1
|
Wang J, Li Y, Zhang D, Sun W, Li J. Deficiency of autism susceptibility gene Trio in cerebellar Purkinje cells leads to delayed motor impairments. Front Psychiatry 2025; 15:1396716. [PMID: 40276214 PMCID: PMC12018246 DOI: 10.3389/fpsyt.2024.1396716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/02/2024] [Indexed: 04/26/2025] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by social interaction deficits, restricted interests and repetitive behaviors. The co-occurrence of motor impairments exacerbates the severity and societal impact of ASD, but the underlying mechanism remains to be elucidated. Research on the comorbidities of ASD including motor impairments could benefit in the life quality improvement in patients with ASD. Here we aimed at investigating the motor behaviors in mice with Trio deletion in Purkinje cells (PCs), and further exploring the cellular and molecular mechanisms. The protein level of Calbindin as PCs' marker was determined. Behaviors including spontaneous locomotion activity, rotarod, beam balance and gait were tested in mice with the ages of 12-week and 20-week. Magnetic resonance imaging (MRI) scanning with T2 and DTI sequencing was performed in 12-week old mice. Although Triofl/fl; Pcp2-Cre mice showed significant impairments of spontaneous locomotion activity in both 12-week and 20-week ages, only the 20-week but not 12-week Triofl/fl; Pcp2-Cre mice showed extra mild abnormal motor, fine motor coordination, and gait. The decreased expression of Calbindin existed in both 12-week and 20-week old mice compared with control. Differentially expressed genes analysis from RNA-Seq and Gene Co-expression Network Analysis (GCNA) showed that Syne1 and its co-expressed genes were upregulated in Triofl/fl; Pcp2-Cre mice compared to controls. In addition, abnormal ADC values suggested the long-term chronic damage in the cerebellum. Together, our findings indicate that the motor dysfunction in ASD are affected by Trio deletion in PCs with delayed in onset, accompanied with alterations in MRI, histological, and epigenetic level.
Collapse
Affiliation(s)
- Jinxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yimeng Li
- Chinese Institute for Brain Research, Beijing, China
| | - Dai Zhang
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing, China
| | - Jun Li
- NHC Key Laboratory of Mental Health, National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Peking University Institute of Mental Health, Peking University, Beijing, China
| |
Collapse
|
2
|
Krüger DM, Pena‐Centeno T, Liu S, Park T, Kaurani L, Pradhan R, Huang Y, Risacher SL, Burkhardt S, Schütz A, Wan Y, Shaw LM, Brodsky AS, DeStefano AL, Lin H, Schroeder R, Krunic A, Hempel N, Sananbenesi F, Blusztajn JK, Saykin AJ, Delalle I, Nho K, Fischer A. The plasma miRNAome in ADNI: Signatures to aid the detection of at-risk individuals. Alzheimers Dement 2024; 20:7479-7494. [PMID: 39291752 PMCID: PMC11567822 DOI: 10.1002/alz.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION MicroRNAs are short non-coding RNAs that control proteostasis at the systems level and are emerging as potential prognostic and diagnostic biomarkers for Alzheimer's disease (AD). METHODS We performed small RNA sequencing on plasma samples from 847 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. RESULTS We identified microRNA signatures that correlate with AD diagnoses and help predict the conversion from mild cognitive impairment (MCI) to AD. DISCUSSION Our data demonstrate that plasma microRNA signatures can be used to not only diagnose MCI, but also, critically, predict the conversion from MCI to AD. Moreover, combined with neuropsychological testing, plasma microRNAome evaluation helps predict MCI to AD conversion. These findings are of considerable public interest because they provide a path toward reducing indiscriminate utilization of costly and invasive testing by defining the at-risk segment of the aging population. HIGHLIGHTS We provide the first analysis of the plasma microRNAome for the ADNI study. The levels of several microRNAs can be used as biomarkers for the prediction of conversion from MCI to AD. Adding the evaluation of plasma microRNA levels to neuropsychological testing in a clinical setting increases the accuracy of MCI to AD conversion prediction.
Collapse
Affiliation(s)
- Dennis M. Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Bioinformatics UnitGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Tonatiuh Pena‐Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Bioinformatics UnitGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Shiwei Liu
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Tamina Park
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Yen‐Ning Huang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Shannon L. Risacher
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Anna‐Lena Schütz
- Research Group for Genome Dynamics in Brain DiseasesGerman Center for Neurodegenerative DiseasesGöttingenGermany
| | - Yang Wan
- Perelman School of MedicineDepartment of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Leslie M. Shaw
- Perelman School of MedicineDepartment of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory MedicineRhode Island Hospital, Warren Alpert Medical School at Brown UniversityProvidenceRhode IslandUSA
| | - Anita L. DeStefano
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Honghuang Lin
- Department of MedicineUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Robert Schroeder
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Andre Krunic
- Department of Pathology & Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Nina Hempel
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain DiseasesGerman Center for Neurodegenerative DiseasesGöttingenGermany
| | - Jan Krzysztof Blusztajn
- Department of Pathology & Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ivana Delalle
- Department of Pathology & Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department for Psychiatry and PsychotherapyUniversity Medical Center of GöttingenGeorg‐August UniversityGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- German Center for Cardiovascular Diseases (DZKH) GöttingenGöttingenGermany
| | | |
Collapse
|
3
|
Cho YE, Kim J, Vorn R, Cho H, Baek W, Park H, Yun S, Kim HS, Cashion AK, Gill J, Koo BN, Lee H. Extracellular Vesicle MicroRNAs as Predictive Biomarkers in Postoperative Delirium After Spine Surgery: Preliminary Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae162. [PMID: 38970345 PMCID: PMC11398910 DOI: 10.1093/gerona/glae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 07/08/2024] Open
Abstract
Postoperative delirium (POD) can cause poor patient outcomes in older adults who undergo surgery. In this study, we tested plasma extracellular vesicle (EV) miRNAs obtained before the delirium event to find predictive POD biomarkers after spine surgery. We recruited patients who are more than 70 years old and have undergone spine surgery. Finally, POD patients (n = 31) were included, with no-POD patients matched in age, sex, medical history, and type of surgery (n = 31). Peripheral blood was collected from patients in the operating room after the operation was completed. EVs were isolated from plasma, and the 798 miRNA expression level from EVs was measured using a NanoString platform. Sixty-two patients were included in the study; all were Korean, 67.7% were females, and the median age was 75 years. Preoperative medical history was not statistically different between no-POD and POD patients except for hypertension and the American Society of Anesthesiologists physical status. From the miRNA profiling, we identified 142 significantly differentially expressed miRNAs in POD patients compared with no-POD patients, which are associated with psychological/neurological disorders. The top 10 differentially expressed miRNAs including miR-548ar-5p and miR-627-5p were all upregulated in POD patients and the results were validated using qRT-PCR from the independent sets of samples (n = 96). We demonstrated the potential of plasma EV-miRNAs as predictive biomarkers to identify the risk group of POD after spine surgery. It also provides opportunities for future studies investigating the role of EV-miRNAs in delirium pathology.
Collapse
Affiliation(s)
- Young-Eun Cho
- College of Nursing, The University of Iowa, Iowa City, Iowa, USA
| | - Jeongmin Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rany Vorn
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyeonmi Cho
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Republic of Korea
| | - Wonhee Baek
- College of Nursing, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Hyunki Park
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Republic of Korea
| | - Sijung Yun
- Predictiv Care, Inc, Sunnyvale, California, USA
| | - Hyung-Suk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Ann K Cashion
- College of Nursing, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jessica Gill
- School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Anesthesia Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyangkyu Lee
- Mo-Im Kim Nursing Research Institute, College of Nursing, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Darbinian N, Hampe M, Martirosyan D, Bajwa A, Darbinyan A, Merabova N, Tatevosian G, Goetzl L, Amini S, Selzer ME. Fetal Brain-Derived Exosomal miRNAs from Maternal Blood: Potential Diagnostic Biomarkers for Fetal Alcohol Spectrum Disorders (FASDs). Int J Mol Sci 2024; 25:5826. [PMID: 38892014 PMCID: PMC11172088 DOI: 10.3390/ijms25115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are leading causes of neurodevelopmental disability but cannot be diagnosed early in utero. Because several microRNAs (miRNAs) are implicated in other neurological and neurodevelopmental disorders, the effects of EtOH exposure on the expression of these miRNAs and their target genes and pathways were assessed. In women who drank alcohol (EtOH) during pregnancy and non-drinking controls, matched individually for fetal sex and gestational age, the levels of miRNAs in fetal brain-derived exosomes (FB-Es) isolated from the mothers' serum correlated well with the contents of the corresponding fetal brain tissues obtained after voluntary pregnancy termination. In six EtOH-exposed cases and six matched controls, the levels of fetal brain and maternal serum miRNAs were quantified on the array by qRT-PCR. In FB-Es from 10 EtOH-exposed cases and 10 controls, selected miRNAs were quantified by ddPCR. Protein levels were quantified by ELISA. There were significant EtOH-associated reductions in the expression of several miRNAs, including miR-9 and its downstream neuronal targets BDNF, REST, Synapsin, and Sonic hedgehog. In 20 paired cases, reductions in FB-E miR-9 levels correlated strongly with reductions in fetal eye diameter, a prominent feature of FASDs. Thus, FB-E miR-9 levels might serve as a biomarker to predict FASDs in at-risk fetuses.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Monica Hampe
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Diana Martirosyan
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Ahsun Bajwa
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.H.); (D.M.); (A.B.); (N.M.); (G.T.)
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
5
|
Ferranti AS, Luessen DJ, Niswender CM. Novel pharmacological targets for GABAergic dysfunction in ADHD. Neuropharmacology 2024; 249:109897. [PMID: 38462041 PMCID: PMC11843668 DOI: 10.1016/j.neuropharm.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopment disorder that affects approximately 5% of the population. The disorder is characterized by impulsivity, hyperactivity, and deficits in attention and cognition, although symptoms vary across patients due to the heterogenous and polygenic nature of the disorder. Stimulant medications are the standard of care treatment for ADHD patients, and their effectiveness has led to the dopaminergic hypothesis of ADHD in which deficits in dopaminergic signaling, especially in cortical brain regions, mechanistically underly ADHD pathophysiology. Despite their effectiveness in many individuals, almost one-third of patients do not respond to stimulant treatments and the long-term negative side effects of these medications remain unclear. Emerging clinical evidence is beginning to highlight an important role of dysregulated excitatory/inhibitory (E/I) balance in ADHD. These deficits in E/I balance are related to functional abnormalities in glutamate and Gamma-Aminobutyric Acid (GABA) signaling in the brain, with increasing emphasis placed on GABAergic interneurons driving specific aspects of ADHD pathophysiology. Recent genome-wide association studies (GWAS) have also highlighted how genes associated with GABA function are mutated in human populations with ADHD, resulting in the generation of several new genetic mouse models of ADHD. This review will discuss how GABAergic dysfunction underlies ADHD pathophysiology, and how specific receptors/proteins related to GABAergic interneuron dysfunction may be pharmacologically targeted to treat ADHD in subpopulations with specific comorbidities and symptom domains. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
6
|
Zeidan HM, Nashaat NH, Hemimi M, Hashish AF, Elsaeid A, Abd El-Ghaffar N, Helal SI, Meguid NA. Expression Patterns of miRNAs in Egyptian Children with ADHD: Clinical Study with Correlation Analysis. J Mol Neurosci 2024; 74:46. [PMID: 38652370 PMCID: PMC11039553 DOI: 10.1007/s12031-024-02220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
ADHD has huge knowledge gaps concerning its etiology. MicroRNAs (miRNAs) provide promising diagnostic biomarkers of human pathophysiology and may be a novel therapeutic option. The aim was to investigate the levels of miR-34c-3p, miR-155, miR-138-1, miR-296-5p, and plasma brain-derived neurotrophic factor (BDNF) in a group of children with ADHD compared to neurotypicals and to explore correlations between these measures and some clinical data. The participants were children with ADHD in Group I (N = 41; age: 8.2 ± 2) and neurotypical ones in Group II (N = 40; age: 8.6 ± 2.5). Group I was subjected to clinical examination, the Stanford Binet intelligence scale-5, the preschool language scale, and Conner's parent rating scale-R. Measuring the expression levels of the miRNAs was performed by qRT-PCR for all participants. The BDNF level was measured by ELISA. The lowest scores on the IQ subtest were knowledge and working memory. No discrepancies were noticed between the receptive and expressive language ages. The highest scores on the Conner's scale were those for cognitive problems. Participants with ADHD exhibited higher plasma BDNF levels compared to controls (p = 0.0003). Expression patterns of only miR-34c-3p and miR-138-1 were downregulated with significant statistical differences (p˂0.01). However, expression levels of miR-296-5p showed negative correlation with the total scores of IQ (p = 0.03). MiR-34c-3p, miR-138-1, while BDNF showed good diagnostic potential. The downregulated levels of miR-34c-3p and miR-138-1, together with high BDNF levels, are suggested to be involved in the etiology of ADHD in Egyptian children. Gender differences influenced the expression patterns of miRNAs only in children with ADHD.
Collapse
Affiliation(s)
- Hala M Zeidan
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt.
| | - Neveen Hassan Nashaat
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Maha Hemimi
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Adel F Hashish
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Amal Elsaeid
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Nagwa Abd El-Ghaffar
- Clinical and Chemical Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Suzette I Helal
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| |
Collapse
|
7
|
Wang LJ, Li SC, Chou WJ, Kuo HC, Lee SY, Lin WC. Human transcriptome array analysis and diffusion tensor imaging in attention-deficit/hyperactivity disorder. J Psychiatr Res 2024; 172:229-235. [PMID: 38412785 DOI: 10.1016/j.jpsychires.2024.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/27/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
The mRNA markers identified using microarray assay and diffusion tensor magnetic resonance imaging (DTI) were applied to elucidate the pathophysiology of attention-deficit hyperactivity disorder (ADHD). First, we obtained total RNA from leukocytes from three children with ADHD and three healthy controls for analysis with microarray assays. Subsequently, we applied real-time quantitative polymerase chain reaction (qRT‒PCR) assays to validate the differential expression of 7 genes (COX7B, CYCS, TFAM, UTP14A, ZNF280C, IFT57 and NDUFB5) between 130 ADHD patients and 70 controls, and we built an ADHD prediction model based on the ΔCt values of aforementioned seven genes (AUROC = 0.98). Finally, in a validation group (28 patients with ADHD and 27 healthy controls), mRNA expression of the above seven genes also significantly differentiated ADHD patients from controls (AUROC value = 0.91). The DTI analysis showed increased fractional anisotropy (FA) of the forceps minor, superior corona radiata, posterior corona radiata and anterior corona radiata in ADHD patients. Moreover, the FA of the right superior corona radiata tract was positively correlated with ΔCt levels of the COX7B gene and the IFT57 gene. The results shed a new light on a genetic profile of ADHD that may help in deciphering the white matter microstructural features in disease pathogenesis.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan; Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821004, Taiwan.
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan.
| |
Collapse
|
8
|
Arčan IŠ, Kouter K, Zupanc T, Paska AV. Epigenetics and suicide: investigating altered H3K14ac unveiled differential expression in ADORA2A, B4GALT2 and MMP14. Epigenomics 2024; 16:701-714. [PMID: 38545853 PMCID: PMC11318710 DOI: 10.2217/epi-2023-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Background: Environmental factors make an important contribution to suicide. Histone tails are prone to different modifications, leading to changes of chromatin (de)condensation and consequently gene expression. Materials & methods: Level of H3K14ac was studied with chromatin immunoprecipitation followed by high-throughput DNA sequencing. Genes were further validated with RT-qPCR; using hippocampal tissue. Results: We showed lowered H3K14ac levels in individuals who died by suicide. The genes ADORA2A, B4GALT2 and MMP14 showed differential expression in individuals who died by suicide. Identified genetic and protein interactions among genes show interactions with suicide-related genes. Conclusion: Further investigations of histone modifications in association with DNA methylation and miRNA are needed to expand our knowledge of the genes that could significantly contribute to suicide.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry & Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder. Neural Regen Res 2024; 19:557-562. [PMID: 37721284 PMCID: PMC10581556 DOI: 10.4103/1673-5374.380880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Inappropriate levels of hyperactivity, impulsivity, and inattention characterize attention deficit hyperactivity disorder, a common childhood-onset neuropsychiatric disorder. The cognitive function and learning ability of children with attention deficit hyperactivity disorder are affected, and these symptoms may persist to adulthood if they are not treated. The diagnosis of attention deficit hyperactivity disorder is only based on symptoms and objective tests for attention deficit hyperactivity disorder are missing. Treatments for attention deficit hyperactivity disorder in children include medications, behavior therapy, counseling, and education services which can relieve many of the symptoms of attention deficit hyperactivity disorder but cannot cure it. There is a need for a molecular biomarker to distinguish attention deficit hyperactivity disorder from healthy subjects and other neurological conditions, which would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of attention deficit hyperactivity disorder. The recent studies reviewed had performed microRNA profiling in whole blood, white blood cells, blood plasma, and blood serum of children with attention deficit hyperactivity disorder. A large number of microRNAs were dysregulated when compared to healthy controls and with some overlap between individual studies. From the studies that had included a validation set of patients and controls, potential candidate biomarkers for attention deficit hyperactivity disorder in children could be miR-140-3p, let-7g-5p, -30e-5p, -223-3p, -142-5p, -486-5p, -151a-3p, -151a-5p, and -126-5p in total white blood cells, and miR-4516, -6090, -4763-3p, -4281, -4466, -101-3p, -130a-3p, -138-5p, -195-5p, and -106b-5p in blood serum. Further studies are warranted with children and adults with attention deficit hyperactivity disorder, and consideration should be given to utilizing rat models of attention deficit hyperactivity disorder. Animal studies could be used to confirm microRNA findings in human patients and to test the effects of targeting specific microRNAs on disease progression and behavior.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, USA
- Department of Medicine, University of Nevada-Reno, Reno, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Dypås LB, Duale N, Olsen AK, Bustamante M, Maitre L, Escaramis G, Julvez J, Aguilar-Lacasaña S, Andrusaityte S, Casas M, Vafeiadi M, Grazuleviciene R, Heude B, Lepeule J, Urquiza J, Wright J, Yang TC, Vrijheid M, Gützkow KB. Blood miRNA levels associated with ADHD traits in children across six European birth cohorts. BMC Psychiatry 2023; 23:696. [PMID: 37749515 PMCID: PMC10521440 DOI: 10.1186/s12888-023-05199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.
Collapse
Affiliation(s)
- Lene B Dypås
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Nur Duale
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Geòrgia Escaramis
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jordi Julvez
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Sofia Aguilar-Lacasaña
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Barbara Heude
- Centre of Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, La Tronche, France
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
11
|
Cabana-Domínguez J, Llonga N, Arribas L, Alemany S, Vilar-Ribó L, Demontis D, Fadeuilhe C, Corrales M, Richarte V, Børglum AD, Ramos-Quiroga JA, Soler Artigas M, Ribasés M. Transcriptomic risk scores for attention deficit/hyperactivity disorder. Mol Psychiatry 2023; 28:3493-3502. [PMID: 37537283 PMCID: PMC10618083 DOI: 10.1038/s41380-023-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. We performed a transcriptome-wide association study (TWAS) using the latest genome-wide association study (GWAS) meta-analysis, in 38,691 individuals with ADHD and 186,843 controls, and 14 gene-expression reference panels across multiple brain tissues and whole blood. Based on TWAS results, we selected subsets of genes and constructed transcriptomic risk scores (TRSs) for the disorder in peripheral blood mononuclear cells of individuals with ADHD and controls. We found evidence of association between ADHD and TRSs constructed using expression profiles from multiple brain areas, with individuals with ADHD carrying a higher burden of TRSs than controls. TRSs were uncorrelated with the polygenic risk score (PRS) for ADHD and, in combination with PRS, improved significantly the proportion of variance explained over the PRS-only model. These results support the complementary predictive potential of genetic and transcriptomic profiles in blood and underscore the potential utility of gene expression for risk prediction and deeper insight in molecular mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Ditte Demontis
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anders D Børglum
- Department of Biomedicine/Human Genetics, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Xu W, Hong Q, Zhou Y, Chen X, Li L, Wang M, Chen W, Xie X, Zhuang D, Lai M, Zhou W, Liu H. Circulating plasma and exosome levels of the miR-320 family as a non-invasive biomarker for methamphetamine use disorder. Front Psychiatry 2023; 14:1160341. [PMID: 37181871 PMCID: PMC10167009 DOI: 10.3389/fpsyt.2023.1160341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The neurobiological mechanism underlying methamphetamine (MA) use disorder was still unclear, and no specific biomarker exists for clinical diagnosis of this disorder. Recent studies have demonstrated that microRNAs (miRNAs) are involved in the pathological process of MA addiction. The purpose of this study was to identify novel miRNAs for the diagnosis biomarkers of MA user disorder. First, members of the miR-320 family, including miR-320a-3p, miR-320b, and miR-320c, were screened and analyzed in the circulating plasma and exosomes by microarray and sequencing. Secondly, plasma miR-320 was quantified by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) in eighty-two MA patients and fifty age-gender-matched healthy controls. Meanwhile, we also analyzed exosomal miR-320 expression in thirty-nine MA patients and twenty-one age-matched healthy controls. Furthermore, the diagnostic power was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve. The expression of miR-320 significantly increased in plasma and exosomes of MA patients compared with healthy controls. The AUC of the ROC curves of miR-320 in plasma and exosomes of MA patients were 0.751 and 0.962, respectively. And the sensitivities of miR-320 were 0.900 and 0.846, respectively, whereas the specificities of miR-320 were 0.537 and 0.952, respectively, in plasma and exosomes in MA patients. And the increased plasma miR-320 was positively correlated with cigarette smoking, age of onset, and daily use of MA in MA patients. Finally, cardiovascular disease, synaptic plasticity, and neuroinflammation were predicted to be the target pathways related to miR-320. Taken together, our findings indicated that plasma and exosomal miR-320 might be used as a potential blood-based biomarker for diagnosing MA use disorder.
Collapse
Affiliation(s)
- Wenjin Xu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Qingxiao Hong
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yun Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoyu Chen
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Longhui Li
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Majie Wang
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Weisheng Chen
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Xiaohu Xie
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Dingding Zhuang
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Miaojun Lai
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Wenhua Zhou
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| | - Huifen Liu
- Laboratory of Behavioral Neuroscience, Ningbo Kangning Hospital, Ningbo Institute of Microcirculation and Henbane, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Addiction Research of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Wang P, Zhou Y, Zhao Y, Zhao W, Wang H, Li J, Zhang L, Wu M, Xiao X, Shi H, Ma W, Zhang Y. Prenatal fine particulate matter exposure associated with placental small extracellular vesicle derived microRNA and child neurodevelopmental delays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156747. [PMID: 35716750 DOI: 10.1016/j.scitotenv.2022.156747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Prenatal fine particulate matter (PM2.5) exposure has been linked to adverse neurodevelopment. However, epidemiological evidence remains inconclusive and little information about the effects of various PM2.5 components on child neurodevelopment is currently known. The underlying mechanism was also not elucidated. The study aimed to evaluate the effects of PM2.5 and components exposure on child neurodevelopmental delays and the role of placental small extracellular vesicles (sEVs)-derived miRNAs in the associations. METHODS We included 267 mother-child pairs in this analysis. Prenatal PM2.5 and components (i.e. elements, water-soluble ions, and PAHs) exposure during three trimesters were monitored through personal PM2.5 sampling. Child neurodevelopment at 2, 6, and 12 months old were evaluated by Ages and Stages Questionnaire (ASQ). We isolated sEVs from placental tissue to analyze the change of sEVs-derived miRNAs in response to PM2.5. Associations between the PM2.5-associated miRNAs and child neurodevelopment were evaluated using multivariate linear regression models. RESULTS The PM2.5 exposure levels in the three trimesters range from 2.51 to 185.21 μg/m3. Prenatal PM2.5 and the components of Pb, Al, V and Ti exposure in the second and third trimester were related to decreased ASQ scores communication, problem-solving and personal-social domains in children aged 2 or 6 months. RNA sequencing identified fifteen differentially expressed miRNAs. The miR-101-3p and miR-520d-5p were negatively associated with PM2.5 and Pb component. miR-320a-3p expression was positively associated with PM2.5 and V component. Meanwhile, the miR-320a-3p was associated with decreased ASQ scores, as reflected by ASQ-T (β: -2.154, 95 % CI: -4.313, -0.516) and problem-solving domain (β: -0.605, 95 % CI: -1.111, -0.099) in children aged 6 months. CONCLUSION Prenatal exposure to PM2.5 and its Pb, Al, V & Ti component were associated with infant neurodevelopmental delays. The placenta sEVs derived miRNAs, especially miR-320a-3p, might contribute to an increased risk of neurodevelopmental delays.
Collapse
Affiliation(s)
- Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yingya Zhao
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Wenxuan Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jinhong Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Min Wu
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenjuan Ma
- Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Cabana-Domínguez J, Soler Artigas M, Arribas L, Alemany S, Vilar-Ribó L, Llonga N, Fadeuilhe C, Corrales M, Richarte V, Ramos-Quiroga JA, Ribasés M. Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD). Transl Psychiatry 2022; 12:409. [PMID: 36153331 PMCID: PMC9509350 DOI: 10.1038/s41398-022-02182-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that results from the interaction of both genetic and environmental risk factors. Genome-wide association studies have started to identify multiple genetic risk loci associated with ADHD, however, the exact causal genes and biological mechanisms remain largely unknown. We performed a multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using data from peripheral blood mononuclear cells of 270 ADHD cases and 279 controls. We identified seven ADHD-associated modules of co-expressed genes, some of them enriched in both genetic and epigenetic signatures for ADHD and in biological pathways relevant for psychiatric disorders, such as the regulation of gene expression, epigenetics and immune system. In addition, for some of the modules, we found evidence of potential regulatory mechanisms, including microRNAs and common genetic variants. In conclusion, our results point to promising genes and pathways for ADHD, supporting the use of peripheral blood to assess gene expression signatures in psychiatric disorders. Furthermore, they highlight that the combination of multi-omics signals provides deeper and broader insights into the biological mechanisms underlying ADHD.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Arribas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Christian Fadeuilhe
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vanesa Richarte
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Peedicayil J. The Role of Epigenetics in the Pathogenesis and Potential Treatment of Attention Deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1642-1650. [PMID: 34544344 PMCID: PMC9881064 DOI: 10.2174/1570159x19666210920091036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that dysregulated epigenetic mechanisms of gene expression are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review presents a comprehensive summary of the current state of research on the role of epigenetics in the pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also reviewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hypermethylation. There is evidence that there is increased histone deacetylation in ADHD patients. Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. Some currently used drugs for treating ADHD, in addition to their more well-established mechanisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnormal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India,Address correspondence to this author at the Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India;Tel: 91-0416-2284237; E-mail:
| |
Collapse
|
16
|
Yang C, Kang B, Cao Z, Zhang J, Zhao F, Wang D, Su P, Chen J. Early-Life Pb Exposure Might Exert Synapse-Toxic Effects Via Inhibiting Synapse-Associated Membrane Protein 2 (VAMP2) Mediated by Upregulation of miR-34b. J Alzheimers Dis 2022; 87:619-633. [DOI: 10.3233/jad-215638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early-life Pb exposure can cause behavioral and cognitive problems and induce symptoms of hyperactivity, impulsivity, and inattention in children. Studies showed that blood lead levels were highly correlated with neuropsychiatric disorders, and effects of neurotoxicity might persist and affect the incidence of neurodegenerative diseases, for example Alzheimer’s disease (AD). Objective: To explore possible mechanisms of developmental Pb-induced neuropsychiatric dysfunctions. Methods: Children were divided into low blood lead level (BLL) group (0–50.00μg/L) and high BLL group (> 50.00μg/L) and blood samples were collected. miRNA array was used to testify miRNA expression landscape between two groups. Correlation analysis and real-time PCR were applied to find miRNAs that altered in Pb and neuropsychiatric diseases. Animal models and cell experiments were used to confirm the effect of miRNAs in response to Pb, and siRNA and luciferase experiments were conducted to examine their effect on neural functions. Results: miRNA array data and correlation analysis showed that miR-34b was the most relevant miRNA among Pb neurotoxicity and neuropsychiatric disorders, and synapse-associated membrane protein 2 (VAMP2) was the target gene regulating synapse function. In vivo and in vitro studies showed Pb exposure injured rats’ cognitive abilities and induced upregulation of miR-34b and downregulation of VAMP2, resulting in decreases of hippocampal synaptic vesicles. Blockage of miR-34b mitigated Pb’s effects on VAMP2 in vitro. Conclusion: Early-life Pb exposure might exert synapse-toxic effects via inhibiting VAMP2 mediated by upregulation of miR-34b and shed a light on the underlying relationship between Pb neurotoxicity and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Beipei Kang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jingyuan Chen
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Liu J, Zhang D, Zhang L, Wang Z, Shen J. New Insight on Vitality Differences for the Penaeid Shrimp, Fenneropenaeus chinensis, in Low Salinity Environment Through Transcriptomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.716018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive rainfall changes salinity in shrimp farming ponds in short period and exerts low salinity stress on the outdoor breeding shrimp under global warming. Fenneropenaeus chinensis can have different performance on vitality in low salinity environments. To reveal mechanisms of vitality difference in shrimp living in low saline environments. This study based on the normal and moribund F. chinensis in 10 ppt salinity environment using high-throughput sequencing identifies 1,429 differentially expressed genes (DEGs), 586 of which are upregulated, while 843 of which are downregulated in the normal group (FCN10) as compared to the moribund group (FCM10). Meanwhile, another transcriptomic analysis is conducted on the normal and moribund shrimp from 25 ppt (FCN25 vs. FCM25) salinity environment as the control, in which 1,311 DEGs (upregulated: 327 genes, downregulated: 984 genes) are identified. In this study, intersective pathways, GO (Gene Ontology) categories and DEGs from the two groups of comparative transcriptome are investigated. The two intersective pathways (Metabolism of xenobiotics by cytochrome P450, Pentose, and glucuronate interconversions) significantly enriched by DEGs are related to detoxification. In these two pathways, there is one vitality regulation-related gene (VRRG), the Dhdh (dihydrodiol dehydrogenase), which is upregulated in both the groups of FCN10 and FCN25 as compared to the groups of FCM10 and FCM25, respectively. Similarly, in the 25 top intersective GO categories, four VRRGs are revealed. Three of them are upregulated (Itgbl, kielin/chordin-like protein, Slc2a8, solute carrier family 2, facilitated glucose transporter member 8-like protein and Cyp3a30, cytochrome P450 3A30-like protein); one of them is downregulated (Slc6a9, sodium-dependent nutrient amino acid transporter 1-like protein isoform X2). These GO categories are related to transmembrane transporter activity of substance, enzyme inhibitor activity, monooxygenase activity. RT-qPCR analysis further verifies the VRRGs. The study gives new insight into understanding the vitality differences for F. chinensis, in low salinity environment. The pathways and DEGs in response to low salinity stress in modulating the vitality of F. chinensis that could serve as tools in future genetic studies and molecular breeding.
Collapse
|
18
|
Guo Y, Liu Y, Wang H, Liu P. Long noncoding RNA SRY-box transcription factor 2 overlapping transcript participates in Parkinson's disease by regulating the microRNA-942-5p/nuclear apoptosis-inducing factor 1 axis. Bioengineered 2021; 12:8570-8582. [PMID: 34607512 PMCID: PMC8806952 DOI: 10.1080/21655979.2021.1987126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder. Studies have shown that long noncoding RNA SRY-box transcription factor 2 overlapping transcript (lncRNA SOX2-OT) is highly expressed in PD patients, but its specific functions and mechanisms require further research. To address this gap, this study utilized an in vitro PD cell model induced by 1-methyl-4-phenylpyridinium (MPP+). Cell viability, apoptosis, lactate dehydrogenase (LDH) activity, inflammatory factor secretion, and oxidative stress indicators were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheyltetrazolium bromide assay, LDH assay, flow cytometry, enzyme linked immunosorbent assay (ELISA), and corresponding kits, respectively. Gene and protein expression were measured using quantitative real-time-PCR and western blotting, respectively. The results indicated that microRNA-942-5p (miR-942-5p) was a direct target of lncRNA SOX2-OT and nuclear apoptosis-inducing factor 1 (NAIF1) was a direct target of miR-942-5p. The expression levels of lncRNA SOX2-OT and NAIF1 were increased, and miR-942-5p expression was decreased in SH-SY5Y cells following MPP+ treatment. In addition, MPP+ treatment reduced SH-SY5Y cell viability, increased apoptosis; increased cleaved caspase-3 protein expression and cleaved caspase-3/caspase-3 ratio; enhanced lactate dehydrogenase viability; increased tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and reactive oxygen species, and decreased superoxide dismutase activity in SH-SY5Y cells were inhibited by SOX2-OT-siRNA, and these inhibitions were reversed by miR-942-5p inhibitor. Moreover, the protective role of miR-942-5p mimic in MPP+-induced SH-SY5Y cells was eliminated by the NAIF1 plasmid. Overall, lncRNA SOX2-OT-mediated regulation of oxidative stress, inflammation, and neuronal apoptosis were directly controlled by the miR-942-5p/NAIF1 signal axis in MPP+-induced SH-SY5Y cells.
Collapse
Affiliation(s)
- Yabi Guo
- Rehabilitation Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yanyang Liu
- Rehabilitation Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Hong Wang
- Rehabilitation Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Peijun Liu
- Rehabilitation Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
19
|
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, Byrne LM, Markmiller S, Lau AL, Orellana I, Curtis MA, Faull RLM, Yeo GW, Fowler CD, Reidling JC, Wild EJ, Spitale RC, Thompson LM. Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021; 131:140723. [PMID: 33945510 DOI: 10.1172/jci140723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.
Collapse
Affiliation(s)
| | | | | | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, and
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, and.,Department of Chemistry, University of California, Irvine, California, USA
| | - Leslie M Thompson
- Department of Neurobiology & Behavior.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA.,Department of Psychiatry & Human Behavior, and.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| |
Collapse
|
20
|
Coskun S, Karadag M, Gokcen C, Oztuzcu S. miR-132 and miR-942 Expression Levels in Children with Attention Deficit and Hyperactivity Disorder: A Controlled Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2021; 19:262-268. [PMID: 33888655 PMCID: PMC8077053 DOI: 10.9758/cpn.2021.19.2.262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Although attention deficit hyperactivity disorder (ADHD) is a disease with high genetic transition, our knowledge about the mechanism of the disease is limited. In this study, it was aimed to evaluate the levels of miR-132-3p and miR-942-5p that are associated with the dopamine carrier protein gene (DAT1) and dopamine receptor 5 (DRD5) genes, which have been shown to play a role in the development of ADHD. METHODS According to the Diagnostic and Statistical Manual of Mental Disorders 5th edition, 50 children diagnosed with ADHD and 48 healthy controls were included in the study. Affective Disorders and Schizophrenia Interview Schedule-Now and Lifetime Version-Turkish Adaptation was used to evaluate ADHD and the diagnoses accompanying ADHD. Quantitative Real-Time Polymerase Chain Reaction was used to evaluate miR-132-3p and miR-942-5p expression levels. RESULTS It was observed that miR-132-3p level (p = 0.001) was significantly higher with children with ADHD compared to the control group, and the level of miR-942-5p (p = 0.181) was higher in ADHD but did not reach statistically significant level. CONCLUSION In our study, we found that the increase in the miR-132-3p levels of children with ADHD may be a therapeutic target of the disease.
Collapse
Affiliation(s)
- Seyma Coskun
- Department of Child and Adolescent Psychiatry, Private Clinic, Adana, Turkey
| | - Mehmet Karadag
- Department of Child and Adolescent Psychiatry, Gaziantep University Medical School, Gaziantep, Turkey
| | - Cem Gokcen
- Department of Child and Adolescent Psychiatry, Gaziantep University Medical School, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Gaziantep University Medical School, Gaziantep, Turkey
| |
Collapse
|
21
|
Lassandro G, Ciaccia L, Amoruso A, Palladino V, Palmieri VV, Giordano P. Focus on MicroRNAs as Biomarker in Pediatric Diseases. Curr Pharm Des 2021; 27:826-832. [PMID: 33087027 DOI: 10.2174/1381612826666201021125512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND MiRNAs are a class of small non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. MiRNAs are considered a class of epigenetic biomarkers. These biomarkers can investigate disease at different stages: diagnosis, therapy or clinical follow-up. OBJECTIVE The aim of this paper is to highlight the innovative use of miRNAs in several childhood diseases. METHODS We conducted a literature review to search the usage of miRNAs in pediatric clinical routine or experimental trials. RESULTS We found a possible key role of miRNAs in different pediatric illnesses (metabolic alterations, coagulation defects, cancer). CONCLUSION The modest literature production denotes that further investigation is needed to assess and validate the promising role of miRNAs as non-invasive biomarkers in pediatric disorders.
Collapse
Affiliation(s)
- Giuseppe Lassandro
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Loredana Ciaccia
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Amoruso
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Palladino
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Viviana V Palmieri
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Giordano
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
22
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
23
|
Mortimer N, Sánchez-Mora C, Rovira P, Vilar-Ribó L, Richarte V, Corrales M, Fadeuilhe C, Rivero O, Lesch KP, Casas M, Ramos-Quiroga JA, Artigas MS, Ribasés M. Transcriptome profiling in adult attention-deficit hyperactivity disorder. Eur Neuropsychopharmacol 2020; 41:160-166. [PMID: 33221139 DOI: 10.1016/j.euroneuro.2020.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 01/27/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with an estimated heritability of around 70%. Although the largest genome-wide association study (GWAS) meta-analysis on ADHD identified independent loci conferring risk to the disorder, the molecular mechanisms underlying the genetic basis of the disorder remain to be elucidated. To explore ADHD biology, we ran a two-step transcriptome profiling in peripheral blood mononuclear cells (PBMCs) of 143 ADHD subjects and 169 healthy controls. Through this exploratory study we found eight differentially expressed genes in ADHD. These results highlight promising candidate genes and gene pathways for ADHD and support the use of peripheral tissues to assess gene expression signatures for ADHD.
Collapse
Affiliation(s)
- Niall Mortimer
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Rovira
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montse Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Fadeuilhe
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Russia; Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Netherlands
| | - Miguel Casas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona 08035, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Genetics, Microbiology & Statistics, University of Barcelona, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
Martino D, Johnson I, Leckman JF. What Does Immunology Have to Do With Normal Brain Development and the Pathophysiology Underlying Tourette Syndrome and Related Neuropsychiatric Disorders? Front Neurol 2020; 11:567407. [PMID: 33041996 PMCID: PMC7525089 DOI: 10.3389/fneur.2020.567407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The goal of this article is to review the past decade's literature and provide a critical commentary on the involvement of immunological mechanisms in normal brain development, as well as its role in the pathophysiology of Tourette syndrome, other Chronic tic disorders (CTD), and related neuropsychiatric disorders including Obsessive-compulsive disorder (OCD) and Attention deficit hyperactivity disorder (ADHD). Methods: We conducted a literature search using the Medline/PubMed and EMBASE electronic databases to locate relevant articles and abstracts published between 2009 and 2020, using a comprehensive list of search terms related to immune mechanisms and the diseases of interest, including both clinical and animal model studies. Results: The cellular and molecular processes that constitute our "immune system" are crucial to normal brain development and the formation and maintenance of neural circuits. It is also increasingly evident that innate and adaptive systemic immune pathways, as well as neuroinflammatory mechanisms, play an important role in the pathobiology of at least a subset of individuals with Tourette syndrome and related neuropsychiatric disorders In the conceptual framework of the holobiont theory, emerging evidence points also to the importance of the "microbiota-gut-brain axis" in the pathobiology of these neurodevelopmental disorders. Conclusions: Neural development is an enormously complex and dynamic process. Immunological pathways are implicated in several early neurodevelopmental processes including the formation and refinement of neural circuits. Hyper-reactivity of systemic immune pathways and neuroinflammation may contribute to the natural fluctuations of the core behavioral features of CTD, OCD, and ADHD. There is still limited knowledge of the efficacy of direct and indirect (i.e., through environmental modifications) immune-modulatory interventions in the treatment of these disorders. Future research also needs to focus on the key molecular pathways through which dysbiosis of different tissue microbiota influence neuroimmune interactions in these disorders, and how microbiota modification could modify their natural history. It is also possible that valid biomarkers will emerge that will guide a more personalized approach to the treatment of these disorders.
Collapse
Affiliation(s)
- Davide Martino
- Department of Clinical Neurosciences & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Isaac Johnson
- Child Study Center, Yale University, New Haven, CT, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - James F. Leckman
- Child Study Center, Yale University, New Haven, CT, United States
- Departments of Psychiatry, Pediatrics and Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|