1
|
Gürsoy S, Yılmaz Uzman C, Erdoğan KM, Karaoğlu P, Sözen Türk T, Yılmaz Ü, Ünalp A, Hazan F. The Clinical and Molecular Spectrum of Patients With X-Linked Intellectual Disability and Novel Variations in Different Genes. Pediatr Neurol 2025; 165:43-51. [PMID: 39951932 DOI: 10.1016/j.pediatrneurol.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. In this study, we aimed to describe the clinical and molecular spectrum of patients with XLID. We also evaluated the clinical efficacy of a targeted gene panel in patients with suspected XLID. METHODS Eighty-four patients with suspected XLID were enrolled in the study. Array comparative genomic hybridization, fragile X fragman analysis, and targeted XLID gene panel were performed. RESULTS Genetic diagnosis was established in a total of 24 patients (22 male and two female) with XLID. Different copy number variations of the X chromosome were detected in four patients, including two duplications and two deletions. Fifteen patients had fragile X syndrome. Point mutations were detected in five unrelated patients. Variants detected in RPS6KA3 gene were previously reported by our team. A novel two-nucleotide deletion was shown in the MID1 gene. Additionally, novel missense variations were revealed in IL1RAPL1 and ATRX genes. The IL1RAPL1 variant was detected in additional five affected male patients in the same family. The patient, who had ATRX variation, had pachygyria in the cerebral cortex and hypoplasia of cerebellar vermis. CONCLUSIONS Our findings have broadened the spectrum of mutations and clinical manifestations of patients with XLID. Additionally, this represents the second reported missense variation in the IL1RAPL1 gene identified in patients with XLID. We also emphasized the importance of a stepwise diagnostic algorithm that incorporates chromosomal microarray analysis, FMR1 gene repeat analysis, and next-generation sequencing analysis for patients with XLID.
Collapse
Affiliation(s)
- Semra Gürsoy
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkiye.
| | - Ceren Yılmaz Uzman
- Department of Pediatric Genetics, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| | - Kadri Murat Erdoğan
- Department of Medical Genetics, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Türkiye
| | - Pakize Karaoğlu
- Department of Pediatric Neurology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| | - Tuba Sözen Türk
- Department of Medical Genetics, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Türkiye
| | - Ünsal Yılmaz
- Department of Pediatric Neurology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| | - Aycan Ünalp
- Department of Pediatric Neurology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| | - Filiz Hazan
- Department of Medical Genetics, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, University of Health Sciences Turkey, İzmir, Türkiye
| |
Collapse
|
2
|
Papatheodoropoulos C. Compensatory Regulation of Excitation/Inhibition Balance in the Ventral Hippocampus: Insights from Fragile X Syndrome. BIOLOGY 2025; 14:363. [PMID: 40282228 PMCID: PMC12025323 DOI: 10.3390/biology14040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
The excitation/inhibition (E/I) balance is a critical feature of neural circuits, which is crucial for maintaining optimal brain function by ensuring network stability and preventing neural hyperexcitability. The hippocampus exhibits the particularly interesting characteristics of having different functions and E/I profiles between its dorsal and ventral segments. Furthermore, the hippocampus is particularly vulnerable to epilepsy and implicated in Fragile X Syndrome (FXS), disorders associated with heightened E/I balance and possible deficits in GABA-mediated inhibition. In epilepsy, the ventral hippocampus shows heightened susceptibility to seizures, while in FXS, recent evidence suggests differential alterations in excitability and inhibition between dorsal and ventral regions. This article explores the mechanisms underlying E/I balance regulation, focusing on the hippocampus in epilepsy and FXS, and emphasizing the possible mechanisms that may confer homeostatic flexibility to the ventral hippocampus in maintaining E/I balance. Notably, the ventral hippocampus in adult FXS models shows enhanced GABAergic inhibition, resistance to epileptiform activity, and physiological network pattern (sharp wave-ripples, SWRs), potentially representing a homeostatic adaptation. In contrast, the dorsal hippocampus in these FXS models is more vulnerable to aberrant discharges and displays altered SWRs. These findings highlight the complex, region-specific nature of E/I balance disruptions in neurological disorders and suggest that the ventral hippocampus may possess unique compensatory mechanisms. Specifically, it is proposed that the ventral hippocampus, the brain region most prone to hyperexcitability, may have unique adaptive capabilities at the cellular and network levels that maintain the E/I balance within a normal range to prevent the transition to hyperexcitability and preserve normal function. Investigating the mechanisms underlying these compensatory responses in the ventral hippocampus and their developmental trajectories may offer novel insights into strategies for mitigating E/I imbalances in epilepsy, FXS, and potentially other neuropsychiatric and neurodevelopmental disorders.
Collapse
|
3
|
Otsuka I, Uchiyama S, Shirai T, Liu X, Takahashi M, Kamatani Y, Terao C, Hishimoto A. Increased somatic mosaicism in autosomal and X chromosomes for suicide death. Mol Psychiatry 2025; 30:881-888. [PMID: 39215187 PMCID: PMC11835753 DOI: 10.1038/s41380-024-02718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Mosaic chromosomal alterations (mCAs) are classified as mosaic deletions (loss), copy-neutral loss of heterozygosity (CN-LOH), and duplications (gain), attracting special attention as biological aging-related acquired genetic alterations. While these mCAs have been linked with aging and various diseases, no study has investigated their association with suicide risk which is associated with abnormal biological aging. Here, we examined the association between suicide deaths and mCAs, including mosaic loss of the X (mLOX) and Y chromosomes, by leveraging blood-derived single nucleotide polymorphism-array data. The first (410 suicide decedents and 88,870 controls) and the second (363 suicide decedents and 88,870 controls) cohorts were analyzed and integrated using meta-analyses (773 suicide decedents and 177,740 controls). Total mCAs in autosomal chromosomes were significantly increased in suicide (p = 1.28 × 10-6, odds ratio [OR] = 1.78), mostly driven by loss (p = 4.05 × 10-9, OR = 2.70) and gain (p = 1.08 × 10-3, OR = 2.23). mLOX were significantly increased in female suicide (p = 2.66 × 10-21, OR = 4.00). The directions of effects of all mCAs in autosomal and sex chromosomes on suicide were the same in the first and second sets. Subgroup analyses suggest that our findings were mostly driven by suicide itself, and not confounded by comorbid psychiatric disorders or physical diseases, smoking status, sample location, or postmortem sample status. In conclusion, we provide the first evidence for aberrant mCAs in somatic autosomal and X chromosomes in suicide, which may contribute to an improved understanding of the genomic pathophysiology underlying suicide.
Collapse
Affiliation(s)
- Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shunsuke Uchiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Shirai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Motonori Takahashi
- Division of Legal Medicine, Department of Community Medicine and Social Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan.
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
4
|
Hou Y, Liu W, He T, Chen A. Association between the performance of executive function and the remission of depressive state after clinical treatment in patients with depression. J Affect Disord 2024; 364:28-36. [PMID: 39038627 DOI: 10.1016/j.jad.2024.07.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Previous studies have reported that patients with depression have significant cognitive impairment. The aim of this study is to comprehensively evaluate the impairment of executive functions in patients with depression and whether the cognitive behavior performance of executive function is association with remission of depressive state after clinical treatment. METHODS We used cognitive-behavioral test to evaluate the performance of executive functions of 95 inpatients with depression before hospitalization and conducted two follow-up evaluations of their depression status on the 15th day of hospitalization and approximately 9 months after discharge. RESULTS The performance of executive function except the accuracy of inhibition control in patients with depression were significantly worse than that of healthy controls. Multivariate linear regression analysis found that the reaction time of working memory not only had a significant linear relationship with the baseline depression scores of patients with depression, but also had a significant linear relationship with the reduced depression scores after two follow-up visits. LIMITATIONS We only used cognitive-behavioral data as indicators to evaluate the cognitive performances of participants and only measured three components of executive function. CONCLUSIONS The reaction time of working memory was a stable and effective predictor of symptom relief in patients with depression after clinical treatment. These results provide initial evidence for working memory to predict the clinical prognosis of inpatients with depression prospectively, which could be further leveraged to improve intervention approaches and analyze the heterogeneity of depression.
Collapse
Affiliation(s)
- Yongqing Hou
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Mental Health Center of Guangyuan, Sichuan, Guangyuan 628000, China.
| | - Wen Liu
- Mental Health Center of Guangyuan, Sichuan, Guangyuan 628000, China
| | - Tianbao He
- Mental Health Center of Guangyuan, Sichuan, Guangyuan 628000, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Montanaro FAM, Alfieri P, Caciolo C, Spano G, Bosco A, Vicari S. Effects of a combined neuropsychological and cognitive behavioral group therapy on young adults with Fragile X Syndrome: An explorative study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2024; 154:104839. [PMID: 39332280 DOI: 10.1016/j.ridd.2024.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Fragile X Syndrome (FXS) is an X-linked neurodevelopmental disorder that leads to intellectual disability (ID) along with cognitive-behavioral difficulties. Research on psychosocial treatments in individuals FXS and ID is still lacking. This study aimed to investigate the effectiveness of a combined neuropsychological and cognitive behavioral group therapy (nCBT) among young adults with FXS. METHOD Ten young adults diagnosed with FXS took part in the second stage intervention of "Corp-osa-Mente" (CoM II), a group nCBT program previously outlined by Montanaro and colleagues in an earlier study, with the participants being the same as in the previous research. This report details the outcomes of an additional twelve-month group sections aimed at enhancing the ability to manage emotions and the socio-communicative skills of these young adults. Caregivers completed measures of adaptive functioning, emotional and behavior problems, executive function, communication skills and family quality of life at pre-treatment (T0) and post-treatment (T1). RESULTS CoM II showed a decrease in depressive and anxiety symptoms from T0 to T1, along with increased socio-pragmatic and communication skills from pre-test to post-test intervention. Additionally, our analysis revealed improvements in the adapative behavior of participants and in the family quality of life. CONCLUSIONS These preliminary findings suggest that young adults with FXS and ID experienced positive outcomes through participation in CoM II, a group nCBT. However, it is recommended to undertake additional methodologically rigorous studies, such as randomized controlled trials (RCTs), to substantiate these initially promising findings.
Collapse
Affiliation(s)
- Federica Alice Maria Montanaro
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy; Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari 70122, Italy
| | - Paolo Alfieri
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy.
| | - Cristina Caciolo
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Giuseppina Spano
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari 70122, Italy
| | - Andrea Bosco
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari 70122, Italy
| | - Stefano Vicari
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy; Department of Life Sciences and Public Health, Università Cattolica Del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
6
|
Will EA, Hills KJ, Smith K, McQuillin S, Roberts JE. Developmental associations between motor and communication outcomes in Fragile X syndrome: Variation in the context of co-occurring autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2024; 28:2191-2203. [PMID: 38456297 PMCID: PMC11380705 DOI: 10.1177/13623613231225498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
LAY ABSTRACT Fragile X syndrome (FXS), the leading heritable cause of intellectual disability, has a co-occurrence rate of autism spectrum disorder (ASD) estimated at ~60%. Children with FXS experience delayed achievement and slower development of key motor abilities, which happens to an even greater extent for children with both FXS and ASD. A multitude of studies have demonstrated that motor abilities are foundational skills related to later communication outcomes in neurotypical development, as well as in the context of ASD. However, these associations remain unexamined in FXS, or FXS + ASD. In this study, we aimed to determine the associations between early motor skills and their rate of development on communication outcomes in FXS. Furthermore, we investigated whether these associations varied in the context of co-occurring FXS + ASD. Results revealed within-FXS variation in the context of co-occurring ASD between some aspects of motor development and communication outcomes, yet within-FXS consistency between others. Findings provide evidence for variability in developmental processes and outcomes in FXS in the context of co-occurring ASD and offer implications for intervention.
Collapse
|
7
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
8
|
Ng R, Bjornsson HT, Fahrner JA, Harris J. Associations Between Executive Functioning, Behavioral Functioning, and Adaptive Functioning Difficulties in Wiedemann-Steiner Syndrome. Arch Clin Neuropsychol 2024; 39:186-195. [PMID: 37565480 PMCID: PMC10879922 DOI: 10.1093/arclin/acad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVES Wiedemann-Steiner syndrome (WSS) is a neurogenetic disorder caused by heterozygous variants in KMT2A. Recent investigations suggest increased anxiety and behavior regulation challenges among those with WSS although the neurobehavioral phenotype remains largely unknown. This study aims to examine the pattern of and associations between executive functioning (EF) and behavior functioning among those with WSS. METHOD This study involved utilizing caregiver-report inventories (Behavior Rating Inventory of Executive Function 2nd Edition, BRIEF-2; Adaptive Behavior Assessment 3rd Edition, ABAS-3; Strengths and Difficulties Questionnaire, SDQ) to assess day-to-day behavior functioning among those with WSS (N = 24; mean age = 10.68 years, SD = 3.19). Frequency of clinical elevations in daily difficulties in EF, adaptive behaviors, and behavior regulation were reported. Correlations and hierarchical linear regressions were used to determine the relationships between EF with behavior and adaptive functioning. RESULTS Out of our sample, 63% met clinical levels of executive functioning difficulties on the BRIEF-2, and 75% with Hyperactivity and 54% with Emotional Problems on the SDQ. In addition, 33% were rated >2 SD below the normative mean in overall adaptive functioning on the ABAS-3. Elevated ratings in BRIEF-2 Shift, reflective of challenges with mental flexibility, predicted more Emotional Problems and accounted for 33.5% of its variance. More difficulties in Emotional Control were related to greater adaptive deficits, accounting for 33.3% of its variance. CONCLUSIONS Those with WSS are at risk for EF deficits, hyperactivity, and emotional dysregulation. EF correlates with adaptive and affective behaviors, highlighting the promise of behavioral interventions to target cognitive flexibility, emotional awareness, and reactivity in this population.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Dakopolos A, Condy E, Smith E, Harvey D, Kaat AJ, Coleman J, Riley K, Berry-Kravis E, Hessl D. Developmental Associations between Cognition and Adaptive Behavior in Intellectual and Developmental Disability. RESEARCH SQUARE 2024:rs.3.rs-3684708. [PMID: 38260292 PMCID: PMC10802716 DOI: 10.21203/rs.3.rs-3684708/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Intellectual and developmental disabilities (IDDs) are associated with both cognitive challenges and difficulties in conceptual, social, and practical areas of living (DSM-5). Individuals with IDD often present with an intellectual disability in addition to a developmental disability such as autism or Down syndrome. Those with IDD may present with deficits in intellectual functioning as well as adaptive functioning that interfere with independence and living skills. The present study sought to examine associations of longitudinal developmental change in domains of cognition (NIH Toolbox Cognition Battery, NIHTB-CB) and adaptive behavior domains (Vineland Adaptive Behavior Scales-3; VABS-3) including Socialization, Communication, and Daily Living Skills (DLS) over a two-year period. Methods Eligible participants for this multisite longitudinal study included those who were between 6 and 26 years at Visit 1, and who had a diagnosis of, or suspected intellectual disability (ID), including borderline ID. Three groups were recruited, including those with fragile X syndrome, Down syndrome, and other/idiopathic intellectual disability. In order to examine the association of developmental change between cognitive and adaptive behavior domains, bivariate latent change score (BLCS) models were fit to compare change in the three cognitive domains measured by the NIHTB-CB (Fluid, Crystallized, Composite) and the three adaptive behavior domains measured by the VABS-3 (Communication, DLS, and Socialization). Results Over a two-year period, change in cognition (both Crystalized and Composite) was significantly and positively associated with change in daily living skills. Also, baseline cognition level predicted growth in adaptive behavior, however baseline adaptive behavior did not predict growth in cognition in any model. Conclusions The present study demonstrated that developmental improvements in cognition and adaptive behavior are associated in children and young adults with IDD, indicating the potential for cross-domain effects of intervention. Notably, improvements in Daily Living Skills on the VABS-3 emerged as a primary area of adaptive behavior that positively related to improvements in cognition. This work provides evidence for the clinical, "real life" meaningfulness of the NIHTB-CB in IDD, and important empirical support for the NIHTB-CB as a fit-for-purpose performance-based outcome measure for this population.
Collapse
Affiliation(s)
| | | | - Elizabeth Smith
- Cincinnati Children's Hospital Medical Center Burnet Campus: Cincinnati Children's Hospital Medical Center
| | | | - Aaron J Kaat
- Northwestern University Feinberg School of Medicine
| | | | | | | | | |
Collapse
|
10
|
Crawford H. Social Anxiety in Neurodevelopmental Disorders: The Case of Fragile X Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2023; 128:302-318. [PMID: 37470255 DOI: 10.1352/1944-7558-128.4.302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/04/2022] [Indexed: 07/21/2023]
Abstract
Despite significant advances in understanding and treating social anxiety in the general population, progress in this area lags behind for individuals with intellectual disability. Fragile X syndrome is the most common cause of inherited intellectual disability and is associated with an elevated prevalence rate of social anxiety. The phenotype of fragile X syndrome encompasses multiple clinically significant characteristics that are posed as risk markers for social anxiety in other populations. Here, evidence is reviewed that points to physiological hyperarousal, sensory sensitivity, emotion dysregulation, cognitive inflexibility, and intolerance of uncertainty as primary candidates for underlying mechanisms of heightened social anxiety in fragile X syndrome. A multilevel model is presented that provides a framework for future research to test associations.
Collapse
|
11
|
Kang S, Jones A, Shaffer RC, Erickson CA, Schmitt LM. Developing improved outcome measures in FXS: Key stakeholder feedback. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 137:104502. [PMID: 37080087 PMCID: PMC10875734 DOI: 10.1016/j.ridd.2023.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is a critical need for the development of improved outcome measures in Fragile X Syndrome (FXS). Because the majority of respondents of behavior outcome measures are caregivers or individuals with FXS, it is important to consider stakeholders' firsthand experiences when designing a caregiver- or self-report measure. AIMS The current research study aimed to understand experiences of completing commonly used caregiver-/self-report measures of behavior in FXS via focus groups. METHODS AND PROCEDURES This study employed a focus group methodology. Semi-structured focus groups were conducted with 22 caregivers and 3 self-advocates. All interviews occurred via secured videoconferencing. A thematic analysis was used to identify major themes and subthemes. OUTCOMES AND RESULTS We identified four themes: (1) content of measure, (2) structure of the measure, (3) potential accommodations to complete measure, and (4) impact of measure on family. Importantly, focus groups revealed that certain aspects of content, structure, and implementation of the available measures were related to distress and negative emotions of caregivers of FXS and individuals with FXS themselves. CONCLUSIONS AND IMPLICATIONS The focus group data yielded a wide range of feedback and has significant implications, highlighting the critical need to take key stakeholder perspectives into account when using and/or developing caregiver- or self-report measures for FXS.
Collapse
Affiliation(s)
- Sungeun Kang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angelina Jones
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rebecca C Shaffer
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig A Erickson
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren M Schmitt
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Segal O, Kowal T, Banet-Levi Y, Gabis LV. Executive Function and Working Memory Deficits in Females with Fragile X Premutation. Life (Basel) 2023; 13:life13030813. [PMID: 36983968 PMCID: PMC10053193 DOI: 10.3390/life13030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The Fragile X premutation is a genetic instability of the FMR1 gene caused by 55–199 recurrences of the CGG sequence, whereas there are only 7–54 repeats of the CGG sequence in the normal condition. While males with the premutation of Fragile X were found to have difficulties in executive functions and working memory, little data have been collected on females. This study is among the first to address executive functions and phonological memory in females with the Fragile X premutation. Twenty-three female carriers aged 20–55 years and twelve non carrier females matched in age and levels of education (in years) participated in this study. Executive functions and phonological memory were assessed using the self-report questionnaire The Behavior Rating Inventory of Executive Function (BRIEF) and behavioral measures (nonword repetitions, forward and backward digit span). Females who were carriers of the premutation of the FMR1 gene reported less efficient executive functions in the BRIEF questionnaire compared to the control group. In addition, a relationship was found between the number of repetitions on the CGG sequence of nucleotides, nonword repetitions, and forward digit span. The findings suggest that the premutation of Fragile X in females affects their performance of executive functions and may have impact on everyday functioning.
Collapse
Affiliation(s)
- Osnat Segal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-522998404
| | - Tamar Kowal
- Department of Communication Disorders, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | | | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
"Corp-Osa-Mente", a Combined Psychosocial-Neuropsychological Intervention for Adolescents and Young Adults with Fragile X Syndrome: An Explorative Study. Brain Sci 2023; 13:brainsci13020277. [PMID: 36831819 PMCID: PMC9953950 DOI: 10.3390/brainsci13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Fragile X Syndrome is the most known inherited form of intellectual disability due to an expansion in the full mutation range (>200 CGG repeats) of the promoter region of the FMR1 gene located on X chromosomes leading to gene silencing. Despite clear knowledge of the cognitive-behavioral phenotype of FXS and the necessity of tailored interventions, empirical research on the effectiveness of behavioral treatments among patients with FXS is still lacking, with studies on adolescents and young adults even more insufficient. Here we present "Corposamente", a combined psychosocial-neuropsychological intervention conducted with a group of ten adolescents/young adults with FXS, who are non-ASD and without significant behavioral problems. In total, 20 sessions were performed, alternating between online and face-to-face meetings. At the end of the intervention, participants, family members and participants' educators anonymously completed a survey that was designed around key areas of improvement as well as treatment satisfaction. The survey results indicated that participants improved mostly in their ability to cope with negative emotions and that occupational intervention was considered the most effective technique both from families and participants. Our exploratory study suggests that group therapy for the management of the FXS cognitive-behavioral phenotype may be a promising approach to continue to pursue, mostly in adolescence when the environmental demands increase.
Collapse
|
14
|
Norris JE, Schmitt LM, De Stefano LA, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Neuropsychiatric feature-based subgrouping reveals neural sensory processing spectrum in female FMR1 premutation carriers: A pilot study. Front Integr Neurosci 2023; 17:898215. [PMID: 36816716 PMCID: PMC9936150 DOI: 10.3389/fnint.2023.898215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Fragile X Syndrome (FXS) is rare genetic condition characterized by a repeat expansion (CGG) in the Fragile X messenger ribonucleoprotein 1 (FMR1) gene where individuals with greater than 200 repeats are defined as full mutation. FXS clinical presentation often includes intellectual disability, and autism-like symptoms, including anxiety and sensory hypersensitivities. Individuals with 55 to <200 CGG repeats are said to have the FMR1 premutation, which is not associated with primary characteristics of the full mutation, but with an increased risk for anxiety, depression, and other affective conditions, as well as and impaired cognitive processing differences that vary in severity. Defining subgroups of premutation carriers based on distinct biological features may identify subgroups with varying levels of psychiatric, cognitive, and behavioral alterations. Methods The current pilot study utilized 3 cluster subgroupings defined by previous k means cluster analysis on neuropsychiatric, cognitive, and resting EEG variables in order to examine basic sensory auditory chirp task-based EEG parameters from 33 females with the FMR1 premutation (ages 17-78). Results Based on the predefined, neuropsychiatric three-cluster solution, premutation carriers with increased neuropsychiatric features and higher CGG repeat counts (cluster 1) showed decreased stimulus onset response, similar to previous ERP findings across a number of psychiatric disorders but opposite to findings in individuals with full mutation FXS. Premutation carriers with increased executive dysfunction and resting gamma power (cluster 2) exhibited decreased gamma phase locking to a chirp stimulus, similar to individuals with full mutation FXS. Cluster 3 members, who were relatively unaffected by psychiatric or cognitive symptoms, showed the most normative task-based EEG metrics. Discussion Our findings suggest a spectrum of sensory processing characteristics present in subgroups of premutation carriers that have been previously understudied due to lack of overall group differences. Our findings also further validate the pre-defined clinical subgroups by supporting links between disturbances in well-defined neural pathways and behavioral alterations that may be informative for identifying the mechanisms supporting specific risk factors and divergent therapeutic needs in individuals with the FMR1 premutation.
Collapse
Affiliation(s)
- Jordan E. Norris
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Lauren M. Schmitt
- Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa A. De Stefano
- Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Child Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Lauren E. Ethridge
- Department of Psychology, The University of Oklahoma, Norman, OK, United States,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,*Correspondence: Lauren E. Ethridge,
| |
Collapse
|
15
|
Schmitt LM, Arzuaga AL, Dapore A, Duncan J, Patel M, Larson JR, Erickson CA, Sweeney JA, Ragozzino ME. Parallel learning and cognitive flexibility impairments between Fmr1 knockout mice and individuals with fragile X syndrome. Front Behav Neurosci 2023; 16:1074682. [PMID: 36688132 PMCID: PMC9849779 DOI: 10.3389/fnbeh.2022.1074682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Fragile X Syndrome (FXS) is a monogenic condition that leads to intellectual disability along with behavioral and learning difficulties. Among behavioral and learning difficulties, cognitive flexibility impairments are among the most commonly reported in FXS, which significantly impacts daily living. Despite the extensive use of the Fmr1 knockout (KO) mouse to understand molecular, synaptic and behavioral alterations related to FXS, there has been limited development of translational paradigms to understand cognitive flexibility that can be employed in both animal models and individuals with FXS to facilitate treatment development. Methods To begin addressing this limitation, a parallel set of studies were carried out that investigated probabilistic reversal learning along with other behavioral and cognitive tests in individuals with FXS and Fmr1 KO mice. Fifty-five adolescents and adults with FXS (67% male) and 34 age- and sex-matched typically developing controls (62% male) completed an initial probabilistic learning training task and a probabilistic reversal learning task. Results In males with FXS, both initial probabilistic learning and reversal learning deficits were found. However, in females with FXS, we only observed reversal learning deficits. Reversal learning deficits related to more severe psychiatric features in females with FXS, whereas increased sensitivity to negative feedback (lose:shift errors) unexpectedly appear to be adaptive in males with FXS. Male Fmr1 KO mice exhibited both an initial probabilistic learning and reversal learning deficit compared to that of wildtype (WT) mice. Female Fmr1 KO mice were selectively impaired on probabilistic reversal learning. In a prepotent response inhibition test, both male and female Fmr1 KO mice were impaired in learning to choose a non-preferred spatial location to receive a food reward compared to that of WT mice. Neither male nor female Fmr1 KO mice exhibited a change in anxiety compared to that of WT mice. Discussion Together, our findings demonstrate strikingly similar sex-dependent learning disturbances across individuals with FXS and Fmr1 KO mice. This suggests the promise of using analogous paradigms of cognitive flexibility across species that may speed treatment development to improve lives of individuals with FXS.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna L. Arzuaga
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Ashley Dapore
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jason Duncan
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - Maya Patel
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States
| | - John R. Larson
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, United States
| | - Craig A. Erickson
- Department of Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michael E. Ragozzino
- Department of Psychology, University of Illinois Chicago, Chicago, IL, United States,*Correspondence: Michael E. Ragozzino,
| |
Collapse
|
16
|
Paermentier L, Cano A, Chabrol B, Roy A. Neuropsychological Disorders in Moderate Hyperphenylalaninemia: Literature Review. Dev Neuropsychol 2023; 48:31-45. [PMID: 36594744 DOI: 10.1080/87565641.2022.2162902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Moderate hyperphenylalaninemia (mHPA) is a hydroxylase deficiency corresponding to phenylalanine levels, at newborn screening, below 360 μmol/l. The neurological impact of mHPA is usually considered to be very low, but few studies have investigated the neuropsychological profile of mHPA patients.A systematic review of the neuropsychological aspects of mHPA was therefore conducted.The results showed a preservation of cognitive functions (intelligence, memory, visuoperception…). However, several indicators point to executive difficulties in this population. In regard to the important impact of executive functions in daily life, it is essential to conduct other studies in mHPA patients by proposing an integrative approach.
Collapse
Affiliation(s)
- L Paermentier
- Reference Center for Inborn Errors of Metabolism, Marseille University Children's Hospital, Marseille, France.,Neuro-Metabolism Department, Marseille University Children's Hospital, Marseille, France.,Psychology Laboratory, University of Angers, Angers, France
| | - A Cano
- Reference Center for Inborn Errors of Metabolism, Marseille University Children's Hospital, Marseille, France.,Neuro-Metabolism Department, Marseille University Children's Hospital, Marseille, France
| | - B Chabrol
- Reference Center for Inborn Errors of Metabolism, Marseille University Children's Hospital, Marseille, France.,Neuro-Metabolism Department, Marseille University Children's Hospital, Marseille, France
| | - A Roy
- Psychology Laboratory, University of Angers, Angers, France.,Neurofibromatosis Clinic and Reference Center for Learning Disabilities, Nantes University Hospital, Nantes, France
| |
Collapse
|
17
|
Research Gaps in Fragile X Syndrome: An Updated Literature Review to Inform Clinical and Public Health Practice. J Dev Behav Pediatr 2023; 44:e56-e65. [PMID: 36219479 PMCID: PMC9770151 DOI: 10.1097/dbp.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/03/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The phenotypic impact of fragile X syndrome (FXS) has been well-documented since the discovery of the fragile X messenger ribonucleoprotein 1 gene 30 years ago. However, gaps remain in clinical and public health research. The purpose of this literature review was to determine the extent to which these gaps have been addressed and identify targeted areas of future research. METHODS We conducted an electronic search of several scientific databases using a variety of key words. The search focused on 5 areas identified as research gaps by an earlier review: (1) diagnosis, (2) phenotypic presentation, (3) familial impact, (4) interventions and treatments, and (5) life span perspectives. Inclusion criteria included publication between 2014 and 2020, focus on human subjects, and publication in English. A total of 480 articles were identified, 365 were reviewed, and 112 are summarized in this review. RESULTS Results are organized into the following categories: (1) FXS phenotype and subtypes (FXS subtypes, medical profile, cognitive/developmental profile, social and behavioral profile); (2) needs of adults; (3) public health needs (clinical diagnosis and newborn screening, health care needs, and access); (4) treatment (treatment priorities, pharmacological treatments, and behavioral and educational interventions); and (5) families (economic burden and mother-child relationship). CONCLUSION Despite the progress in many areas of FXS research, work remains to address gaps in clinical and public health knowledge. We pose 3 main areas of focused research, including early detection and diagnosis, determinants of health, and development and implementation of targeted interventions.
Collapse
|
18
|
Asiminas A, Booker SA, Dando OR, Kozic Z, Arkell D, Inkpen FH, Sumera A, Akyel I, Kind PC, Wood ER. Experience-dependent changes in hippocampal spatial activity and hippocampal circuit function are disrupted in a rat model of Fragile X Syndrome. Mol Autism 2022; 13:49. [PMID: 36536454 PMCID: PMC9764562 DOI: 10.1186/s13229-022-00528-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a common single gene cause of intellectual disability and autism spectrum disorder. Cognitive inflexibility is one of the hallmarks of FXS with affected individuals showing extreme difficulty adapting to novel or complex situations. To explore the neural correlates of this cognitive inflexibility, we used a rat model of FXS (Fmr1-/y). METHODS We recorded from the CA1 in Fmr1-/y and WT littermates over six 10-min exploration sessions in a novel environment-three sessions per day (ITI 10 min). Our recordings yielded 288 and 246 putative pyramidal cells from 7 WT and 7 Fmr1-/y rats, respectively. RESULTS On the first day of exploration of a novel environment, the firing rate and spatial tuning of CA1 pyramidal neurons was similar between wild-type (WT) and Fmr1-/y rats. However, while CA1 pyramidal neurons from WT rats showed experience-dependent changes in firing and spatial tuning between the first and second day of exposure to the environment, these changes were decreased or absent in CA1 neurons of Fmr1-/y rats. These findings were consistent with increased excitability of Fmr1-/y CA1 neurons in ex vivo hippocampal slices, which correlated with reduced synaptic inputs from the medial entorhinal cortex. Lastly, activity patterns of CA1 pyramidal neurons were dis-coordinated with respect to hippocampal oscillatory activity in Fmr1-/y rats. LIMITATIONS It is still unclear how the observed circuit function abnormalities give rise to behavioural deficits in Fmr1-/y rats. Future experiments will focus on this connection as well as the contribution of other neuronal cell types in the hippocampal circuit pathophysiology associated with the loss of FMRP. It would also be interesting to see if hippocampal circuit deficits converge with those seen in other rodent models of intellectual disability. CONCLUSIONS In conclusion, we found that hippocampal place cells from Fmr1-/y rats show similar spatial firing properties as those from WT rats but do not show the same experience-dependent increase in spatial specificity or the experience-dependent changes in network coordination. Our findings offer support to a network-level origin of cognitive deficits in FXS.
Collapse
Affiliation(s)
- Antonis Asiminas
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.5254.60000 0001 0674 042XPresent Address: Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sam A. Booker
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Owen R. Dando
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988UK Dementia Research Institute at the Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Zrinko Kozic
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Daisy Arkell
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Felicity H. Inkpen
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Anna Sumera
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Irem Akyel
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Peter C. Kind
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD UK ,Centre for Brain Development and Repair, Bangalore, 560065 India
| | - Emma R. Wood
- grid.4305.20000 0004 1936 7988Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK ,grid.4305.20000 0004 1936 7988Patrick Wild Centre, University of Edinburgh, Edinburgh, EH8 9XD UK ,Centre for Brain Development and Repair, Bangalore, 560065 India
| |
Collapse
|
19
|
Schmitt LM, Li J, Liu R, Horn PS, Sweeney JA, Erickson CA, Pedapati EV. Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Mol Autism 2022; 13:47. [PMID: 36494861 PMCID: PMC9733336 DOI: 10.1186/s13229-022-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and autism spectrum disorder. Executive function (EF), necessary for adaptive goal-oriented behavior and dependent on frontal lobe function, is impaired in individuals with FXS. Yet, little is known how alterations in frontal lobe neural activity is related to EF deficits in FXS. METHODS Sixty-one participants with FXS (54% males) and 71 age- and sex-matched typically-developing controls (TDC; 58% males) completed a five-minute resting state electroencephalography (EEG) protocol and a computerized battery of tests of EF, the Test of Attentional Performance for Children (KiTAP). Following source localization (minimum-norm estimate), we computed debiased weighted phase lag index (dWPLI), a phase connectivity value, for pairings between 18 nodes in frontal regions for gamma (30-55 Hz) and alpha (10.5-12.5 Hz) bands. Linear models were generated with fixed factors of group, sex, frequency, and connection. Relationships between frontal connectivity and EF variables also were examined. RESULTS Individuals with FXS demonstrated increased gamma band and reduced alpha band connectivity across all frontal regions and across hemispheres compared to TDC. After controlling for nonverbal IQ, increased error rates on EF tasks were associated with increased gamma band and reduced alpha band connectivity. LIMITATIONS Frontal connectivity findings are limited to intrinsic brain activity during rest and may not generalize to frontal connectivity during EF tasks or everyday function. CONCLUSIONS We report gamma hyper-connectivity and alpha hypo-connectivity within source-localized frontal brain regions in FXS compared to TDC during resting-state EEG. For the first time in FXS, we report significant associations between EF and altered frontal connectivity, with increased error rate relating to increased gamma band connectivity and reduced alpha band connectivity. These findings suggest increased phase connectivity within gamma band may impair EF performance, whereas greater alpha band connectivity may provide compensatory support for EF. Together, these findings provide important insight into neurophysiological mechanisms of EF deficits in FXS and provide novel targets for treatment development.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Joy Li
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rui Liu
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA
| | - Paul S. Horn
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
20
|
Norris JE, DeStefano LA, Schmitt LM, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Hemispheric Utilization of Alpha Oscillatory Dynamics as a Unique Biomarker of Neural Compensation in Females with Fragile X Syndrome. ACS Chem Neurosci 2022; 13:3389-3402. [PMID: 36411085 DOI: 10.1021/acschemneuro.2c00404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide expansion on the FMR1 gene and characterized by intellectual disability, sensory hypersensitivity, executive function difficulties, and social anxiety. Recently, efforts to define neural biomarkers for FXS have highlighted disruptions to power in the alpha frequency band; however the dynamic mechanisms supporting these findings are poorly understood. The current study aimed to explore the temporal and hemispheric dynamics supporting alpha phenotypes in FXS and their relationship with neural phenotypes related to auditory processing using electroencephalography during an auditory evoked task. Adolescents and adults (N = 36) with FXS and age/sex matched typically developing controls (N = 40) completed an auditory chirp task. Frontal alpha power in the prestimulus period was decomposed into "bursts" using percentile thresholding, then assessed for number of bursts per second (burst count) and burst length. Data were compared across left and right hemispheres to assess lateralization of neural activity. Individuals with FXS showed more differences in alpha power compared to TDC primarily in the right hemisphere. Notably, alpha hemisphere outcomes in males with FXS were driven by the number of times they entered a dynamically relevant period of alpha (burst count) rather than length of time spent in alpha. Females with FXS showed reduced burst counts but remained in sustained high alpha states for longer periods of time. Length of time spent in alpha may reflect a modulatory or compensatory mechanism capable of recovering sensory processing abilities in females with FXS resulting in a less severe clinical presentation. Right hemisphere abnormalities may impact sensory processing differences between males and females with FXS. The relationship between alpha burst length, count, sex, and hemisphere may shed light on underlying mechanisms for previously observed alpha power abnormalities in FXS and their variation by sex.
Collapse
Affiliation(s)
- Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
21
|
Calub CA, Benyakorn S, Sun S, Iosif AM, Boyle LH, Solomon M, Hessl D, Schweitzer JB. Working Memory Training in Youth With Autism, Fragile X, and Intellectual Disability: A Pilot Study. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2022; 127:369-389. [PMID: 36018768 PMCID: PMC9915337 DOI: 10.1352/1944-7558-127.5.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 08/03/2021] [Indexed: 06/15/2023]
Abstract
This pilot study sought to identify potential markers of improvement from pre-post treatment in response to computerized working memory (WM) training for youth (ages 8-18) with autism spectrum disorder (ASD) and comorbid intellectual disability (ID) in a single arm, pre-post design. Participants included 26 children with ASD and 18 with comorbid ASD and fragile X syndrome (ASD+FXS). Analyses were adjusted for age and IQ. The ASD group demonstrated greater improvement on WM training relative to the ASD+FXS group. Participants improved on WM and far transfer outcomes, however, there were no significant group differences in improvement except for repetitive behavior. Higher hyperactivity/impulsivity ratings predicted lower performance on visuospatial WM. Findings suggest cognitive training may be beneficial for youth with ASD and ID, warranting further exploration.
Collapse
|
22
|
Kat R, Arroyo-Araujo M, de Vries RBM, Koopmans MA, de Boer SF, Kas MJH. Translational validity and methodological underreporting in animal research: A systematic review and meta-analysis of the Fragile X syndrome (Fmr1 KO) rodent model. Neurosci Biobehav Rev 2022; 139:104722. [PMID: 35690123 DOI: 10.1016/j.neubiorev.2022.104722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Predictive models are essential for advancing knowledge of brain disorders. High variation in study outcomes hampers progress. To address the validity of predictive models, we performed a systematic review and meta-analysis on behavioural phenotypes of the knock-out rodent model for Fragile X syndrome according to the PRISMA reporting guidelines. In addition, factors accountable for the heterogeneity between findings were analyzed. The knock-out model showed good translational validity and replicability for hyperactivity, cognitive and seizure phenotypes. Despite low replicability, translational validity was also found for social behaviour and sensory sensitivity, but not for attention, aggression and cognitive flexibility. Anxiety, acoustic startle and prepulse inhibition phenotypes, despite low replicability, were opposite to patient symptomatology. Subgroup analyses for experimental factors moderately explain the low replicability, these analyses were hindered by under-reporting of methodologies and environmental conditions. Together, the model has translational validity for most clinical phenotypes, but caution must be taken due to low effect sizes and high inter-study variability. These findings should be considered in view of other rodent models in preclinical research.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - María Arroyo-Araujo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Geert Groteplein Zuid 21, 6525 EZ Nijmegen, the Netherlands.
| | - Marthe A Koopmans
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
23
|
Hines DJ, Contreras A, Garcia B, Barker JS, Boren AJ, Moufawad El Achkar C, Moss SJ, Hines RM. Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABA A receptor α2 subunit. Mol Psychiatry 2022; 27:1729-1741. [PMID: 35169261 PMCID: PMC9095487 DOI: 10.1038/s41380-022-01468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder that can arise from genetic mutations ranging from trisomy to single nucleotide polymorphism. Mutations in a growing number of single genes have been identified as causative in ID, including ARHGEF9. Evaluation of 41 ARHGEF9 patient reports shows ubiquitous inclusion of ID, along with other frequently reported symptoms of epilepsy, abnormal baseline EEG activity, behavioral symptoms, and sleep disturbances. ARHGEF9 codes for the Cdc42 Guanine Nucleotide Exchange Factor 9 collybistin (Cb), a known regulator of inhibitory synapse function via direct interaction with the adhesion molecule neuroligin-2 and the α2 subunit of GABAA receptors. We mutate the Cb binding motif within the large intracellular loop of α2 replacing it with the binding motif for gephyrin from the α1 subunit (Gabra2-1). The Gabra2-1 mutation causes a strong downregulation of Cb expression, particularly at cholecystokinin basket cell inhibitory synapses. Gabra2-1 mice have deficits in working and recognition memory, as well as hyperactivity, anxiety, and reduced social preference, recapitulating the frequently reported features of ARHGEF9 patients. Gabra2-1 mice also have spontaneous seizures during postnatal development which can lead to mortality, and baseline abnormalities in low-frequency wavelengths of the EEG. EEG abnormalities are vigilance state-specific and manifest as sleep disturbance including increased time in wake and a loss of free-running rhythmicity in the absence of light as zeitgeber. Gabra2-1 mice phenocopy multiple features of human ARHGEF9 mutation, and reveal α2 subunit-containing GABAA receptors as a druggable target for treatment of this complex ID syndrome.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - April Contreras
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Betsua Garcia
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeffrey S Barker
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Austin J Boren
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
24
|
Perry V, Ellis K, Moss J, Beck SR, Singla G, Crawford H, Waite J, Richards C, Oliver C. Executive function, repetitive behaviour and restricted interests in neurodevelopmental disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 122:104166. [PMID: 35016127 DOI: 10.1016/j.ridd.2021.104166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Individuals with genetic syndromes show unique profiles of repetitive behaviours and restricted interests (RRBs). The executive dysfunction account of RRBs suggests that in autistic (AUT) individuals executive function impairments underpin RRBs, but not communication and social interaction autistic characteristics. AIMS To 1) describe profiles of behavioural manifestations of executive function (EF behaviours) and 2) explore the relationship between EF behaviours and autistic traits across individuals with Cornelia de Lange (CdLS), fragile X (FXS) and Rubinstein-Taybi syndromes (RTS), and AUT individuals. METHOD Carers completed the Behavior Rating Inventory of Executive Function - Preschool Version and the Social Communication Questionnaire. Data reporting on 25 individuals with CdLS (Mage = 18.60, SD = 8.94), 25 with FXS (Mage = 18.48, SD = 8.80), 25 with RTS (Mage = 18.60, SD = 8.65) and 25 AUT individuals (Mage = 18.52, SD = 8.65) matched on chronological age and adaptive ability were included in analyses. RESULTS All groups showed impairments across EF behaviours compared to two-to-three-year-old typically developing normative samples with no differences between groups. Different EF behaviours predicted RRBs in the syndrome groups with no associations found in the AUT group. CONCLUSIONS Syndrome related differences should be considered when developing targeted interventions that focus on EF behaviours and/or RRBs in these groups.
Collapse
Affiliation(s)
- Victoria Perry
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; Coventry and Warwickshire Partnership NHS Trust, Wayside House, Wilsons Lane, Coventry, CV6 6NY, United Kingdom
| | - Katherine Ellis
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom.
| | - Jo Moss
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Sarah R Beck
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| | - Gursharan Singla
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| | - Hayley Crawford
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; CMHWR and Mental Health and Wellbeing Unit, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jane Waite
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom; School of Health & Life Sciences, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Caroline Richards
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| | - Chris Oliver
- School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
25
|
Greiner de Magalhães C, Pitts CH, Mervis CB. Executive function as measured by the Behavior Rating Inventory of Executive Function-2: children and adolescents with Williams syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2022; 66:94-107. [PMID: 34110652 PMCID: PMC8660954 DOI: 10.1111/jir.12858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Difficulties with executive functions (EF) are very common among individuals with Williams syndrome (WS). To characterise the pattern of relative strengths and weaknesses in EF for children and adolescents with WS, we considered the performance of a large sample on the parent version of the Behavior Rating Inventory of Executive Function-2 (BRIEF-2). Associations between distinct components of EF and adaptive behaviour, behaviour problems and intellectual ability were investigated. The concurrent effects of components of behaviour regulation and emotion regulation on attention problems and anxiety problems also were evaluated. METHODS Participants were 308 6-17-year-olds with genetically confirmed classic WS deletions. Parent report of EF was measured by the BRIEF-2 questionnaire. Most participants (223/308) completed the Differential Ability Scales-II as a measure of intellectual ability. The parents of these individuals also completed the Child Behavior Checklist and the interview form of the Scales of Independent Behavior-Revised. RESULTS As a group, the participants evidenced considerable parent-reported EF difficulty. A profile of relative strength and weakness was found at the index level, with performance on both the Behavior Regulation Index and the Emotion Regulation Index significantly better than performance on the Cognitive Regulation Index. Within each index, a statistically significant pattern of relative strength and weakness also was identified. Difficulties with behaviour regulation and emotion regulation were related to both behaviour problems and adaptive behaviour limitations. Higher inflexibility and more difficulty with self-monitoring were associated with lower overall intellectual ability. Difficulty with inhibition was uniquely associated with attention problems, and inflexibility was uniquely associated with anxiety problems. CONCLUSIONS Executive function difficulties are highly prevalent among children and adolescents with WS and are associated with adaptive behaviour limitations, both internalising and externalising behaviour problems and more limited intellectual ability. These results highlight the importance of designing and delivering research-based interventions to improve the EF of children and adolescents with WS.
Collapse
Affiliation(s)
- C Greiner de Magalhães
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - C H Pitts
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - C B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
26
|
Auerbach BD, Manohar S, Radziwon K, Salvi R. Auditory hypersensitivity and processing deficits in a rat model of fragile X syndrome. Neurobiol Dis 2021; 161:105541. [PMID: 34751141 DOI: 10.1016/j.nbd.2021.105541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Fragile X (FX) syndrome is one of the leading inherited causes of autism spectrum disorder (ASD). A majority of FX and ASD patients exhibit sensory hypersensitivity, including auditory hypersensitivity or hyperacusis, a condition in which everyday sounds are perceived as much louder than normal. Auditory processing deficits in FX and ASD also afford the opportunity to develop objective and quantifiable outcome measures that are likely to translate between humans and animal models due to the well-conserved nature of the auditory system and well-developed behavioral read-outs of sound perception. Therefore, in this study we characterized auditory hypersensitivity in a Fmr1 knockout (KO) transgenic rat model of FX using an operant conditioning task to assess sound detection thresholds and suprathreshold auditory reaction time-intensity (RT-I) functions, a reliable psychoacoustic measure of loudness growth, at a variety of stimulus frequencies, bandwidths, and durations. Male Fmr1 KO and littermate WT rats both learned the task at the same rate and exhibited normal hearing thresholds. However, Fmr1 KO rats had faster auditory RTs over a broad range of intensities and steeper RT-I slopes than WT controls, perceptual evidence of excessive loudness growth in Fmr1 KO rats. Furthermore, we found that Fmr1 KO animals exhibited abnormal perceptual integration of sound duration and bandwidth, with diminished temporal but enhanced spectral integration of sound intensity. Because temporal and spectral integration of sound stimuli were altered in opposite directions in Fmr1 KO rats, this suggests that abnormal RTs in these animals are evidence of aberrant auditory processing rather than generalized hyperactivity or altered motor responses. Together, these results are indicative of fundamental changes to low-level auditory processing in Fmr1 KO animals. Finally, we demonstrated that antagonism of metabotropic glutamate receptor 5 (mGlu5) selectively and dose-dependently restored normal loudness growth in Fmr1 KO rats, suggesting a pharmacologic approach for alleviating sensory hypersensitivity associated with FX. This study leverages the tractable nature of the auditory system and the unique behavioral advantages of rats to provide important insights into the nature of a centrally important yet understudied aspect of FX and ASD.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA; Department of Molecular & Integrative Physiology, Beckman Institute for Advanced Science & Technology, Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | - Kelly Radziwon
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
27
|
Bush L, Scott MN. Neuropsychological and ASD phenotypes in rare genetic syndromes: A critical review of the literature. Clin Neuropsychol 2021; 36:993-1027. [PMID: 34569897 DOI: 10.1080/13854046.2021.1980111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by core deficits in social communication and restricted and repetitive behaviors and interests. Recent advances in clinical genetics have improved our understanding of genetic syndromes associated with ASD, which has helped clarify distinct etiologies of ASD and document syndrome-specific profiles of neurocognitive strengths and weaknesses. Pediatric neuropsychologists have the potential to be impactful members of the care team for children with genetic syndromes and their families. METHOD We provide a critical review of the current literature related to the neuropsychological profiles of children with four genetic syndromes associated with ASD, including Tuberous Sclerosis Complex (TSC), fragile X syndrome (FXS), 22q11.2 deletion syndrome, and Angelman syndrome. Recommendations for assessment, intervention, and future directions are provided. RESULTS There is vast heterogeneity in terms of the cognitive, language, and developmental abilities of these populations. The within- and across-syndrome variability characteristic of genetic syndromes should be carefully considered during clinical evaluations, including possible measurement limitations, presence of intellectual disability, and important qualitative differences in the ASD-phenotypes across groups. CONCLUSIONS Individuals with genetic disorders pose challenging diagnostic and assessment questions. Pediatric neuropsychologists with expertise in neurodevelopmental processes are well suited to address these questions and identify profiles of neurocognitive strengths and weaknesses, tailor individualized recommendations, and provide diagnostic clarification.
Collapse
Affiliation(s)
- Lauren Bush
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Megan N Scott
- The Pritzker Department of Psychiatry and Behavioral Health, Ann & Robert H. Lurie Children's Hospital of Chicago, IL, USA
| |
Collapse
|
28
|
Mody M, Petibon Y, Han P, Kuruppu D, Ma C, Yokell D, Neelamegam R, Normandin MD, Fakhri GE, Brownell AL. In vivo imaging of mGlu5 receptor expression in humans with Fragile X Syndrome towards development of a potential biomarker. Sci Rep 2021; 11:15897. [PMID: 34354107 PMCID: PMC8342610 DOI: 10.1038/s41598-021-94967-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by silencing of the Fragile X Mental Retardation (FMR1) gene. The resulting loss of Fragile X Mental Retardation Protein (FMRP) leads to excessive glutamate signaling via metabotropic glutamate subtype 5 receptors (mGluR5) which has been implicated in the pathogenesis of the disorder. In the present study we used the radioligand 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB) in simultaneous PET-MR imaging of males with FXS and age- and gender-matched controls to assess the availability of mGlu5 receptors in relevant brain areas. Patients with FXS showed lower [18F]FPEB binding potential (p < 0.01), reflecting reduced mGluR5 availability, than the healthy controls throughout the brain, with significant group differences in insula, anterior cingulate, parahippocampal, inferior temporal and olfactory cortices, regions associated with deficits in inhibition, memory, and visuospatial processes characteristic of the disorder. The results are among the first to provide in vivo evidence of decreased availability of mGluR5 in the brain in individuals with FXS than in healthy controls. The consistent results across the subjects, despite the tremendous challenges with neuroimaging this population, highlight the robustness of the protocol and support for its use in drug occupancy studies; extending our radiotracer development and application efforts from mice to humans.
Collapse
Affiliation(s)
- Maria Mody
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Paul Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Darshini Kuruppu
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Daniel Yokell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Ramesh Neelamegam
- Department of Radiology, University of Texas Health Science at San Antonio, San Antonio, TX, 78229, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
29
|
Bangert K, Moser C, Friedman L, Klusek J. Family as a Context for Child Development: Mothers with the FMR1 Premutation and Their Children with Fragile X Syndrome. Semin Speech Lang 2021; 42:277-286. [PMID: 34311480 PMCID: PMC11298790 DOI: 10.1055/s-0041-1730988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by changes of the FMR1 gene that is passed along among families. A range of developmental processes may be impacted with wide variation in abilities across individuals with FXS. Mothers of children with FXS are often carriers of a "premutation" expansion on the FMR1 gene, which is associated with its own clinical phenotype. These maternal features may increase individual and family vulnerabilities, including increased risk for depression and anxiety disorders and difficulties in social and cognitive ability. These characteristics may worsen with age, and potentially interact with a child's challenging behaviors and with family dynamics. Thus, families of children with FXS may experience unique challenges related to genetic risk, manifested across both children and parents, that should be considered in therapeutic planning to optimize outcomes for children and their families. In this article, we review core features of the FMR1 premutation as expressed in mothers and aspects of the family environment that interface with developmental outcomes of children with FXS. Recommendations for family-centered support services are discussed.
Collapse
Affiliation(s)
- Katherine Bangert
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - Carly Moser
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| | - Laura Friedman
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
30
|
Joga-Elvira L, Martinez-Olmo J, Joga ML, Jacas C, Roche-Martínez A, Brun-Gasca C. Study of the Interaction between Executive Function and Adaptive Behavior at School in Girls with Fragile X Syndrome. Genes (Basel) 2021; 12:genes12081108. [PMID: 34440282 PMCID: PMC8393377 DOI: 10.3390/genes12081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this research is to analyze the relationship between executive functions and adaptive behavior in girls with Fragile X syndrome (FXS) in the school setting. This study is part of a larger investigation conducted at the Hospital Parc Tauli in Sabadell. The sample consists of a total of 40 girls (26 with FXS and 14 control) aged 7–16 years, who were administered different neuropsychological tests (WISC-V, NEPSY-II, WCST, TOL) and questionnaires answered by teachers (ABAS-II, BRIEF 2, ADHD Rating Scale). The results show that there is a greater interaction between some areas of executive function (cognitive flexibility, auditory attention, and visual abstraction capacity) and certain areas of adaptive behavior (conceptual, practical, social, and total domains) in the FXS group than in the control group. These results suggest that an alteration in the executive functions was affecting the daily functioning of the girls with FXS to a greater extent.
Collapse
Affiliation(s)
- Lorena Joga-Elvira
- Consorcio Corporación Sanitaria Parc Tauli, 08208 Sabadell, Spain; (J.M.-O.); (A.R.-M.); (C.B.-G.)
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-605408523
| | - Jennifer Martinez-Olmo
- Consorcio Corporación Sanitaria Parc Tauli, 08208 Sabadell, Spain; (J.M.-O.); (A.R.-M.); (C.B.-G.)
| | | | - Carlos Jacas
- Servicio de Psiquiatría, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
- Departament de Psicología Clínica i de la Salut, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ana Roche-Martínez
- Consorcio Corporación Sanitaria Parc Tauli, 08208 Sabadell, Spain; (J.M.-O.); (A.R.-M.); (C.B.-G.)
| | - Carme Brun-Gasca
- Consorcio Corporación Sanitaria Parc Tauli, 08208 Sabadell, Spain; (J.M.-O.); (A.R.-M.); (C.B.-G.)
- Departament de Psicología Clínica i de la Salut, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
31
|
Jiang L, Cui H, Zhang C, Cao X, Gu N, Zhu Y, Wang J, Yang Z, Li C. Repetitive Transcranial Magnetic Stimulation for Improving Cognitive Function in Patients With Mild Cognitive Impairment: A Systematic Review. Front Aging Neurosci 2021; 12:593000. [PMID: 33519418 PMCID: PMC7842279 DOI: 10.3389/fnagi.2020.593000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Mild cognitive impairment (MCI) is an early stage of Alzheimer's disease. Repetitive transcranial magnetic stimulation (rTMS) has been widely employed in MCI research. However, there is no reliable systematic evidence regarding the effects of rTMS on MCI. The aim of this review was to evaluate the efficacy and safety of rTMS in the treatment of MCI. Methods: A comprehensive literature search of nine electronic databases was performed to identify articles published in English or Chinese before June 20, 2019. The identified articles were screened, data were extracted, and the methodological quality of the included trials was assessed. The meta-analysis was performed using the RevMan 5.3 software. We used the GRADE approach to rate the quality of the evidence. Results: Nine studies comprising 369 patients were included. The meta-analysis showed that rTMS may significantly improve global cognitive function (standardized mean difference [SMD] 2.09, 95% confidence interval [CI] 0.94 to 3.24, p = 0.0004, seven studies, n = 296; low-quality evidence) and memory (SMD 0.44, 95% CI 0.16 to 0.72, p = 0.002, six studies, n = 204; moderate-quality evidence). However, there was no significant improvement in executive function and attention (p > 0.05). Subgroup analyses revealed the following: (1) rTMS targeting the left hemisphere significantly enhanced global cognitive function, while rTMS targeting the bilateral hemispheres significantly enhanced global cognitive function and memory; (2) high-frequency rTMS significantly enhanced global cognitive function and memory; and (3) a high number of treatments ≥20 times could improve global cognitive function and memory. There was no significant difference in dropout rate (p > 0.05) between the rTMS and control groups. However, patients who received rTMS had a higher rate of mild adverse effects (risk ratio 2.03, 95% CI 1.16 to 3.52, p = 0.01, seven studies, n = 317; moderate-quality evidence). Conclusions: rTMS appears to improve global cognitive function and memory in patients with MCI and may have good acceptability and mild adverse effects. Nevertheless, these results should be interpreted cautiously due to the relatively small number of trials, particularly for low-frequency rTMS.
Collapse
Affiliation(s)
- Lijuan Jiang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caidi Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Gu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Beijing, China
| | - Zhi Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.,Laboratory of Psychological Heath and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.,Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Beijing, China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Investigation of the Clinical Utility of the BRIEF2 in Youth With and Without Intellectual Disability. J Int Neuropsychol Soc 2020; 26:1036-1044. [PMID: 32641198 DOI: 10.1017/s1355617720000636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Executive function (EF) difficulties are commonly found in youth with intellectual disability (ID). Given mixed results from studies using performance-based EF measures, the EF profile has not been well characterized for this population. No published work has examined the clinical utility of the Behavior Rating Inventory of Executive Function, Second Edition (BRIEF2) in distinguishing EF in ID. We hypothesized that the BRIEF2 would show greater elevations in youth with ID compared to the Average IQ comparison group. METHODS Participants included a large sample of 504 youth (157 in ID group; aged 8-18 years) referred for (neuro)psychological evaluation (2015-2019) and identified as meeting criteria for either ID or Average IQ comparison group. RESULTS Significant elevations were found across BRIEF2 indices and scales. Only mild elevations were noted in selective cognitive regulation scales within the Average IQ group. Groups differed significantly across all EF dimensions, with greater differences observed in behavioral regulation (Self-Monitoring, Inhibition), Shift, and Working Memory. An elevated but less variable pattern of index scores was noted in ID, while the overall pattern of scaled scores appeared similar between groups. CONCLUSIONS The less variable and consistently elevated profile may suggest fewer EF dimensions in individuals with ID than the model proposed in the test manual. Similar profiles between groups may reflect differences in severity, rather than differences in constructs measured by the EF factors, per se. Additional examination is needed to confirm potential structural differences in EF for youth with ID as measured by BRIEF2, with a clinical implication for greater efficiency of EF assessment in this population.
Collapse
|
33
|
Sawicka K, Hale CR, Park CY, Fak JJ, Gresack JE, Van Driesche SJ, Kang JJ, Darnell JC, Darnell RB. FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autism-related transcripts and circadian memory. eLife 2019; 8:e46919. [PMID: 31860442 PMCID: PMC6924960 DOI: 10.7554/elife.46919] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Loss of the RNA binding protein FMRP causes Fragile X Syndrome (FXS), the most common cause of inherited intellectual disability, yet it is unknown how FMRP function varies across brain regions and cell types and how this contributes to disease pathophysiology. Here we use conditional tagging of FMRP and CLIP (FMRP cTag CLIP) to examine FMRP mRNA targets in hippocampal CA1 pyramidal neurons, a critical cell type for learning and memory relevant to FXS phenotypes. Integrating these data with analysis of ribosome-bound transcripts in these neurons revealed CA1-enriched binding of autism-relevant mRNAs, and CA1-specific regulation of transcripts encoding circadian proteins. This contrasted with different targets in cerebellar granule neurons, and was consistent with circadian defects in hippocampus-dependent memory in Fmr1 knockout mice. These findings demonstrate differential FMRP-dependent regulation of mRNAs across neuronal cell types that may contribute to phenotypes such as memory defects and sleep disturbance associated with FXS.
Collapse
Affiliation(s)
- Kirsty Sawicka
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Caryn R Hale
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Christopher Y Park
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jodi E Gresack
- Laboratory of Molecular and Cellular NeuroscienceThe Rockefeller UniversityNew YorkUnited States
| | - Sarah J Van Driesche
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Jennifer C Darnell
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-OncologyThe Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
34
|
McCormack LA, Wylie A, Moultrie R, Furberg RD, Wheeler AC, Treiman K, Bailey DB, Raspa M. Supporting informed clinical trial decisions: Results from a randomized controlled trial evaluating a digital decision support tool for those with intellectual disability. PLoS One 2019; 14:e0223801. [PMID: 31644588 PMCID: PMC6808417 DOI: 10.1371/journal.pone.0223801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/28/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Informed consent requires that individuals understand the nature of the study, risks and benefits of participation. Individuals with intellectual disabilities (ID) have cognitive and adaptive impairments that may affect their ability to provide informed consent. New treatments and clinical trials for fragile X syndrome, the most commonly known inherited cause of ID, necessitate the development of methods to improve the informed consent process. The goal of this study was to compare the efficacy of a digital decision support tool with that of standard practice for informed consent and to examine whether the tool can improve decisional capacity for higher functioning individuals. METHODS Participants (N = 89; mean age = 21.2 years) were allocated to the experimental group (consenting information provided via the digital decision support tool), or the comparison group (information provided via standard practice). Participants were assessed on four aspects of decisional capacity (Understanding, Appreciating, Reasoning, and Expressing a choice). We used regression analyses to test the impact of the tool on each outcome, repeating the analyses on the higher functioning subsample. RESULTS No differences existed in any domain of decisional capacity for the sample in full. However, participants in the higher IQ subsample who used the tool scored better on Understanding after adjustment (β = 0.25, p = 0.04), but not on Appreciating or Reasoning. No differences by experimental group existed in the decision to join the hypothetical trial for the full sample or higher functioning subsample. CONCLUSIONS A decision support tool shows promise for individuals with fragile X syndrome with higher cognitive abilities. Future studies should examine the level of cognitive ability needed for sufficient understanding, whether these findings can be translated to other clinical populations, and the impact of the tool in larger trials and on trial retention.
Collapse
Affiliation(s)
- Lauren A. McCormack
- Public Health Research Division, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Amanda Wylie
- Center for Newborn Screening, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Rebecca Moultrie
- Public Health Research Division, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Robert D. Furberg
- Health Quality & Analytics, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Anne C. Wheeler
- Center for Newborn Screening, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Katherine Treiman
- Public Health Research Division, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Donald B. Bailey
- Center for Newborn Screening, RTI International, Research Triangle Park, North Carolina, United States of America
| | - Melissa Raspa
- Center for Newborn Screening, RTI International, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
35
|
Towards Mechanism-Based Treatments for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9080202. [PMID: 31426300 PMCID: PMC6721292 DOI: 10.3390/brainsci9080202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 11/17/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of intellectual disability, as well as the most common known monogenic cause of autism spectrum disorder (ASD), affecting 1 in 4000-8000 people worldwide [...].
Collapse
|