1
|
De Smedt J, Arauzo PJ, Ronsse F. Optimisation of activated carbon from fruit stones and shells derived via molten salt activation for dye removal. BIORESOURCE TECHNOLOGY 2025; 419:132040. [PMID: 39765276 DOI: 10.1016/j.biortech.2025.132040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Recent advancements in activated carbon production involve molten salt activation using a eutectic mixture of ZnCl2-NaCl-KCl. This study explores the production of activated carbon from fruit waste, specifically walnut shells, using a 60:20:20 mol % eutectic mixture. Optimal conditions were identified through response surface methodology, with 400 °C and a salt-to-biomass ratio of 10 g/g, yielding a surface area of 276 m2/g. These conditions were applied to cherry, olive, and plum stones, with plum stones achieving the highest surface area of 351 m2/g. Characterization was performed through elemental and proximate analysis, gas adsorption (N2, CO2), and chemical adsorption of iodine and dyes. Despite some substandard qualities, the study highlights a unique mesoporous pore size distribution, with all samples exhibiting a distinct peak around 22 nm, a characteristic feature of the eutectic salt mixture used.
Collapse
Affiliation(s)
- Jonas De Smedt
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Pablo J Arauzo
- Department of Conversion Technologies of Biobased Resources, Institute of Agricultural Engineering, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart, Germany
| | - Frederik Ronsse
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
2
|
Samghouli N, Bencheikh I, Azoulay K, Jansson S, El Hajjaji S. Mechanistic and reactional activation study of carbons destined for emerging pharmaceutical pollutant adsorption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:259. [PMID: 39928232 PMCID: PMC11811452 DOI: 10.1007/s10661-025-13685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
In this review, several factors have been collected from previous studies on emerging pharmaceutical pollutant adsorption to explain and describe the mechanisms and determine the reactions involved: X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), and the Boehm titration are the most used characterization techniques to determine activated carbons' surface functional groups. Some studies have confirmed that the specific surface area and the pore structure are not more important than the functional groups present in the adsorbent surface to explain the amount of adsorption obtained and to describe correctly the interaction between the adsorbent-adsorbate. After the analysis of several studies, we concluded that to have good adsorption, it is necessary to choose the right treatment with the right activating agent to obtain the appropriate functions that will enhance the adsorption process. In addition, the functions that can react with the pharmaceutical pollutants are the oxygenated functions such as hydroxyl function, carboxylic function, and carbonyl function.
Collapse
Affiliation(s)
- Nora Samghouli
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Imane Bencheikh
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Karima Azoulay
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| | - Stina Jansson
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Souad El Hajjaji
- Laboratory of Spectroscopy, Molecular, Modeling, Materials, Nanomaterials, Water and Environment, (LS3MNWE), Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av IbnBattouta, B.P. 1014, 10000, Rabat, Morocco
| |
Collapse
|
3
|
Ndagijimana P, Rong H, Duan L, Li S, Nkinahamira F, Hakizimana JC, Kumar A, Aborisade MA, Ndokoye P, Cui B, Guo D, Naidu R. Synthesis and evaluation of a novel cross-linked biochar/ferric chloride hybrid material for integrated coagulation and adsorption of turbidity and humic acid from synthetic wastewater: Implications for sludge valorisation. ENVIRONMENTAL RESEARCH 2024; 255:119134. [PMID: 38751002 DOI: 10.1016/j.envres.2024.119134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The deep removal of organic pollutants is challenging for coagulation technology in drinking water and wastewater treatment plants to satisfy the rising water standards. Iron (III) chloride (FeCl3) is a popular inorganic coagulant; although it has good performance in removing the turbidity (TB) in water at an alkaline medium, it cannot remove dissolved pollutants and natural organic matter such as humic acid water solution. Additionally, its hygroscopic nature complicates determining the optimal dosage for effective coagulation. Biochar (BC), a popular adsorbent with abundant functional groups, porous structure, and relatively high surface area, can adsorb adsorbates from water matrices. Therefore, combining BC with FeCl3 presents a potential solution to address the challenges associated with iron chloride. Consequently, this study focused on preparing and characterizing a novel biochar/ferric chloride-based coagulant (BC-FeCl3) for efficient removal of turbidity (TB) and natural organic matter, specifically humic acid (HA), from synthetic wastewater. The potential solution for the disposal of produced sludge was achieved by its recovering and recycling, then used in adsorption of HA from aqueous solution. The novel coagulant presented high TB and HA removal within 10 min of settling period at pH solution of 7.5. Furthermore, the recovered sludge presented a good performance in the adsorption of HA from aqueous solution. Adsorption isotherm and kinetics studies revealed that the Pseudo-second-order model best described kinetic adsorption, while the Freundlich model dominated the adsorption isotherm.
Collapse
Affiliation(s)
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| | - Shitian Li
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | | | | | - Akash Kumar
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | | | - Pancras Ndokoye
- University of Technology and Arts of Byumba (UTAB), Faculty of Agriculture, Environmental Management and Renewable Energy, Department of Environmental Management and Renewable Energy, Post.Box:25, Byumba, Gicumbi District Northern province, Rwanda
| | - Baihui Cui
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Dabin Guo
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
Kamińska A, Sreńscek-Nazzal J, Serafin J, Miądlicki P, Kiełbasa K, Wróblewska A. Biomass-based activated carbons produced by chemical activation with H 3PO 4 as catalysts for the transformation of α-pinene to high-added chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40063-40082. [PMID: 37329374 DOI: 10.1007/s11356-023-28232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
In the era of ecology and careful care for the environment, it becomes important to use renewable raw materials of plant origin, which are often more easily available and cheaper. One of the important and rapidly developing directions of research are works related to the use of waste plant biomass; an example of this trend is the production of activated carbons from food industry waste. One of the examples of the application of derived from biomass activated carbons can be using them as catalysts for the isomerization of terpene compounds. Carbons based on waste biomass are characterized by the minimal amount of waste formation during their manufacture, and their use in the isomerization reaction allows to obtain high conversion of organic raw material and high selectivities of transformation to the desired products, making these carbons environmentally friendly substitutes for the catalysts used usually in this process. In this work, obtained carbonaceous catalysts were tested in the process of isomerization of α-pinene to high value chemicals (mainly camphene and limonene). Under the most favorable conditions (activated carbon from sunflower husks content in reaction mixture 5 wt%, temperature 180 °C, and reaction time 100 min), α-pinene was completely converted (conversion 100 mol%) with high selectivity towards camphene (54 mol%). To prepare activated carbons, biomass precursors (orange peels, sunflower husks, spent coffee grounds) were activated with 85% H3PO4 through the chemical activation. The obtained materials were characterized by such methods as sorption N2 at - 196 °C, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and X-ray fluorescence (XRF) to determine the relationship between their textural-chemical properties and catalysts activity in isomerization process. The synthesized materials were characterized by a specific surface area in the range of 930-1764 m2, total pore volume in the range of 0.551-1.02 cm3/g, and total acid-site concentrations in the range of 1.47-2.33 mmol/g. These results showed that textural parameters of the obtained activated carbons have the important role in the isomerization of α-pinene.
Collapse
Affiliation(s)
- Adrianna Kamińska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Joanna Sreńscek-Nazzal
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Jarosław Serafin
- Department of Inorganic and Organic Chemistry, University of Barcelona, Martí I Franquès, 1-11, 08028, Barcelona, Spain.
| | - Piotr Miądlicki
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Karolina Kiełbasa
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| |
Collapse
|
5
|
Xu Y, Fan Z, Li X, Yang S, Wang J, Zheng A, Shu R. Cooperative production of monophenolic chemicals and carbon adsorption materials from cascade pyrolysis of acid hydrolysis lignin. BIORESOURCE TECHNOLOGY 2024; 399:130557. [PMID: 38460561 DOI: 10.1016/j.biortech.2024.130557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
A novel cascade pyrolysis upgrading process for acid hydrolysis lignin (AHL), consisting of pyrolysis, catalytic upgrading of pyrolysis vapors, and pyrolysis char, was developed to improve the yield of value-added products (monophenolic chemicals and carbon materials). Pyrolysis of AHL at 450 °C and subsequent catalytic upgrading of pyrolysis vapors over Ni/H-ZSM-5 boosted the concentration of monophenolic chemicals in pyrolysis liquids by 58%. The carbon material prepared from pyrolysis char using KOH as activating agent exhibited a large specific surface area of 2902.5 m2/g and a large total pore volume of 1.45 cm3/g, thus affording good adsorption capacity for methylene blue (824.87 mg/g) and iodine (2333.17 mg/g). Moreover, the cascade pyrolysis upgrading of AHL achieved a yield of 68.52% desired products, which was much higher than the reported results (single production of monophenols and pyrolysis char). In summary, this work provides a potential reference for efficient utilization of lignin in large-scale applications.
Collapse
Affiliation(s)
- Ying Xu
- Jimei University, College of Mechanical Equipment and Mechanical Engineering, Fujian Province Key Laboratory of Energy Clean Utilization and Development, Fujian Province Clean Combustion and Energy Utilization Research Center, Xiamen 316021, China; College of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114000, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiqiang Fan
- College of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114000, China
| | - Xianchun Li
- College of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114000, China
| | - Shaoqi Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jin Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Anqing Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Riyang Shu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Sert S, Gultekin ŞS, Gültekin B, Duran Kaya D, Körlü A. A Facile Approach to Produce Activated Carbon from Waste Textiles via Self-Purging Microwave Pyrolysis and FeCl 3 Activation for Electromagnetic Shielding Applications. Polymers (Basel) 2024; 16:915. [PMID: 38611173 PMCID: PMC11013673 DOI: 10.3390/polym16070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
This study aims to convert composite textile structures composed of nonwoven and woven fabrics produced from cotton-jute wastes into activated carbon textile structures and investigate the possibilities of using them for electromagnetic shielding applications. To this end, the novel contribution of this study is that it shows that directly carbonized nonwoven textile via self-purging microwave pyrolysis can provide Electromagnetic Interference (EMI) shielding without any processing, including cleaning. Textile carbonization is generally achieved with conventional heating methods, using inert gas and long processing times. In the present study, nonwoven fabric from cotton-jute waste was converted into an activated carbon textile structure in a shorter time via microwaves without inert gas. Due to its polar structure, FeCl3 has been used as a microwave absorbent, providing homogeneous heating in the microwave and acting as an activating agent to serve dual purposes in the carbonization process. The maximum surface area (789.9 m2/g) was obtained for 5% FeCl3. The carbonized composite textile structure has a maximum of 39.4 dB at 1 GHz of EMI shielding effectiveness for 10% FeCl3, which corresponds to an excellent grade for general use and a moderate grade for professional use, exceeding the acceptable range for industrial and commercial applications of 20 dB, according to FTTS-FA-003.
Collapse
Affiliation(s)
- Sema Sert
- Graduate School of Natural and Applied Sciences, Ege University, Bornova 35040, Türkiye;
| | - Şirin Siyahjani Gultekin
- Department of Chemical Engineering, Canakkale Onsekiz Mart University, Canakkale 17020, Türkiye;
| | - Burak Gültekin
- Solar Energy Institute, Ege University, Bornova 35100, Türkiye;
| | - Deniz Duran Kaya
- Textile Engineering Department, Engineering Faculty, Ege University, Bornova 35100, Türkiye;
| | - Ayşegül Körlü
- Textile Engineering Department, Engineering Faculty, Ege University, Bornova 35100, Türkiye;
| |
Collapse
|
7
|
Lin J, Xu Z, Zhang Q, Cao Y, Mašek O, Lei H, Tsang DCW. Enhanced adsorption of aromatic VOCs on hydrophobic porous biochar produced via microwave rapid pyrolysis. BIORESOURCE TECHNOLOGY 2024; 393:130085. [PMID: 37993065 DOI: 10.1016/j.biortech.2023.130085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
To customize biochar suitable for efficient adsorption of benzene derivatives, this study presents programmed microwave pyrolysis to produce hydrophobic porous biochar with low-dose ferric chloride. Designated control of the ramping rates in the carbonization stage and the temperatures in the activation stage were conducive to enlarging the specific surface area. Iron species, including amorphous iron minerals, could create small-scale hotspots during microwave pyrolysis to promote microporous structure development. Compared with conventional pyrolysis, programmed microwave pyrolysis could increase the specific surface area from 288.6 m2 g-1 to 455.9 m2 g-1 with a short heating time (15 min vs. 2 h) under 650 °C. Engineered biochar exhibited higher adsorption capacity for benzene and toluene (136.6 and 94.6 mg g-1), and lower adsorption capacity for water vapour (6.2 mg g-1). These findings provide an innovative design of engineered biochar for the adsorption of volatile organic compounds in the environment.
Collapse
Affiliation(s)
- Junhao Lin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354-1671, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Kwiatkowski M, Belver C, Bedia J. Effect of synthesis conditions on the porous texture of activated carbons obtained from Tara Rubber by FeCl 3 activation. Sci Rep 2024; 14:2266. [PMID: 38280927 PMCID: PMC10821929 DOI: 10.1038/s41598-024-52112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
This paper presents the results of an unique analysis of the influence of the mass ratio of activator FeCl3 to precursor and the temperature of the activation process on the formation of the porous structure of activated carbons obtained from Tara Rubber by FeCl3 activation. The study used the new numerical clustering based adsorption analysis method and the quenched solid density functional theory, taking into account, among other things, the heterogeneity of the analysed surface which is a new approach rarely used in the analysis of the porous structure of adsorbents. On the basis of the calculation results, it was concluded that the activated carbon with the most developed porous texture was obtained at a mass ratio (FeCl3:Tara Rubber) of 2, at an activation process temperature of 800 °C. This activated carbon is also characterised by the lowest degree of surface heterogeneity and at the same time, however, the widest range of micropores compared to activated carbons obtained at other mass ratios. The analyses carried out further demonstrated the valuable and complementary information obtained from the structure analysis methods and their high utility in practical applications, especially in the development of new industrial technologies for the production of adsorbents and the selection of optimal conditions for their production.
Collapse
Affiliation(s)
- Mirosław Kwiatkowski
- Department of Fuel Technology, Faculty of Energy and Fuels, AGH University of Krakow, al. Adama Mickiewicza, 30, 30-059, Krakow, Poland.
| | - Carolina Belver
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| | - Jorge Bedia
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
9
|
Thakur A, Kumar A. Unraveling the multifaceted mechanisms and untapped potential of activated carbon in remediation of emerging pollutants: A comprehensive review and critical appraisal of advanced techniques. CHEMOSPHERE 2024; 346:140608. [PMID: 37925026 DOI: 10.1016/j.chemosphere.2023.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
The rapid global expansion of industrialization has resulted in the discharge of a diverse range of hazardous contaminants into the ecosystem, leading to extensive environmental contamination and posing a pressing ecological concern. In this context, activated carbon (AC) has emerged as a highly promising adsorbent, offering significant advantages over conventional forms. For instance, AC has demonstrated remarkable adsorption capabilities, as evidenced by the successful removal of atrazine and ibuprofen using KOH and KOH-CO2-activated char, achieving impressive adsorption rates of 90% and 95%, respectively, at an initial dosage of 10 mg L-1. Moreover, AC can effectively adsorb aromatic compounds through π-π stacking interactions. The aromatic rings in organic molecules can align and interact with the carbon atoms in AC's structure, leading to effective adsorption. In this review, by employing a systematic analysis of recent research findings (majorly from 2015 to 2023), an in-depth exploration of AC's evolution and its wide-ranging applications in adsorbing and remediating emerging pollutants, including dyes, organic contaminants, and hazardous gases and mitigating the adverse impacts of such emerging pollutants on ecosystems have been discussed. It serves as a valuable resource for researchers, professionals, and policymakers involved in environmental remediation and pollution control, facilitating the development of sustainable and effective strategies for mitigating the global impact of emerging pollutants.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department , Government of Bihar, 803108, India.
| |
Collapse
|
10
|
Chouli F, Ezzat AO, Sabantina L, Benyoucef A, Zehhaf A. Optimization Conditions of Malachite Green Adsorption onto Almond Shell Carbon Waste Using Process Design. Molecules 2023; 29:54. [PMID: 38202637 PMCID: PMC10780247 DOI: 10.3390/molecules29010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Almond shell-based biocarbon is a cheap adsorbent for the removal of malachite green, which has been investigated in this work. FT-IR, DRX, and BET were used to characterize almond shell-based biocarbon. The nitrogen adsorption-desorption isotherms analysis results showed a surface area of 120.21 m2/g and a type H4 adsorption isotherm. The parameters of initial dye concentration (5-600 mg.L-1), adsorbent mass (0.1-0.6 mg), and temperature (298-373 K) of adsorption were investigated. The experiments showed that the almond shell could be used in a wide concentration and temperature range. The adsorption study was fitted to the Langmuir isotherm and the pseudo-second-order kinetic model. The results of the FT-IR analysis demonstrated strong agreement with the pseudo-second-order chemisorption process description. The maximum adsorption capacity was calculated from the Langmuir isotherm and evaluated to be 166.66 mg.g-1. The positive ∆H (12.19 J.mol-1) indicates that the adsorption process is endothermic. Almond shell was found to be a stable adsorbent. Three different statistical design sets of experiments were taken out to determine the best conditions for the batch adsorption process. The optimal conditions for MG uptake were found to be adsorbent mass (m = 0.1 g), initial dye concentration (C0 = 600 mg.L-1), and temperature (T = 25 °C). The analysis using the D-optimal design showed that the model obtained was important and significant, with an R2 of 0.998.
Collapse
Affiliation(s)
- Faiza Chouli
- LMAE Laboratory, Department of Process Engineering, Faculty of Science and Technologies, Mascara University, Mascara 29000, Algeria;
| | - Abdelrahman Osama Ezzat
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Lilia Sabantina
- Department of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW, 12459 Berlin, Germany
- Department of Textile and Paper Engineering, Polytechnic University of Valencia, E-03801 Alcoy, Spain
| | - Abdelghani Benyoucef
- LSTE Laboratory, Department of Process Engineering, Faculty of Science and Technologies, Mascara University, Mascara 29000, Algeria
| | - Abdelhafid Zehhaf
- Laboratory of Process Engineering and Chemistry Solution, Department of Process Engineering, Faculty of Science and Technologies, Mascara University, Mascara 29000, Algeria;
| |
Collapse
|
11
|
Visser ED, Seroka NS, Khotseng L. Catalytic Properties of Biochar as Support Material Potential for Direct Methanol Fuel Cell: A Review. ACS OMEGA 2023; 8:40972-40981. [PMID: 37969983 PMCID: PMC10634179 DOI: 10.1021/acsomega.3c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/15/2023] [Indexed: 11/17/2023]
Abstract
With the evolution and emergence of compounding environmental problems and issues, renewable energy promises to be a sustainable future technology. One technology considered is the fuel cell, which thrives on the primary function of electrocatalytic activities. Thus this review article envisages and presents a comprehensive summary of the applications of activated carbonaceous material as supports for electrocatalysts in fuel cells. The different techniques utilized to produce these carbon materials are discussed in detail. The overview architecture and the principle of the operation of fuel cells are also addressed. Additionally, electrocatalysts and the importance of support materials, their characteristics, and the role they play in the performance of the electrocatalyst will be reviewed. Unfortunately, the carbon-support-based electrocatalyst suffers long-term instability due to corrosion. Previously, carbon black has been used as a carbon support in various fuel cells. In recent years, there has been progress in the incorporation of nanostructured carbon supports in electrocatalysts in various fuel cells; however, there is still a great deal of distance to cover for nanostructured carbon-supported electrocatalysts in fuel cells to realize full commercialization and large-scale industrial purposes due to shortcomings in electrocatalysts, which are low-cost and highly efficient. This review therefore discusses the progress of incorporation of biochar extracted from sugar cane bagasse as carbon support in electrocatalysts for direct methanol fuel cells with the intention to provide insight into the quest of producing highly efficient and low cost fuel cells.
Collapse
Affiliation(s)
- Evan D. Visser
- Department
of Chemistry, University of the Western
Cape, Robert Sobukwe Rd, Private Bag X17, Bellville 7535, South Africa
| | - Ntalane S. Seroka
- Department
of Chemistry, University of the Western
Cape, Robert Sobukwe Rd, Private Bag X17, Bellville 7535, South Africa
| | - Lindiwe Khotseng
- Department
of Chemistry, University of the Western
Cape, Robert Sobukwe Rd, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
12
|
Mamun A, Kiari M, Sabantina L. A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications. MEMBRANES 2023; 13:830. [PMID: 37888002 PMCID: PMC10608773 DOI: 10.3390/membranes13100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Mohamed Kiari
- Department of Physical Chemistry, Institute of Materials, University of Alicante, 03080 Alicante, Spain
| | - Lilia Sabantina
- Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW Berlin, Hochschule für Technik und Wirtschaft Berlin, 12459 Berlin, Germany
| |
Collapse
|
13
|
Hapiz A, Jawad AH, Wilson LD, ALOthman ZA, Abdulhameed AS, Algburi S. Optimization and mechanistic approach for removal of crystal violet and methylene blue dyes via activated carbon from pyrolyzed-ZnCl 2 bamboo waste. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:579-593. [PMID: 37740456 DOI: 10.1080/15226514.2023.2256412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
In this study, bamboo waste (BW) was subjected to pyrolysis-assisted ZnCl2 activation to produce mesoporous activated carbon (BW-AC), which was then evaluated for its ability to remove cationic dyes, specifically methylene blue (MB) and crystal violet (CV), from aqueous environments. The properties of BW-AC were characterized using various techniques, including potentiometric-based point of zero charge (pHpzc), scanning electron microscopy with energy dispersive X-rays (SEM-EDX), X-ray diffraction (XRD), gas adsorption with Brunauer-Emmett-Teller (BET) analysis, infrared (IR) spectroscopy. To optimize the adsorption characteristics (BW-AC dosage, pH, and contact time) of PBW, a Box-Behnken design (BBD) was employed. The BW-AC dose of 0.05 g, solution pH of 10, and time of 8 min are identified as optimal operational conditions for achieving maximum CV (89.8%) and MB (96.3%) adsorption according to the BBD model. The dye removal kinetics for CV and MB are described by the pseudo-second-order model. The dye adsorption isotherms revealed that adsorption of CV and MB onto BW-AC follow the Freundlich model. The maximum dye adsorption capacities (qmax) of BW-AC for CV (530 mg/g) and MB (520 mg/g) are favorable, along with the thermodynamics of the adsorption process, which is characterized as endothermic and spontaneous. The adsorption mechanism of CV and MB dyes by BW-AC was attributed to multiple contributions: hydrogen bonding, electrostatic forces, π-π attraction, and pore filling. The findings of this study highlight the potential of BW-AC as an effective adsorbent in wastewater treatment applications, contributing to the overall goal of mitigating the environmental impact of cationic dyes and ensuring the quality of water resources.
Collapse
Affiliation(s)
- Ahmad Hapiz
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
14
|
Nguyen DV, Nguyen HM, Bui QLN, Do TVT, Lam HH, Tran-Thuy TM, Nguyen LQ. Magnetic Activated Carbon from ZnCl 2 and FeCl 3 Coactivation of Lotus Seedpod: One-Pot Preparation, Characterization, and Catalytic Activity towards Robust Degradation of Acid Orange 10. Bioinorg Chem Appl 2023; 2023:3848456. [PMID: 37324575 PMCID: PMC10264712 DOI: 10.1155/2023/3848456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Lotus seedpods (LSPs) are an abundant and underutilized agricultural residue discarded from lotus seed production. In this study, ZnCl2 and FeCl3 coactivation of LSP for one-pot preparation of magnetic activated carbon (MAC) was explored for the first time. X-ray diffraction (XRD) results showed that Fe3O4, Fe0, and ZnO crystals were formed in the LSP-derived carbon matrix. Notably, transmission electron microscopy (TEM) images showed that the shapes of these components consisted of not only nanoparticles but also nanowires. Fe and Zn contents in MAC determined by atomic absorption spectroscopy (AAS) were 6.89 and 3.94 wt%, respectively. Moreover, SBET and Vtotal of MAC prepared by coactivation with ZnCl2 and FeCl3 were 1080 m2/g and 0.51 cm3/g, which were much higher than those prepared by single activation with FeCl3 (274 m2/g and 0.14 cm3/g) or ZnCl2 (369 m2/g and 0.21 cm3/g). MAC was subsequently applied as an oxidation catalyst for Fenton-like degradation of acid orange 10 (AO10). As a result, 0.20 g/L MAC could partially remove AO10 (100 ppm) with an adsorption capacity of 78.4 mg/g at pH 3.0. When 350 ppm H2O2 was further added, AO10 was decolorized rapidly, nearly complete within 30 min, and 66% of the COD was removed in 120 min. The potent catalytic performance of MAC might come from the synergistic effect of Fe0 and Fe3O4 nanocrystals in the porous carbon support. MAC also demonstrated effective stability and reusability after five consecutive cycles, when total AO10 removal at 20 min of H2O2 addition slightly decreased from 93.9 ± 0.9% to 86.3 ± 0.8% and minimal iron leaching of 1.14 to 1.19 mg/L was detected. Interestingly, the MAC catalyst with a saturation magnetization of 3.6 emu/g was easily separated from the treated mixture for the next cycle. Overall, these findings demonstrate that magnetic activated carbon prepared from ZnCl2 and FeCl3 coactivation of lotus seedpod waste can be a low-cost catalyst for rapid degradation of acid orange 10.
Collapse
Affiliation(s)
- Dung Van Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hung Minh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Quang Le Nam Bui
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Thao Vy Thanh Do
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Hung Hoa Lam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tuyet-Mai Tran-Thuy
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Long Quang Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Catalytic Hydrothermal Carbonization of Olive Wood Charcoal for Methylene Blue Adsorption from Wastewater: Optimization, Isotherm, Kinetic and Thermodynamic Studies. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Stracke Pfingsten Franco D, Georgin Vizualization J, Gindri Ramos C, S. Netto M, Lobo B, Jimenez G, Lima EC, Sher F. Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Synthesis of Activated Porous Carbon from Red Dragon Fruit Peel Waste for Highly Active Catalytic Reduction in Toxic Organic Dyes. Catalysts 2023. [DOI: 10.3390/catal13020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
In this study, an alternative precursor for production of biomass-derived activated carbon was introduced using dragon fruit (Hylocereus costaricensis) peels. Chemical activators such as FeCl3, MgCl2, ZnCl2 were used in the thermal carbonization process to convert carbon into porous carbon (PC). However, heteroatom-doped PC catalysts including N-, B-, and P-doped carbon catalysts in the field of dye removal is highly desirable. Several approaches (XRD, FE-SEM/TEM, XPS, FT-IR, EDS, and elemental mapping) were employed to examine the surface morphology, surface properties, and elemental composition of the PC catalyst. The catalytic activity of metal-free PC catalyst was demonstrated for methylene blue (MB), crystal violet (CV), and Nile blue (NB) in a mild environment The corresponding rate constant (kapp) values were estimated as 0.2473, 0.3248, and 0.3056 min−1, respectively, for MB, CV, and NB, which were significantly greater than those of numerous reports. It exhibited the best catalytic activity and recyclability. Moreover, the approach proposed here could create new opportunities for the remediation of organic dyes in lakes and industrial wastewater.
Collapse
|
18
|
Ouachtak H, El Guerdaoui A, El Haouti R, Haounati R, Ighnih H, Toubi Y, Alakhras F, Rehman R, Hafid N, Addi AA, Taha ML. Combined molecular dynamics simulations and experimental studies of the removal of cationic dyes on the eco-friendly adsorbent of activated carbon decorated montmorillonite Mt@AC. RSC Adv 2023; 13:5027-5044. [PMID: 36762089 PMCID: PMC9907573 DOI: 10.1039/d2ra08059a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
In recent years, the combination of experimental and theoretical study to explain adsorbate/adsorbent interactions has attracted the attention of researchers. In this context, this work aims to study the adsorption of two cationic dyes, namely methylene blue (MB) and crystal violet (CV), on a green adsorbent Montmorillonite@activated carbon (Mt@AC) composite and to explain the adsorption behavior of each dye by the molecular dynamics (MD) simulation method. The eco-friendly nanocomposite Mt@AC is synthesized and characterized by the analysis methods: XRD, FTIR, BET, TGA/DTA, SEM-EDS, EDS-mapping and zeta potential. The experimental results of adsorption equilibrium show that the adsorption of the two dyes is well suited to the Langmuir adsorption model. The maximum adsorption capacity of the two dyes reaches 801.7 mg g-1 for methylene blue and 1110.8 mg g-1 for crystal violet. The experimental kinetics data fit well with a pseudo-first order kinetic model for the two dyes with coefficient of determination R 2 close to unity, non-linear chi-square χ 2 close to zero and lower Root Mean Square Error RMSE (R 2 → 1 and χ 2 → 0, RMSE lower). Molecular dynamic simulations are run to gain insights on the adsorption process. According to the RDF analysis and interaction energy calculations, the obtained results reveal a better affinity of the CV molecule with both the AC sheet and montmorillonite framework as compared with MB. This finding suggests that CV is adsorbed to a larger extent onto the nanocomposite material which is in good agreement with the adsorption isothermal experiment observations.
Collapse
Affiliation(s)
- Hassan Ouachtak
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco .,Faculty of Applied Science, Ait Melloul, Ibn Zohr University Agadir Morocco
| | - Anouar El Guerdaoui
- Department of Chemistry, Faculty of Science, Ibn Zohr UniversityAgadirMorocco
| | - Rachid El Haouti
- Department of Chemistry, Faculty of Science, Ibn Zohr UniversityAgadirMorocco
| | - Redouane Haounati
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco
| | - Hamza Ighnih
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco
| | - Yahya Toubi
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco .,Faculty of Applied Science, Ait Melloul, Ibn Zohr University Agadir Morocco
| | - Fadi Alakhras
- College of Pharmacy, Middle East UniversityAmman11831Jordan
| | - Rabia Rehman
- Institute of Chemistry, University of the PunjabLahore54590Pakistan
| | - Naima Hafid
- Regional Center of Education and Training Souss MassaMorocco
| | - Abdelaziz Ait Addi
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco
| | - Mohamed Labd Taha
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco
| |
Collapse
|
19
|
Kwiatkowski M, Hu X, Pastuszyński P. Analysis of the Influence of Activated Carbons' Production Conditions on the Porous Structure Formation on the Basis of Carbon Dioxide Adsorption Isotherms. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7939. [PMID: 36431425 PMCID: PMC9694499 DOI: 10.3390/ma15227939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The results of a study of the impact of activation temperature and the mass ratio of the activator to the carbonised precursor on the porous structure of nitrogen-doped activated carbons obtained from lotus leaves by carbonisation and chemical activation with sodium amide (NaNH2) are presented. The analyses were carried out via the new numerical clustering-based adsorption analysis, the Brunauer-Emmett-Teller, the Dubinin-Raduskevich, and the density functional theory methods applied to carbon dioxide adsorption isotherms. Carbon dioxide adsorption isotherms' analysis provided much more detailed and reliable information about the pore structure analysed. The analyses showed that the surface area of the analysed activated carbons is strongly heterogeneous, but the analysed activated carbons are characterised by a bimodal pore structure, i.e., peaks are clearly visible, first in the range of pore size from about 0.6 to 2.0 nm and second in the range from about 2.0 to 4.0 nm. This pore structure provides optimal adsorption performance of carbon dioxide molecules in the pore structure both for adsorption at atmospheric pressure, which requires the presence of narrow pores for the highest packing density, as well as for adsorption at higher pressures, which requires the presence of large micropores and small mesopores. However, there are no micropores smaller than 0.5 nm in the analysed activated carbons, which precludes their use for carbon dioxide adsorption for processes conducted at pressures less than 0.01 MPa.
Collapse
Affiliation(s)
- Mirosław Kwiatkowski
- Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
| | - Xin Hu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Pastuszyński
- Faculty of Energy and Fuels, AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
| |
Collapse
|
20
|
Mathematical analysis of the effect of process conditions on the porous structure development of activated carbons derived from Pine cones. Sci Rep 2022; 12:15301. [PMID: 36096909 PMCID: PMC9468022 DOI: 10.1038/s41598-022-19383-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
This paper presents the results of a study on the influence of the degree of impregnation and activation temperature on the formation of the porous structure of activated carbons (ACs) obtained from Pine cones by the chemical activation process using potassium hydroxide as an activator. The advanced new numerical clustering based adsorption analysis (LBET) method, together with the implemented unique numerical procedure for the fast multivariant identification were applied to nitrogen and carbon dioxide adsorption isotherms determined for porous structure characterization of the ACs. Moreover, the Quenched Solid Density Functional Theory (QSDFT) method was chosen to determine pore size distributions. The results showed a significant influence of the primary structure of Pine cones on the formation of the porous structure of the developed ACs. Among others, it was evidenced by a very high degree of surface heterogeneity of all the obtained ACs, irrespective of the degree of impregnation with potassium hydroxide and the activation temperature. Moreover, the analysis of carbon dioxide adsorption isotherms showed, that the porous structure of the studied ACs samples contains micropores accessible only to carbon dioxide molecules. The results also showed a significant advantage of the LBET method over those conventionally used for porous structure analysis based on Brunauer–Emmett–Teller (BET) and Dubinin–Raduskevich (DR) equations, because it takes into account surface heterogeneities. The novel analyses methods were more fully validated as a reliable characterization tool, by extending their application to the isotherms for ACs developed from the same precursor by phosphoric acid activation, and for samples arising from these ACs, further subjected to additional post-treatments. The effect of the raw material used as precursor was moreover analysed by comparison with previous reported results for other ACs. The complementarity of the results obtained with the LBET and QSDFT methods is also noteworthy, resulting in a more complete and reliable picture of the analyzed porous structures.
Collapse
|
21
|
Zykov IY, Ivanov NN, Dudnikova YN. Chemical Activation of Lignite and Long-Flame Coal to Produce Magnetic Sorbents. COKE AND CHEMISTRY 2022. [DOI: 10.3103/s1068364x22030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Rodríguez-Sánchez S, Díaz P, Ruiz B, González S, Díaz-Somoano M, Fuente E. Food industrial biowaste-based magnetic activated carbons as sustainable adsorbents for anthropogenic mercury emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114897. [PMID: 35334399 DOI: 10.1016/j.jenvman.2022.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Bio-derived magnetic activated carbons from industrial chestnut shell waste have been obtained through a novel, optimized and sustainable methodology where impregnation, pyrolysis, acid washing or other intermediate steps commonly used in the activation process were eliminated saving time, energy and costs. The resulting materials (MACs) were obtained at 220-800 °C showed interesting properties: textural (SBET up to 568 m2 g-1) and magnetic (different iron species developed), depending on the activation temperature employed. Data showed outstanding results when MACs were tested for Hg removal in pollution emissions at 150 °C in lab-scale device. In MACs obtained at 500-600 °C, where the highest concentration of magnetite was found, the best Hg adsorption capacity was achieved, while it decreased when metallic iron or iron carbides were present (MACs obtained at 800 °C). Moreover, the difference of Hg0 removal/adsorption in N2+O2 and Simulated Flue Gas atmosphere between MACs obtained at 500 and 600 °C pointed out the influence on Hg removal of additional parameters, as surface chemistry and the existence of sulfur or chloride. The determination of Hg species in post-retention solids confirmed the mercury oxidation by high-valence iron ions (Fe3+) and the involvement of physisorption and chemisorption processes for the gas-solid interaction mechanism.
Collapse
Affiliation(s)
- S Rodríguez-Sánchez
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - P Díaz
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - B Ruiz
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain.
| | - S González
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - M Díaz-Somoano
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| | - E Fuente
- Biocarbon, Circularity & Sustainability Group, Instituto de Ciencia y Tecnología del Carbono, INCAR - CSIC, Francisco Pintado Fe 26, 33011, Oviedo, Spain
| |
Collapse
|
23
|
Li K, Li J, Yu H, Lin F, Feng G, Jiang M, Yuan D, Yan B, Chen G. Utilizing waste duckweed from phytoremediation to synthesize highly efficient FeN xC catalysts for oxygen reduction reaction electrocatalysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153115. [PMID: 35041958 DOI: 10.1016/j.scitotenv.2022.153115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Duckweed is a universal aquatic plant to remove nitrogen source pollutants in the field of phytoremediation. Due to the naturally abundant nitrogen, synthesis of carbon materials from duckweed would be a high-value approach. In oxygen reduction reaction (ORR) of metal-air batteries and fuel cells, non-noble metals and heteroatoms co-doped electrocatalysts with excellent catalytic activity and remarkable stability are promising substitutes for Pt-based catalysts. The first-class ORR performance is determined by appropriate pore structure and active sites, which are strongly associated with the feasible synthesis methods. Herein, a facile one-step synthesis strategy for the transition metals- and nitrogen-codoped carbon (MNxC) based catalysts with hierarchically porous structure was developed. The MNxC (M = Fe, Co, Ni, and Mn) active sites were constructed and FeNxC (D-ZB-Fe) was the best electrocatalyst with excellent ORR performance. Results showed that D-ZB-Fe exhibited an obvious honeycomb porous structure with specific surface area of 1342.91 m2·g-1 and total pore volume of 1.085 cm3·g-1. It also possessed considerable active atoms and sites, where the proportion of pyridine N and graphite N was up to 72.9%. The above feature made for a superior ORR electrocatalytic activity. In specific, the onset and half-wave potential were 0.974 V and 0.857 V vs. RHE (Reversible Hydrogen Electrode), respectively. When compared with performances of commercial Pt/C, the four-electron pathway and relatively low peroxide yield, ca. 5%, were almost equivalent. Furthermore, D-ZB-Fe showed an excellent stability and remarkably methanol tolerance by the durability test. In conclusion, this research provides a new synthesis strategy of electrocatalysts with porous structures and active sites.
Collapse
Affiliation(s)
- Kai Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Jiantao Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China.
| | - Guoqing Feng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Menghan Jiang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Dingkun Yuan
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310000, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes, Tianjin 300072, PR China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China
| |
Collapse
|
24
|
Natural Porous Carbon Derived from Popped Rice as Anode Materials for Lithium-Ion Batteries. CRYSTALS 2022. [DOI: 10.3390/cryst12020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Popped rice carbons (PC) were derived from popped rice by using a facile and low-cost technique. PC was then activated by different kinds of activating agents, such as potassium hydroxide (KOH), zinc chloride (ZnCl2), iron (III) chloride (FeCl3), and magnesium (Mg), in order to increase the number of pores and specific surface area. The phase formation of porous activated carbon (PAC) products after the activation process suggested that all samples showed mainly graphitic, amorphous carbon, or nanocrystalline graphitic carbon. Microstructure observations showed the interconnected macropore in all samples. Moreover, additional micropores and mesopores were also found in all PAC products. The PAC, which was activated by KOH (PAC-KOH), possessed the largest surface area and pore volume. This contributed to excellent electrochemical performance, as evidenced by the highest capacity value (383 mAh g−1 for 150 cycles at a current density of 100 mA g−1). In addition, the preparation used in this work was very simple and cost-effective, as compared to the graphite preparation. Experimental results demonstrated that the PAC architectures from natural popped rice, which were activated by an optimal agent, are promising materials for use as anodes in LIBs.
Collapse
|
25
|
Xiao Y, Raheem A, Ding L, Chen WH, Chen X, Wang F, Lin SL. Pretreatment, modification and applications of sewage sludge-derived biochar for resource recovery- A review. CHEMOSPHERE 2022; 287:131969. [PMID: 34450364 DOI: 10.1016/j.chemosphere.2021.131969] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
With the quick increase in industrialization and urbanization, a mass of sludge has been produced on the account of increased wastewater treatment facilities. Sewage sludge (SS) management has become one of the most crucial environmental problems because of the existence of various pollutants. However, SS is a carbon-rich material, which has favored novel technologies for biochar production, which can be utilized for dissimilar applications. This review systematically analyzes and summarizes the pretreatment, modification, and especially application of sewage sludge-derived biochar (SSBC), based on published literature. The comparative assessment of pretreatment technology such as pyrolysis, hydrothermal carbonization, combustion, deashing, and co-feeding is presented to appraise their appropriateness for SS resource availability and the production of SSBC. In addition, the authors summarize and analyze the current modification methods and divide them into two categories: physical properties and surface chemical modifications. The applications of SSBC as absorbent, catalyst and catalyst support, electrode materials, gas storage, soil amendment, and sold biofuel are reviewed in detail. Furthermore, the discussion about the existing problems and the direction of future efforts are presented at the end of each section to envisage SS as a promising opportunity for resources rather than a nuisance.
Collapse
Affiliation(s)
- Yao Xiao
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Abdul Raheem
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Lu Ding
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Xueli Chen
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Fuchen Wang
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
26
|
Gómez-Avilés A, Peñas-Garzón M, Belver C, Rodriguez J, Bedia J. Equilibrium, kinetics and breakthrough curves of acetaminophen adsorption onto activated carbons from microwave-assisted FeCl3-activation of lignin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Thaveemas P, Chuenchom L, Kaowphong S, Techasakul S, Saparpakorn P, Dechtrirat D. Magnetic carbon nanofiber composite adsorbent through green in-situ conversion of bacterial cellulose for highly efficient removal of bisphenol A. BIORESOURCE TECHNOLOGY 2021; 333:125184. [PMID: 33892424 DOI: 10.1016/j.biortech.2021.125184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
A magnetic carbon nanofiber sorbent was facilely synthesized from bio-based bacterial cellulose and FeCl3via impregnation, freeze-drying, followed by pyrolysis at 700 °C, without additional activation or nanofiber fabrication. The obtained material possessed intrinsic 3D naturally fibrous and porous structure with good magnetization. The adsorption results showed that the adsorption capacity of the prepared adsorbent towards bisphenol A (BPA) was as high as 618 mg/g, outperforming other adsorbents. Moreover, recycling the adsorbent for 10 consecutive cycles retained 96% of initial adsorption efficiency. The magnetic sorbent can maintain good magnetic properties even with recycling. Hence, the use of bacterial cellulose as a renewable carbon nanofiber precursor and FeCl3 as a source of magnetic particles, and a green pore generating agent in the present protocol, lead to a superior magnetic carbon nanofiber adsorbent with sustainable characteristics.
Collapse
Affiliation(s)
- Piyatida Thaveemas
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Laemthong Chuenchom
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sulawan Kaowphong
- Department of Chemistry, Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, 50200, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Decha Dechtrirat
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand; Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
28
|
Kwiatkowski M, Broniek E. Computer Analysis of the Porous Structure of Activated Carbons Derived from Various Biomass Materials by Chemical Activation. MATERIALS 2021; 14:ma14154121. [PMID: 34361315 PMCID: PMC8347788 DOI: 10.3390/ma14154121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022]
Abstract
In this study, the preparation of activated carbons from various materials of biomass origin by activation with potassium hydroxide and a comprehensive computer analysis of their porous structure and adsorption properties based on benzene (C6H6) adsorption isotherms were carried out. In particular, the influence of the mass ratio of the activator’s dry mass to the char mass on the formation of the microporous structure of the obtained activated carbons was analysed. The summary of the analyses carried out based on benzene adsorption isotherms begged the conclusion that activated carbon with a maximum adsorption volume in the first adsorbed layer and homogeneous surface can be obtained from ebony wood at a mass ratio of the activator to the char of R = 3. The obtained results confirmed the superiority of the new numerical-clustering-based adsorption analysis (LBET) method over simple methods of porous structure analysis, such as the Brunauer–Emmett–Teller (BET) and Dubinin–Raduskevich (DR) methods. The LBET method is particularly useful in the evaluation of the influence of the methods and conditions of production of activated carbons on the formation of their porous structure. This method, together with an appropriate economic analysis, can help in the precise selection of methods and conditions for the process of obtaining activated carbons at specific manufacturing costs, and thus makes it possible to obtain materials that can successfully compete with those of other technologies used in industrial practice and everyday life.
Collapse
Affiliation(s)
- Mirosław Kwiatkowski
- Department of Fuel Technology, Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
- Correspondence: ; Tel.: +48-12-617-41-73
| | - Elżbieta Broniek
- Department of Chemistry and Technology of Fuels, Faculty of Chemistry, Wrocław University of Technology, Gdańska 7/9, 50-344 Wrocław, Poland;
| |
Collapse
|
29
|
Yusop MFM, Ahmad MA, Rosli NA, Manaf MEA. Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: Optimization and batch studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
30
|
Application of Sludge-Based Activated Carbons for the Effective Adsorption of Neonicotinoid Pesticides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The amount of sludge produced in wastewater treatment plants (WWTPs) has increased over the years, and the methods used to reduce this waste, such as incineration, agricultural use, or disposal in landfills, cause problems of secondary pollution. For this reason, it is necessary to find sustainable and low-cost solutions to manage this waste. Additionally, emerging and priority pollutants are attracting attention from the scientific community as they can generate health problems due to inadequate removal in conventional WWTPs. In this work, a pharmaceutical industry sludge was used as a precursor in the synthesis of four activated carbons (ACs) using different activating agents (ZnCl2, FeCl3∙6H2O, Fe(NO3)3∙9H2O, and Fe(SO4)3∙H2O), to be used for the removal by adsorption of three neonicotinoid pesticides included in latest EU Watch List (Decision 2018/840): acetamiprid (ACT), thiamethoxam (THM), and imidacloprid (IMD). The prepared ACs showed micro–mesoporous properties, obtaining relatively slow adsorption kinetics to reach equilibrium, but despite this, high values of adsorption capacity (qe) were obtained. For example, for AC-ZnCl2 (SBET = 558 m2/g), high adsorption capacities of qe = 128.9, 126.8, and 166.1 mg/g for ACT, THM, and IMD, respectively, were found. In most cases, the adsorption isotherms showed a multilayer profile, indicating an important contribution of the mesoporosity of the activated carbons in the adsorption process.
Collapse
|
31
|
dos Reis GS, de Oliveira HP, Larsson SH, Thyrel M, Claudio Lima E. A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:424. [PMID: 33562379 PMCID: PMC7914838 DOI: 10.3390/nano11020424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
Cheap and efficient carbon electrodes (CEs) for energy storage systems (ESS) such as supercapacitors (SCs) and batteries are an increasing priority issue, among other things, due to a globally increasing share of intermittent electricity production (solar and wind) and electrification of transport. The increasing consumption of portable and non-portable electronic devices justifies research that enables environmentally and economically sustainable production (materials, processing techniques, and product design) of products with a high electrochemical performance at an acceptable cost. Among all the currently explored CEs materials, biomass-based activated carbons (AC) present enormous potential due to their availability and low-cost, easy processing methods, physicochemical stability, and methods for self-doping. Nitrogen doping methods in CEs for SCs have been demonstrated to enhance its conductivities, surface wettability, and induced pseudocapacitance effect, thereby delivering improved energy/power densities with versatile properties. Herein, a short review is presented, focusing on the different types of natural carbon sources for preparing CEs towards the fabrication of SCs with high electrochemical performance. The influences of ACs' pore characteristics (micro and mesoporosity) and nitrogen doping on the overall electrochemical performance (EP) are addressed.
Collapse
Affiliation(s)
- Glaydson Simões dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | | | - Sylvia H. Larsson
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil;
| |
Collapse
|
32
|
On the Electrical and Optical Properties Stability of P3HT Thin Films Sensitized with Nitromethane Ferric Chloride Solutions. COATINGS 2020. [DOI: 10.3390/coatings10111074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The electrical and optical properties stability of poly(3-hexylthiophene) (P3HT) thin films sensitized with nitromethane ferric chloride (FeCl3) solution was investigated. The optical properties modifications were studied by spectrophotometry and ellipsometry. For electrical characterizations, electrical resistivity measurements were performed. In agreement with the observations of other authors, an important decrease in the electrical resistivity by six orders of magnitude was noticed. In addition, the repeatability and stability of this phenomenon were investigated over a few weeks after sensitization and during different cycles of heating and cooling, both in the dark and under illumination.
Collapse
|
33
|
Mahidashti Z, Rezaei M, Asfia MP. Internal under-deposit corrosion of X60 pipeline steel upon installation in a chloride-containing soil environment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Biochar and Energy Production: Valorizing Swine Manure through Coupling Co-Digestion and Pyrolysis. C — JOURNAL OF CARBON RESEARCH 2020. [DOI: 10.3390/c6020043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Anaerobic digestion is an established technological option for the treatment of agricultural residues and livestock wastes beneficially producing renewable energy and digestate as biofertilizer. This technology also has significant potential for becoming an essential component of biorefineries for valorizing lignocellulosic biomass due to its great versatility in assimilating a wide spectrum of carbonaceous materials. The integration of anaerobic digestion and pyrolysis of its digestates for enhanced waste treatment was studied. A theoretical analysis was performed for three scenarios based on the thermal needs of the process: The treatment of swine manure (scenario 1), co-digestion with crop wastes (scenario 2), and addition of residual glycerine (scenario 3). The selected plant design basis was to produce biochar and electricity via combined heat and power units. For electricity production, the best performing scenario was scenario 3 (producing three times more electricity than scenario 1), with scenario 2 resulting in the highest production of biochar (double the biochar production and 1.7 times more electricity than scenario 1), but being highly penalized by the great thermal demand associated with digestate dewatering. Sensitivity analysis was performed using a central composite design, predominantly to evaluate the bio-oil yield and its high heating value, as well as digestate dewatering. Results demonstrated the effect of these parameters on electricity production and on the global thermal demand of the plant. The main significant factor was the solid content attained in the dewatering process, which excessively penalized the global process for values lower than 25% TS.
Collapse
|