prasad
- Pacific Brain and Spine Medical Group, Eden Medical Center-Sutter Research, Castro Valley, CA, United States
| | - Tyler Kang
- Pacific Brain and Spine Medical Group, Eden Medical Center-Sutter Research, Castro Valley, CA, United States
| | - Joseph Mark
- NICO Corporation, Indianapolis, IN, United States
| | - Lawrence Dickinson
- Pacific Brain and Spine Medical Group, Eden Medical Center-Sutter Research, Castro Valley, CA, United States
| | - Liliana Soroceanu
- California Pacific Medical Center (CPMC) Research Institute, San Francisco, CA, United States
| |
Collapse
|
36
|
Schebesch KM, Rosengarth K, Brawanski A, Proescholdt M, Wendl C, Höhne J, Ott C, Lamecker H, Doenitz C. Clinical Benefits of Combining Different Visualization Modalities in Neurosurgery. Front Surg 2019; 6:56. [PMID: 31632980 PMCID: PMC6781653 DOI: 10.3389/fsurg.2019.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
The prevailing philosophy in oncologic neurosurgery, has shifted from maximally invasive resection to the preservation of neurologic function. The foundation of safe surgery is the multifaceted visualization of the target region and the surrounding eloquent tissue. Recent advancements in pre-operative and intraoperative visualization modalities have changed the face of modern neurosurgery. Metabolic and functional data can be integrated into intraoperative guidance software, and fluorescent dyes under dedicated filters can potentially visualize patterns of blood flow and better define tumor borders or isolated tumor foci. High definition endoscopes enable the depiction of tiny vessels and tumor extension to the ventricles or skull base. Fluorescein sodium-based confocal endomicroscopy, which is under scientific evaluation, may further enhance the neurosurgical armamentarium. We aim to present our institutional workup of combining different neuroimaging modalities for surgical neuro-oncological procedures. This institutional algorithm (IA) was the basis of the recent publication by Haj et al. describing outcome and survival data of consecutive patients with high grade glioma (HGG) before and after the introduction of our Neuro-Oncology Center.
Collapse
Affiliation(s)
| | - Katharina Rosengarth
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Alexander Brawanski
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christina Wendl
- Department of Radiology, University Medical Center Regensburg, Regensburg, Germany
| | - Julius Höhne
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Ott
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| | | | - Christian Doenitz
- Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
37
|
Initial biopsy and early re-resection practices in the treatment of glioblastoma among AANS/CNS tumor section surgeons. J Neurooncol 2019; 144:529-534. [DOI: 10.1007/s11060-019-03253-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
|
38
|
Awake surgery for glioblastoma can preserve independence level, but is dependent on age and the preoperative condition. J Neurooncol 2019; 144:155-163. [PMID: 31228139 DOI: 10.1007/s11060-019-03216-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Lately, awake surgery has been frequently adapted for glioblastoma (GBM). However, even with awake surgery, the expected long-term independence levels may not be achieved. We studied the characteristics of independence levels in GBM patients, and investigated the usefulness and parameter thresholds of awake surgery from the standpoint of functional outcomes. METHODS Totally, 60 GBM patients (awake group, n = 30; general anesthesia group, n = 30) who underwent tumor resection surgery were included. We collected preoperative and 1- and 3-month postoperative Karnofsky Performance Status (KPS) scores, and analyzed causes of low KPS scores from the aspect of function, brain region, and clinical factors. Then, we focused on the operative method, and investigated the usefulness of awake surgery. Finally, we explored the parameter standards of awake surgery in GBM considering independence levels. RESULTS Postoperative KPS were significantly lower than preoperative scores. Responsible lesions for low KPS scores were deep part of the left superior temporal gyrus and the right posterior temporal gyri that may be causes of aphasia and neuropsychological dysfunctions, respectively. Additionally, operative methods influenced on low independence level; long-term KPS scores in the awake group were significantly higher than those in the general anesthesia group, but they depended on age and preoperative KPS scores. Receiver operating characteristic curve analysis showed preoperative KPS = 90 and age = 62 years as the cutoff values for preservation of long-term KPS scores in awake group. CONCLUSION Awake surgery for GBM is useful for preserving long-term independence levels, but outcomes differ depending on age and preoperative KPS scores.
Collapse
|
39
|
Sales AHA, Bette S, Barz M, Huber T, Wiestler B, Ryang YM, Schmidt-Graf F, Liesche F, Combs SE, Meyer B, Gempt J. Role of postoperative tumor volume in patients with MGMT-unmethylated glioblastoma. J Neurooncol 2019; 142:529-536. [DOI: 10.1007/s11060-019-03124-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
|