1
|
George S, Saju H, Jaikumar T, Raj R, Nisarga R, Sontakke S, Sangshetti J, Paul MK, Arote RB. Deciphering a crosstalk between biological cues and multifunctional nanocarriers in lung cancer therapy. Int J Pharm 2025; 674:125395. [PMID: 40064384 DOI: 10.1016/j.ijpharm.2025.125395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
In recent years, the utilization of nanocarriers has significantly broadened across a diverse spectrum of biomedical applications. However, the clinical translation of these tiny carriers is limited and encounters hurdles, particularly in the intricate landscape of the tumor microenvironment. Lung cancer poses unique hurdles for nanocarrier design. Multiple physiological barriers hinder the efficient drug delivery to the lungs, such as the complex anatomy of the lung, the presence of mucus, immune responses, and rapid clearance mechanisms. Overcoming these obstacles necessitates a targeted approach that minimizes off-target effects while effectively penetrating nanoparticles/cargo into specific lung tissues or cells. Furthermore, understanding the cellular uptake mechanisms of these nano carriers is also essential. This knowledge aids in developing nanocarriers that efficiently enter cells and transfer their payload for the most effective therapeutic outcome. Hence, a thorough understanding of biological cues becomes crucial in designing multifunctional nanocarriers tailored for treating lung cancer. This review explores the essential biological cues critical for developing a flexible nanocarrier specifically intended to treat lung cancer. Additionally, it discusses advancements in nanotheranostics in lung cancer.
Collapse
Affiliation(s)
- Sharon George
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Hendry Saju
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Tharun Jaikumar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Reshma Raj
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - R Nisarga
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Samruddhi Sontakke
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad 431001, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), 90095 CA, USA.
| | - Rohidas B Arote
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India; Dental Research Institute, School of Dentistry, Seoul National University, Gwanak-ku, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Hu Y, Zhang W, Ali SR, Takeda K, Vahl TP, Zhu D, Hong Y, Cheng K. Extracellular vesicle therapeutics for cardiac repair. J Mol Cell Cardiol 2025; 199:12-32. [PMID: 39603560 PMCID: PMC11788051 DOI: 10.1016/j.yjmcc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted heterogeneous vesicles that play crucial roles in intercellular communication and disease pathogenesis. Due to their non-tumorigenicity, low immunogenicity, and therapeutic potential, EVs are increasingly used in cardiac repair as cell-free therapy. There exist multiple steps for the design of EV therapies, and each step offers many choices to tune EV properties. Factors such as EV source, cargo, loading methods, routes of administration, surface modification, and biomaterials are comprehensively considered to achieve specific goals. PubMed and Google Scholar were searched in this review, 89 articles related to EV-based cardiac therapy over the past five years (2019 Jan - 2023 Dec) were included, and their key steps in designing EV therapies were counted and analyzed. We aim to provide a comprehensive overview that can serve as a reference guide for researchers to design EV-based cardiac therapies.
Collapse
Affiliation(s)
- Yilan Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Weihang Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Shah Rukh Ali
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Koji Takeda
- Division of Cardiac Surgery, Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Torsten Peter Vahl
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
3
|
Xie L, Xie D, Du Z, Xue S, Wang K, Yu X, Liu X, Peng Q, Fang C. A novel therapeutic outlook: Classification, applications and challenges of inhalable micron/nanoparticle drug delivery systems in lung cancer (Review). Int J Oncol 2024; 64:38. [PMID: 38391039 PMCID: PMC10901537 DOI: 10.3892/ijo.2024.5626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Lung cancer represents a marked global public health concern. Despite existing treatment modalities, the average 5‑year survival rate for patients with patients with lung cancer is only ~20%. As there are numerous adverse effects of systemic administration routes, there is an urgent need to develop a novel therapeutic strategy tailored specifically for patients with lung cancer. Non‑invasive aerosol inhalation, as a route of drug administration, holds unique advantages in the context of respiratory diseases. Nanoscale materials have extensive applications in the field of biomedical research in recent years. The present study provides a comprehensive review of the classification, applications summarized according to existing clinical treatment modalities for lung cancer and challenges associated with inhalable micron/nanoparticle drug delivery systems (DDSs) in lung cancer. Achieving localized treatment of lung cancer preclinical models through inhalation is deemed feasible. However, further research is required to substantiate the efficacy and long‑term safety of inhalable micron/nanoparticle DDSs in the clinical management of lung cancer.
Collapse
Affiliation(s)
- Lixin Xie
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Daihan Xie
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Zhefei Du
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Shaobo Xue
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Kesheng Wang
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xin Yu
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xiuli Liu
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Qiuxia Peng
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Chao Fang
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
4
|
Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2777. [PMID: 38140117 PMCID: PMC10748026 DOI: 10.3390/pharmaceutics15122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
Collapse
Affiliation(s)
- Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Mohamed El-Tanani
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | |
Collapse
|
5
|
Miyagi MYS, de Oliveira Faria R, de Souza GB, Lameu C, Tagami T, Ozeki T, Bezzon VDN, Yukuyama MN, Bou-Chacra NA, de Araujo GLB. Optimizing adjuvant inhaled chemotherapy: Synergistic enhancement in paclitaxel cytotoxicity by flubendazole nanocrystals in a cycle model approach. Int J Pharm 2023; 644:123324. [PMID: 37591475 DOI: 10.1016/j.ijpharm.2023.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Lung cancer is the leading cause of cancer-related death. In addition to new innovative approaches, practical strategies that improve the efficacy of already available drugs are urgently needed. In this study, an inhalable dry powder formulation is used to repurpose flubendazole, a poorly soluble anthelmintic drug with potential against a variety of cancer lineages. Flubendazole nanocrystals were obtained through nanoprecipitation, and dry powder was produced by spray drying. Through fractional factorial design, the spray drying parameters were optimized and the impact of formulation on aerolization properties was clarified. The loading limitations were clarified through response surface methodology, and a 15% flubendazole loading was feasible through the addition of 20% L-leucine, leading to a flubendazole particle size of 388.6 nm, median mass aerodynamic diameter of 2.9 μm, 50.3% FPF, emitted dose of 83.2% and triple the initial solubility. Although the cytotoxicity of this formulation in A549 cells was limited, the formulation showed a synergistic effect when associated with paclitaxel, leading to a surprising 1000-fold reduction in the IC50. Compared to 3 cycles of paclitaxel alone, a 3-cycle model combined treatment increased the threshold of cytotoxicity by 25% for the same dose. Our study suggests, for the first time, that orally inhaled flubendazole nanocrystals show high potential as adjuvants to increase cytotoxic agents' potency and reduce adverse effects.
Collapse
Affiliation(s)
- Mariana Yasue Saito Miyagi
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Rafael de Oliveira Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Batista de Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 748, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Vinícius Danilo Nonato Bezzon
- Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 786, Quatro Road, 35402-136 Ouro Preto, MG, Brazil
| | - Megumi Nishitani Yukuyama
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Nadia Araci Bou-Chacra
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 580, Prof. Lineu Prestes Avenue, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Claes E, Wener R, Neyrinck AP, Coppens A, Van Schil PE, Janssens A, Lapperre TS, Snoeckx A, Wen W, Voet H, Verleden SE, Hendriks JMH. Innovative Invasive Loco-Regional Techniques for the Treatment of Lung Cancer. Cancers (Basel) 2023; 15:cancers15082244. [PMID: 37190172 DOI: 10.3390/cancers15082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Surgical resection is still the standard treatment for early-stage lung cancer. A multimodal treatment consisting of chemotherapy, radiotherapy and/or immunotherapy is advised for more advanced disease stages (stages IIb, III and IV). The role of surgery in these stages is limited to very specific indications. Regional treatment techniques are being introduced at a high speed because of improved technology and their possible advantages over traditional surgery. This review includes an overview of established and promising innovative invasive loco-regional techniques stratified based on the route of administration, including endobronchial, endovascular and transthoracic routes, a discussion of the results for each method, and an overview of their implementation and effectiveness.
Collapse
Affiliation(s)
- Erik Claes
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Reinier Wener
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Arne P Neyrinck
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Anesthesia and Algology Unit, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Axelle Coppens
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Paul E Van Schil
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Annelies Janssens
- Department of Thoracic Oncology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Thérèse S Lapperre
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- LEMP (Laboratory of Experimental Medicine and Pediatrics), University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Annemiek Snoeckx
- Faculty of Medicine and Health Sciences, University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Department of Radiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Wen Wen
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Hanne Voet
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- LEMP (Laboratory of Experimental Medicine and Pediatrics), University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stijn E Verleden
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Jeroen M H Hendriks
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| |
Collapse
|
7
|
Patil SM, Barji DS, Aziz S, McChesney DA, Bagde S, Muttil P, Kunda NK. Pulmonary delivery of spray-dried Nisin ZP antimicrobial peptide for non-small cell lung cancer (NSCLC) treatment. Int J Pharm 2023; 634:122641. [PMID: 36709012 DOI: 10.1016/j.ijpharm.2023.122641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Nisin ZP is an antimicrobial peptide (AMP) produced by the bacterium Lactococcus lactis, and we have previously demonstrated anticancer activity in NSCLC (A549) cells. In this study, we formulated a nisin ZP dry powder (NZSD) using a spray dryer to facilitate inhaled delivery for the treatment of NSCLC. Nisin ZP was spray-dried with mannitol, l-leucine, and trehalose in a ratio of 75:15:10 using Büchi mini spray-dryer B-290 in different drug loadings (10, 20, and 30% w/w). NZSD powder revealed a good powder yield of >55% w/w with ≤3 % w/w moisture content and high nisin ZP drug loading for all the peptide ratios. The NZSD powder particles were irregularly shaped with corrugated morphology. The presence of an endothermic peak in DSC thermograms and attenuated crystalline peaks in PXRD diffractograms confirmed the semi-crystalline powder nature of NZSD. The anticancer activity of nisin ZP was maintained after fabricating it into NZSD powder and showed a similar inhibitory concentration to free nisin ZP. Stability studies indicated that NZSD powders were stable for three months at 4 and 25 ℃ with more than 90% drug content and semi-crystalline nature, as confirmed by DSC and PXRD. Aerosolization studies performed using NGI indicated an aerodynamic diameter (MMAD) within the desired range (1-5 µm) and a high fine particle fraction (FPF > 75%) for all peptide ratios, suggesting powder deposition in the lung's respiratory airways. In conclusion, a dry powder of nisin ZP was formulated using a spray dryer with enhanced storage stability and suitable for inhaled delivery.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Druva Sarika Barji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Sophia Aziz
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - David A McChesney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shapali Bagde
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
8
|
Bhuimali M, Munshi S, Hapa K, Kadu PK, Kale PP. Evaluation of liposomes for targeted drug delivery in lung cancer treatment. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2163639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mitali Bhuimali
- SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sunya Munshi
- SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kunali Hapa
- SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramod K. Kadu
- Department of Pharmaceutics, SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pravin P. Kale
- Department of Pharmacology, SVKM’S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
9
|
Ali MS, Elhabak M, Osman R, Nasr M. Towards more efficient inhalable chemotherapy: Fabrication of nanodiamonds-releasing microspheres. Int J Pharm 2022; 626:122169. [PMID: 36075523 DOI: 10.1016/j.ijpharm.2022.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 12/09/2022]
Abstract
Nanodiamonds (NDs) are among the most promising chemotherapy vectors, however, they tend to aggregate upon storage, or when exposed to mild changes in pH or ionic strength. Therefore, fabrication of dried NDs with minimal change in particle size is highly desirable. In this study, we have developed a dried powder form of NDs with controlled particle size to be eligible for pulmonary delivery, after screening different drying protectants for their effect on NDs particle size and surface charge. Results showed that the nanospray-drying process in the presence of mannitol prevented the aggregation of NDs. Nanospray-dried NDs microparticles exhibited an optimal aerodynamic size for pulmonary delivery, and the in vitro aerosol deposition testing showed that NDs-embedded mannitol microspheres could deliver more than half of the emitted fraction to the lower stage of the Twin impinger device; indicating high pulmonary delivery potential. Upon loading NDs with doxorubicin (NDX) prior to spray dryng, they were able to deliver 2.6 times more drug to A549 lung cancer cell line compared to the free drug. Pharmacokinetics study in rats showed that inhaled NDX microparticles could efficiently limit the biodistribution of the drug to the lungs, and minimize the drug fraction reaching the systemic circulation. To conclude, nanospray-dried NDs microparticles present a promising vehicle for the pulmonary delivery of chemotherapeutic agents for treatment of lung cancer.
Collapse
Affiliation(s)
- Moustafa S Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Mona Elhabak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
10
|
Ma S, Cong Z, Wei J, Chen W, Ge D, Yang F, Liao Y. Pulmonary delivery of size-transformable nanoparticles improves tumor accumulation and penetration for chemo-sonodynamic combination therapy. J Control Release 2022; 350:132-145. [PMID: 35940360 DOI: 10.1016/j.jconrel.2022.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022]
Abstract
Very little is currently known about how inhaled nanomedicine for lung cancer treatment overcomes biological barriers hampering the tumor availability of drug and nanoparticles. Here, we developed a size-transformable nanocarrier (~ 119 nm) in which small-size nanoparticles (~ 28 nm) were loaded in the large nanocarrier after the addition of modified hyaluronan and could be released upon size-transformation at tumor tissue. Subsequently, the pulmonary and tumor pharmacokinetics of the two nanocarriers containing 7-ethyl-10-hydroxycamptothecin (SN38) and a covalently linked fluorescent sonosensitizer were comparatively investigated after intratracheal instillation to mice bearing orthotopic Lewis lung carcinoma tumors. The results showed that both instilled nanoparticles seemed to transport drug to tumor by direct access and transcytosis of nanoparticles, and diffusion of the released drug with the latter accounting for a great proportion of the drug tumor bioavailability. Relative to the small-size nanocarrier, the size-transformable counterpart appeared to restrict the mucociliary and absorption clearances from the lung and the clearance from the tumor interstitium to circulation, leading to increases in lung and tumor bioavailability of SN38 by 58.5% and 199%, respectively. In addition, the size-transformable nanoformulation conferred deep tumor penetration and sustained levels of both sonosensitizer and SN38 within tumors and simultaneously exerted sonodynamic- and chemo-therapies. Overall, the pulmonary delivery of size-transformable nanocarrier could co-deliver sonosensitizer and drug to deep tumor sites with enhanced tumor accumulation to realize combination therapy in lung cancer.
Collapse
Affiliation(s)
- Siqi Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Zhaoqing Cong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jiaxing Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Weiya Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Di Ge
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Feifei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Yonghong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
11
|
Ayre J, Redmond JM, Vitulli G, Tomlinson L, Weaver R, Comeo E, Bosquillon C, Stocks MJ. Design, Synthesis, and Evaluation of Lung-Retentive Prodrugs for Extending the Lung Tissue Retention of Inhaled Drugs. J Med Chem 2022; 65:9802-9818. [PMID: 35798565 PMCID: PMC9340777 DOI: 10.1021/acs.jmedchem.2c00416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A major limitation
of pulmonary delivery is that drugs can exhibit
suboptimal pharmacokinetic profiles resulting from rapid elimination
from the pulmonary tissue. This can lead to systemic side effects
and a short duration of action. A series of dibasic dipeptides attached
to the poorly lung-retentive muscarinic M3 receptor antagonist piperidin-4-yl
2-hydroxy-2,2-diphenylacetate (1) through a pH-sensitive-linking
group have been evaluated. Extensive optimization resulted in 1-(((R)-2-((S)-2,6-diaminohexanamido)-3,3-dimethylbutanoyl)oxy)ethyl
4-(2-hydroxy-2,2-diphenylacetoxy)piperidine-1-carboxylate (23), which combined very good in vitro stability and
very high rat lung binding. Compound 23 progressed to
pharmacokinetic studies in rats, where, at 24 h post dosing in the
rat lung, the total lung concentration of 23 was 31.2
μM. In addition, high levels of liberated drug 1 were still detected locally, demonstrating the benefit of this novel
prodrug approach for increasing the apparent pharmacokinetic half-life
of drugs in the lungs following pulmonary dosing.
Collapse
Affiliation(s)
- Jack Ayre
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Joanna M Redmond
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Giovanni Vitulli
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Laura Tomlinson
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Richard Weaver
- XenoGesis Ltd, Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K
| | - Eleonora Comeo
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Cynthia Bosquillon
- School of Pharmacy, Boots Science Building, University Park Nottingham, Nottingham NG7 2RD, U.K
| | - Michael J Stocks
- School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
12
|
Li L, Yu J, Chen Z, Zhang J. Improved Primary Lung Carcinoma Therapeutics Utilizing a Non-Invasive Approach of Combinatorial Drug Loaded Aerosolized Dry Inhaler Powder. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Zimmermann CJ, Schraeder T, Reynolds B, DeBoer EM, Neeves KB, Marr DW. Delivery and actuation of aerosolized microbots. NANO SELECT 2022; 3:1185-1191. [PMID: 38737633 PMCID: PMC11086685 DOI: 10.1002/nano.202100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For disease of the lung, the physical key to effective inhalation-based therapy is size; too large (10's of μm) and the particles or droplets do not remain suspended in air to reach deep within the lungs, too small (subμm) and they are simply exhaled without deposition. μBots within this ideal low-μm size range however are challenging to fabricate and would lead to devices that lack the speed and power necessary for performing work throughout the pulmonary network. To uncouple size from structure and function, here we demonstrate an approach where individual building blocks are aerosolized and subsequently assembled in situ into μbots capable of translation, drug delivery, and mechanical work deep within lung mimics. With this strategy, a variety of pulmonary diseases previously difficult to treat may now be receptive to μbot-based therapies.
Collapse
Affiliation(s)
- Coy J. Zimmermann
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Tyler Schraeder
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Brandon Reynolds
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Emily M. DeBoer
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
14
|
Shepard KB, Pluntze AM, Vodak DT. Simultaneous Spray Drying for Combination Dry Powder Inhaler Formulations. Pharmaceutics 2022; 14:pharmaceutics14061130. [PMID: 35745703 PMCID: PMC9227944 DOI: 10.3390/pharmaceutics14061130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Spray drying is a particle engineering technique used to manufacture respirable pharmaceutical powders that are suitable for delivery to the deep lung. It is amenable to processing both small molecules and biologic actives, including proteins. In this work, a simultaneous spray-drying process, termed simul-spray, is described; the process involves two different active pharmaceutical ingredient (API) solutions that are simultaneously atomized through separate nozzles into a single-spray dryer. Collected by a single cyclone, simul-spray produces a uniform mixture of two different active particles in a single-unit operation. While combination therapies for dry powder inhalers containing milled small molecule API are commercially approved, limited options exist for preparing combination treatments that contain both small molecule APIs and biotherapeutic molecules. Simul-spray drying is also ideal for actives which cannot withstand a milling-based particle engineering process, or which require a high dose that is incompatible with a carrier-based formulation. Three combination case studies are demonstrated here, in which bevacizumab is paired with erlotinib, cisplatin, or paclitaxel in a dry powder inhaler formulation. These model systems were chosen for their potential relevance to the local treatment of lung cancer. The resulting formulations preserved the biologic activity of the antibody, achieved target drug concentration, and had aerosol properties suitable for pulmonary delivery.
Collapse
|
15
|
Forest V, Pourchez J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv Drug Deliv Rev 2022; 183:114173. [PMID: 35217112 DOI: 10.1016/j.addr.2022.114173] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
Respiratory diseases gather a wide range of disorders which are generally difficult to treat, partly due to a poor delivery of drugs to the lung with adequate dose and minimum side effects. With the recent developments of nanotechnology, nano-delivery systems have raised interest. In this review, we detail the main types of nanocarriers that have been developed presenting their respective advantages and limitations. We also discuss the route of administration (systemic versus by inhalation), also considering technical aspects (different types of aerosol devices) with concrete examples of applications. Finally, we propose some perspectives of development in the field such as the nano-in-micro approaches, the emergence of drug vaping to generate airborne carriers in the submicron size range, the development of innovative respiratory models to assess regional aerosol deposition of nanoparticles or the application of nano-delivery to the lung in the treatment of other diseases.
Collapse
|
16
|
Ye Y, Ma Y, Zhu J. The future of dry powder inhaled therapy: Promising or Discouraging for systemic disorders? Int J Pharm 2022; 614:121457. [PMID: 35026316 PMCID: PMC8744475 DOI: 10.1016/j.ijpharm.2022.121457] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Dry powder inhalation therapy has been shown to be an effective method for treating respiratory diseases like asthma, Chronic Obstructive Pulmonary Diseases and Cystic Fibrosis. It has also been widely accepted and used in clinical practices. Such success has led to great interest in inhaled therapy on treating systemic diseases in the past two decades. The current coronavirus (COVID-19) pandemic also has increased such interest and is triggering more potential applications of dry powder inhalation therapy in vaccines and antivirus drugs. Would the inhaled dry powder therapy on systemic disorders be as encouraging as expected? This paper reviews the marketed and in-development dry powder inhaler (DPI) products on the treatment of systemic diseases, their status in clinical trials, as well as the potential for COVID-19 treatment. The advancements and unmet problems on DPI systems are also summarized. With countless attempts behind and more challenges ahead, it is believed that the dry powder inhaled therapy for the treatment of systemic disorders still holds great potential and promise.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|
17
|
Wu M, Wang F, Chen J, Zhang H, Zeng H, Liu J. Interactions of model airborne particulate matter with dipalmitoyl phosphatidylcholine and a clinical surfactant Calsurf. J Colloid Interface Sci 2021; 607:1993-2009. [PMID: 34798708 DOI: 10.1016/j.jcis.2021.09.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
HYPOTHESIS Lung surfactant protects lung tissue and reduces the surface tension in the alveoli during respiration. Particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5), which invades primely through inhalation, can deposit on and interact with the surfactant layer, leading to changes in the biophysical and morphological properties of the lung surfactant. EXPERIMENTS Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and clinical surfactant Calsurf were investigated with a PM2.5 model injected into the water subphase, which were characterized by surface pressure-area isotherms, Brewster angle microscopy, atomic force microscopy, fluorescent microscopy, and x-ray photoelectron spectroscopy. The binding between DPPC/Calsurf and PM2.5 was studied using isothermal titration calorimetry. FINDINGS PM2.5 induced the expansion of the monolayers at low surface pressure (п) and film condensation at high п. Aggregation of PM2.5 mainly occurred at the interface of liquid expanded/liquid condensed (LE/LC) phases. PM2.5 led to slimmer and ramified LC domains on DPPC and the reduction of nano-sized condensed domains on Calsurf. Both DPPC and Calsurf showed fast binding with PM2.5 through complex binding modes attributed to the heterogeneity and amphiphilic property of PM2.5. This study improves the fundamental understanding of PM2.5-lung surfactant interaction and shows useful implications of the toxicity of PM2.5 through respiration process.
Collapse
Affiliation(s)
- Min Wu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Feifei Wang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China.
| |
Collapse
|
18
|
Identification of Stability Constraints in the Particle Engineering of an Inhaled Monoclonal Antibody Dried Powder. J Pharm Sci 2021; 111:403-416. [PMID: 34453927 DOI: 10.1016/j.xphs.2021.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Monoclonal antibody (mAb) based therapies may provide a valuable new treatment modality for acute and chronic lung diseases, including asthma, respiratory infections, and lung cancer. Currently mAbs are delivered via systemic administration routes, but direct delivery to the lungs via the inhaled route could provide higher concentrations at the site of disease and reduced off-target effects. Though lyophilized mAbs may be reconstituted and delivered to the lungs using nebulizers, dry powder inhalers provide a more patient-friendly delivery method based upon their fast administration time and portability. However, particle engineering processes required to prepare respirable dried powders for DPI delivery involve multiple potential stressors for mAbs, which have not been fully explored. In this study, a systematic examination of various aspects of the particle engineering process (atomization, freezing, drying, and storage) was performed to further understand their impact on mAb structure and aggregation. Using anti-streptavidin IgG1 as a model mAb, atomization settings were optimized using a design of experiments approach to elucidate the relationship between feed flow rate, formulation solid content, and atomization airflow rate and protein structural changes and aggregation. The optimized atomization conditions were then applied to spray drying and spray freezing drying particle engineering processes to determine the effects of freezing and drying on IgG1 stability and aerosol performance of the powders. IgG1 was found to be particularly susceptible to degradation induced by the expansive air-ice interface generated by spray freeze drying and this process also produced powders that exhibited decreased storage stability. This study further delineates the design space for manufacturing of respirable biologic therapies and is intended to serve as a roadmap for future development work.
Collapse
|
19
|
Development of a dry powder for inhalation of nanoparticles codelivering cisplatin and ABCC3 siRNA in lung cancer. Ther Deliv 2021; 12:651-670. [PMID: 34374565 DOI: 10.4155/tde-2020-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: The current study sought to formulate a dry powder inhalant (DPI) for pulmonary delivery of lipopolymeric nanoparticles (LPNs) consisting of cisplatin and siRNA for multidrug-resistant lung cancer. siRNA against ABCC3 gene was used to silence drug efflux promoter. Results & discussion: The formulation was optimized through the quality by design system by nanoparticle size and cisplatin entrapment. The lipid concentration, polymer concentration and lipid molar ratio were selected as variables. The DPI was characterized by in vitro deposition study using the Anderson cascade impactor. DPI formulation showed improved pulmonary pharmacokinetic parameters of cisplatin with higher residence time in lungs. Conclusion: Local delivery of siRNA and cisplatin to the lung tissue resulted into an enhanced therapeutic effectiveness in combating drug resistance.
Collapse
|
20
|
El-Hussein A, Manoto SL, Ombinda-Lemboumba S, Alrowaili ZA, Mthunzi-Kufa P. A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment. Anticancer Agents Med Chem 2021; 21:149-161. [PMID: 32242788 DOI: 10.2174/1871520620666200403144945] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Cancer is among the leading causes of mortality and morbidity worldwide. Among the different types of cancers, lung cancer is considered to be the leading cause of death related to cancer and the most commonly diagnosed form of such disease. Chemotherapy remains a dominant treatment modality for many types of cancers at different stages. However, in many cases, cancer cells develop drug resistance and become nonresponsive to chemotherapy, thus, necessitating the exploration of alternative and /or complementary treatment modalities. Photodynamic Therapy (PDT) has emerged as an effective treatment modality for various malignant neoplasia and tumors. In PDT, the photochemical interaction of light, Photosensitizer (PS) and molecular oxygen produces Reactive Oxygen Species (ROS), which induces cell death. Combination therapy, by using PDT and chemotherapy, can promote synergistic effect against this fatal disease with the elimination of drug resistance, and enhancement of the efficacy of cancer eradication. In this review, we give an overview of chemotherapeutic modalities, PDT, and the different types of drugs associated with each therapy. Furthermore, we also explored the combined use of chemotherapy and PDT in the course of lung cancer treatment and how this approach could be the last resort for thousands of patients that have been diagnosed by this fatal disease.
Collapse
Affiliation(s)
- Ahmed El-Hussein
- National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| | - Sello L Manoto
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, Pretoria, South Africa
| | | | - Ziya A Alrowaili
- Physics Department, College of Science, Jouf University, Jouf, Saudi Arabia
| | - Patience Mthunzi-Kufa
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, Pretoria, South Africa
| |
Collapse
|
21
|
Elbatanony RS, Parvathaneni V, Kulkarni NS, Shukla SK, Chauhan G, Kunda NK, Gupta V. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)-development and in-vitro efficacy. Drug Deliv Transl Res 2021; 11:927-943. [PMID: 32557351 PMCID: PMC7738377 DOI: 10.1007/s13346-020-00802-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Afatinib (AFA) is a potent aniline-quinazoline derivative, approved by the Food and Drug Administration (FDA) in 2013, as a first-line treatment for metastatic non-small cell lung cancer (NSCLC). However, its clinical application is highly limited by its poor solubility, and consequently low bioavailability. We hypothesize that loading of AFA into biodegradable PLGA nanoparticles for localized inhalational drug delivery will be instrumental in improving therapeutic outcomes in NSCLC patients. Formulated AFA nanoparticles (AFA-NP) were evaluated for physicochemical properties (particle size: 180.2 ± 15.6 nm, zeta potential: - 23.1 ± 0.2 mV, % entrapment efficiency: 34.4 ± 2.3%), formulation stability, in-vitro aerosol deposition behavior, and anticancer efficacy. Stability studies revealed the physicochemical stability of AFA-NP. Moreover, AFA-NP exhibited excellent inhalable properties (mass median aerodynamic diameter (MMAD): 4.7 ± 0.1 μm; fine particle fraction (FPF): 77.8 ± 4.3%), indicating efficient particle deposition in deep lung regions. With respect to in-vitro drug release, AFA-NP showed sustained drug release with cumulative release of 56.8 ± 6.4% after 48 h. Cytotoxic studies revealed that encapsulation of AFA into PLGA nanoparticles significantly enhanced its cytotoxic potential in KRAS-mutated NSCLC cell lines (A549, H460). Cellular uptake studies revealed enhanced internalization of coumarin-loaded nanoparticles compared to plain coumarin in A549. In addition, 3D tumor spheroid studies demonstrated superior efficacy of AFA-NP in tumor penetration and growth inhibition. To conclude, we have established in-vitro efficacy of afatinib-loaded PLGA nanoparticles as inhalable NSCLC therapy, which will be of great significance when designing preclinical and clinical studies. Graphical abstract.
Collapse
Affiliation(s)
- Rasha S Elbatanony
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 11835, Egypt
| | - Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA.
| |
Collapse
|
22
|
Cavalcanti IDL, Soares JCS. Impact of COVID-19 on cancer patients: A review. Asia Pac J Clin Oncol 2021; 17:186-192. [PMID: 32970923 DOI: 10.1111/ajco.13445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
To inform about the impact of COVID-19 on cancer patients, a literature review was carried out, using the descriptors "COVID-19," "SARS-CoV-2," "Oncology," and "Coronavirus," in the Pubmed, Sciencedirect, and Scifinder databases. Fifty-three articles were included after analyzing the inclusion and exclusion criteria, being divided into five sessions: Epidemiological aspects of COVID-19; Pathophysiology of COVID-19; Clinical aspects of cancer patients; Risks to cancer patients infected with COVID-19; and Care for cancer patients amid a pandemic. The cancer patient has a weakened immune system, due to characteristics specific to the development of cancer or even chemotherapy, leaving these patients more susceptible to infections by COVID-19. Thus, the development of protection plans for cancer patients should be encouraged, reducing the exposure of these patients to the SARS-CoV-2 virus, contributing to the maintenance of the health of the cancer patient, and avoiding possible therapeutic complications that can lead the patient to death.
Collapse
Affiliation(s)
- Iago Dillion Lima Cavalcanti
- PhD student in Biological Sciences, Master in Pharmaceutical Science, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - José Cleberson Santos Soares
- PhD student in Therapeutic Innovation, Master in Pharmaceutical Science, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
23
|
Chraibi S, Rosière R, De Prez E, Gérard P, Antoine MH, Langer I, Nortier J, Remmelink M, Amighi K, Wauthoz N. Preclinical tolerance evaluation of the addition of a cisplatin-based dry powder for inhalation to the conventional carboplatin-paclitaxel doublet for treatment of non-small cell lung cancer. Biomed Pharmacother 2021; 139:111716. [PMID: 34243618 DOI: 10.1016/j.biopha.2021.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the advances in targeted therapies and immunotherapy for non-small cell lung cancer (NSCLC) patients, the intravenous administration of carboplatin (CARB) and paclitaxel (PTX) in well-spaced cycles is widely indicated for the treatment of NSCLC from stage II to stage IV. Our strategy was to add a controlled-release cisplatin-based dry-powder for inhalation (CIS-DPI-ET) to the conventional CARB-PTX-IV doublet, administered during the treatment off-cycles to intensify the therapeutic response while avoiding the impairment of pulmonary, renal and haematological tolerance of these combinations. The co-administration of CIS-DPI-ET (0.5 mg/kg) and CARB-PTX-IV (17-10 mg/kg) the same day showed a higher proportion of neutrophils in BALF (35 ± 7% vs 1.3 ± 0.8%), with earlier regenerative anaemia than with CARB-PTX-IV alone. A first strategy of CARB-PTX-IV dose reduction by 25% also induced neutrophil recruitment, but in a lower proportion than with the first combination (20 ± 6% vs 0.3 ± 0.3%) and avoiding regenerative anaemia. A second strategy of delaying CIS-DPI-ET and CARB-PTX-IV administrations by 24 h avoided both the recruitment of neutrophils in BALF and regenerative anaemia. Moreover, all these groups showed higher cytotoxicity (LDH activity, protein content) with no higher renal toxicities. These two strategies seem interesting to be assessed in terms of antitumor efficacy in mice.
Collapse
Affiliation(s)
- S Chraibi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - R Rosière
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium; InhaTarget Therapeutics, Rue Auguste Piccard 37, 6041 Gosselies, Belgium
| | - E De Prez
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - P Gérard
- InhaTarget Therapeutics, Rue Auguste Piccard 37, 6041 Gosselies, Belgium
| | - M H Antoine
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - I Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), ULB, Brussels, Belgium
| | - J Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - M Remmelink
- Department of Pathology, ULB, Hôpital Erasme, Brussels, Belgium
| | - K Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - N Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
24
|
Dau VT, Bui TT, Tran CD, Nguyen TV, Nguyen TK, Dinh T, Phan HP, Wibowo D, Rehm BHA, Ta HT, Nguyen NT, Dao DV. In-air particle generation by on-chip electrohydrodynamics. LAB ON A CHIP 2021; 21:1779-1787. [PMID: 33730135 DOI: 10.1039/d0lc01247e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrohydrodynamic atomization has been emerging as a powerful approach for respiratory treatment, including the generation and delivery of micro/nanoparticles as carriers for drugs and antigens. In this work, we present a new conceptual design in which two nozzles facilitate dual electrospray coexisting with ionic wind at chamfered tips by a direct current power source. Experimental results by a prototype have demonstrated the capability of simultaneously generating-and-delivering a stream of charged reduced particles. The concept can be beneficial to pulmonary nano-medicine delivery since the mist of nanoparticles is migrated without any restriction of either the collector or the assistance of external flow, but is pretty simple in designing and manufacturing devices.
Collapse
Affiliation(s)
- Van T Dau
- School of Engineering and Built Environment, Griffith University, Australia. and Centre of Catalysis and Clean Energy, Griffith University, Australia
| | - Tung T Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Canh-Dung Tran
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
| | - Thanh Viet Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Toan Dinh
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Hang Thu Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia and School of Environment and Science, Griffith University, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Dzung V Dao
- School of Engineering and Built Environment, Griffith University, Australia. and Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| |
Collapse
|
25
|
Duong T, López-Iglesias C, Szewczyk PK, Stachewicz U, Barros J, Alvarez-Lorenzo C, Alnaief M, García-González CA. A Pathway From Porous Particle Technology Toward Tailoring Aerogels for Pulmonary Drug Administration. Front Bioeng Biotechnol 2021; 9:671381. [PMID: 34017828 PMCID: PMC8129550 DOI: 10.3389/fbioe.2021.671381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Pulmonary drug delivery has recognized benefits for both local and systemic treatments. Dry powder inhalers (DPIs) are convenient, portable and environmentally friendly devices, becoming an optimal choice for patients. The tailoring of novel formulations for DPIs, namely in the form of porous particles, is stimulating in the pharmaceutical research area to improve delivery efficiency. Suitable powder technological approaches are being sought to design such formulations. Namely, aerogel powders are nanostructured porous particles with particularly attractive properties (large surface area, excellent aerodynamic properties and high fluid uptake capacity) for these purposes. In this review, the most recent development on powder technologies used for the processing of particulate porous carriers are described via updated examples and critically discussed. A special focus will be devoted to the most recent advances and uses of aerogel technology to obtain porous particles with advanced performance in pulmonary delivery.
Collapse
Affiliation(s)
- Thoa Duong
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Clara López-Iglesias
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Joana Barros
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto - Associação, INEB - Instituto de Engenharia Biomédica, FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mohammad Alnaief
- Department of Pharmaceutical and Chemical Engineering, Faculty of Applied Medical Sciences, German Jordanian University, Amman, Jordan
| | - Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
26
|
Chraibi S, Rosière R, Larbanoix L, Gérard P, Hennia I, Laurent S, Vermeersch M, Amighi K, Wauthoz N. The combination of an innovative dry powder for inhalation and a standard cisplatin-based chemotherapy in view of therapeutic intensification against lung tumours. Eur J Pharm Biopharm 2021; 164:93-104. [PMID: 33957225 DOI: 10.1016/j.ejpb.2021.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
Cisplatin is one of the most commonly used chemotherapy in lung cancer despite its high nephrotoxicity leading to an administration only every 3-4 weeks. This study is the first report of a preclinical investigation of therapeutic intensification combining a cisplatin dry powder for inhalation (CIS-DPI) with an intravenous (iv) cisplatin-based treatment. CIS-DPI with 50% cisplatin content (CIS-DPI-50) was developed using lipid excipients through scalable processes (high-speed and high-pressure homogenization and spray-drying). CIS-DPI-50 showed good aerodynamic performance (fine particle fraction of ~ 55% and a mass median aerodynamic particle size of ~ 2 µm) and a seven-fold increase and decrease in Cmax in the lungs and in plasma, respectively, in comparison with an iv cisplatin solution (CIS-iv) in healthy mice. Finally, the addition of CIS-DPI-50 to the standard cisplatin/paclitaxel iv doublet increased the response rate (67% vs 50%), decreased the tumour growth and prolonged the median survival (31 vs 21 days), compared to the iv doublet in the M109 lung carcinoma model tending to demonstrate a therapeutic intensification of cisplatin.
Collapse
Affiliation(s)
- Selma Chraibi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Rémi Rosière
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium; InhaTarget Therapeutics, Rue Auguste Piccard 37, Gosselies, Belgium.
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium
| | - Pierre Gérard
- InhaTarget Therapeutics, Rue Auguste Piccard 37, Gosselies, Belgium
| | - Ismael Hennia
- InhaTarget Therapeutics, Rue Auguste Piccard 37, Gosselies, Belgium
| | - Sophie Laurent
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université de Mons, Gosselies, Belgium
| | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
27
|
Puccetti M, Costantini C, Ricci M, Giovagnoli S. Tackling Immune Pathogenesis of COVID-19 through Molecular Pharmaceutics. Pharmaceutics 2021; 13:494. [PMID: 33916409 PMCID: PMC8065592 DOI: 10.3390/pharmaceutics13040494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 01/08/2023] Open
Abstract
An increasing number of clinical studies worldwide are investigating the repurposing of antiviral, immune-modulatory, and anti-inflammatory agents to face the coronavirus disease-19 (COVID-19) pandemic. Nevertheless, few effective therapies exist to prevent or treat COVID-19, which demands increased drug discovery and repurposing efforts. In fact, many currently tested drugs show unknown efficacy and unpredictable drug interactions, such that interventions are needed to guarantee access to effective and safe medicines. Anti-inflammatory therapy has proven to be effective in preventing further injury in COVID-19 patients, but the benefit comes at a cost, as targeting inflammatory pathways can imply an increased risk of infection. Thus, optimization of the risk/benefit ratio is required in the anti-inflammatory strategy against COVID-19, which accounts for drug formulations and delivery towards regionalization and personalization of treatment approaches. In this perspective, we discuss how better knowledge of endogenous immunomodulatory pathways may optimize the clinical use of novel and repurposed drugs against COVID-19 in inpatient, outpatient, and home settings through innovative drug discovery, appropriate drug delivery systems and dedicated molecular pharmaceutics.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy;
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Maurizio Ricci
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy;
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132 Perugia, Italy;
| |
Collapse
|
28
|
Ostrovski Y, Dorfman S, Poh W, Chye Joachim Loo S, Sznitman J. Focused targeting of inhaled magnetic aerosols in reconstructed in vitro airway models. J Biomech 2021; 118:110279. [PMID: 33545572 DOI: 10.1016/j.jbiomech.2021.110279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022]
Abstract
The pulmonary tract is an attractive route for topical treatments of lung diseases. Yet, our ability to confine the deposition of inhalation aerosols to specific lung regions, or local airways, remains still widely beyond reach. It has been hypothesized that by coupling magnetic particles to inhaled therapeutics the ability to locally target airway sites can be substantially improved. Although the underlying principle has shown promise in seminal in vivo animal experiments as well as in vitro and in silico studies, its practical implementation has come short of delivering efficient localized airway targeting. Here, we demonstrate in an in vitro proof-of-concept an inhalation framework to leverage magnetically-loaded aerosols for airway targeting in the presence of an external magnetic field. By coupling the delivery of a short pulsed bolus of sub-micron (~500 nm diameter) droplet aerosols with a custom ventilation machine that tracks the volume of air inhaled past the bolus, focused targeting can be maximized during a breath hold maneuver. Specifically, we visualize the motion of the pulsed SPION-laden (superparamagnetic iron oxide nanoparticles) aerosol bolus and quantify under microscopy ensuing deposition patterns in reconstructed 3D airway models. Our aerosol inhalation platform allows for the first time to deposit inhaled particles to specific airway sites while minimizing undesired deposition across the remaining airspace, in an effort to significantly augment the targeting efficiency (i.e. deposition ratio between targeted and untargeted regions). Such inhalation strategy may pave the way for improved treatment outcomes, including reducing side effects in chemotherapy.
Collapse
Affiliation(s)
- Yan Ostrovski
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Semion Dorfman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wilson Poh
- School of Material Science and Engineering, Nanyang Technological University, Singapore
| | - Say Chye Joachim Loo
- School of Material Science and Engineering, Nanyang Technological University, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
29
|
Matera MG, Calzetta L, Ora J, Rogliani P, Cazzola M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv 2021; 18:891-906. [PMID: 33412922 DOI: 10.1080/17425247.2021.1873271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Inhaled drugs are important in the treatment of many lung pathologies, but to be therapeutically effective they must reach unbound concentrations at their effect site in the lung that are adequate to interact with their pharmacodynamic properties (PD) and exert the pharmacological action over an appropriate dosing interval. Therefore, the evaluation of pharmacokinetic (PK)/PD relationship is critical to predict their possible therapeutic effect.Areas covered: We review the approaches used to assess the PK/PD relationship of the major classes of inhaled drugs that are prescribed to treat pulmonary pathologies.Expert opinion: There are still great difficulties in producing data on lung concentrations of inhaled drugs and interpreting them as to their ability to induce the desired therapeutic action. The structural complexity of the lungs, the multiplicity of processes involved simultaneously and the physical interactions between the lungs and drug make any PK/PD approach to drug delivery design for inhalation medications extremely challenging. New approaches/methods are increasing our understanding about what happens to inhaled drugs, but they are still not ready for regulatory purposes. Therefore, we must still rely on plasma concentrations based on the axiom that they reflect both the extent and the pattern of deposition within the lungs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Dept. Medicine and Surgery, University of Parma, Parma, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
30
|
Development and Evaluation of Paclitaxel and Curcumin Dry Powder for Inhalation Lung Cancer Treatment. Pharmaceutics 2020; 13:pharmaceutics13010009. [PMID: 33375181 PMCID: PMC7822152 DOI: 10.3390/pharmaceutics13010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the effort to develop efficient targeted drug delivery for lung cancer treatment, the outcome remains unsatisfactory with a survival rate of 15% after 5 years of diagnosis. Inhalation formulation is an ideal alternative that could ensure the direct deposition of chemotherapeutics to the lungs. However, the design of an inhalable formulation that could simultaneously achieve a high local chemotherapeutic dose to the solid tumor and exert low pulmonary toxicities is a challenge, as the presence of 10–30% of chemotherapeutics in the lung is sufficient to induce toxicity. Therefore, this study aimed to develop a simple dry powder inhalation (DPI) formulation containing a model chemotherapeutic agent (paclitaxel, PTX) and a natural antioxidant (curcumin, CUR) that acts to protect healthy lung cells from injury during direct lung delivery. The co-jet-milling of CUR and PTX resulted in formulations with suitable aerosol performance, as indicated in the high fine particle fractions (FPF) (>60%) and adequate mass median aerodynamic diameter (MMAD). The CUR/PTX combination showed a more potent cytotoxic effect against lung cancer cells. This is evident from the induction of apoptosis/necrotic cell death and G2/M cell cycle arrests in both A549 and Calu-3 cells. The increased intracellular ROS, mitochondrial depolarization and reduced ATP content in A549 and Calu-3 cells indicated that the actions of CUR and PTX were associated with mitochondrial oxidative stress. Interestingly, the presence of CUR is crucial to neutralize the cytotoxic effects of PTX against healthy cells (Beas-2B), and this is dose-dependent. This study presents a simple approach to formulating an effective DPI formulation with preferential cytotoxicity towards lung cancer.
Collapse
|
31
|
Alhudaithi SS, Almuqbil RM, Zhang H, Bielski ER, Du W, Sunbul FS, Bos PD, da Rocha SRP. Local Targeting of Lung-Tumor-Associated Macrophages with Pulmonary Delivery of a CSF-1R Inhibitor for the Treatment of Breast Cancer Lung Metastases. Mol Pharm 2020; 17:4691-4703. [PMID: 33170724 DOI: 10.1021/acs.molpharmaceut.0c00983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lungs are major sites of metastases for several cancer types, including breast cancer (BC). Prognosis and quality of life of BC patients that develop pulmonary metastases are negatively impacted. The development of strategies to slow the growth and relieve the symptoms of BC lung metastases (BCLM) is thus an important goal in the management of BC. However, systemically administered first line small molecule chemotherapeutics have poor pharmacokinetic profiles and biodistribution to the lungs and significant off-target toxicity, severely compromising their effectiveness. In this work, we propose the local delivery of add-on immunotherapy to the lungs to support first line chemotherapy treatment of advanced BC. In a syngeneic murine model of BCLM, we show that local pulmonary administration (p.a.) of PLX-3397 (PLX), a colony-stimulating factor 1 receptor inhibitor (CSF-1Ri), is capable of overcoming physiological barriers of the lung epithelium, penetrating the tumor microenvironment (TME), and decreasing phosphorylation of CSF-1 receptors, as shown by the Western blot of lung tumor nodules. That inhibition is accompanied by an overall decrease in the abundance of protumorigenic (M2-like) macrophages in the TME, with a concomitant increase in the amount of antitumor (M1-like) macrophages when compared to the vehicle-treated control. These effects with PLX (p.a.) were achieved using a much smaller dose (1 mg/kg, every other day) compared to the systemic doses typically used in preclinical studies (40-800 mg/kg/day). As an additive in combination with intravenous (i.v.) administration of paclitaxel (PTX), PLX (p.a.) leads to a decrease in tumor burden without additional toxicity. These results suggested that the proposed immunochemotherapy, with regional pulmonary delivery of PLX along with the i.v. standard of care chemotherapy, may lead to new opportunities to improve treatment, quality of life, and survival of patients with BCLM.
Collapse
Affiliation(s)
- Sulaiman S Alhudaithi
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Rashed M Almuqbil
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hanming Zhang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Elizabeth R Bielski
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Wei Du
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Fatemah S Sunbul
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Paula D Bos
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Sandro R P da Rocha
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
32
|
Wauthoz N, Rosière R, Amighi K. Inhaled cytotoxic chemotherapy: clinical challenges, recent developments, and future prospects. Expert Opin Drug Deliv 2020; 18:333-354. [PMID: 33050733 DOI: 10.1080/17425247.2021.1829590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Since 1968, inhaled chemotherapy has been evaluated and has shown promising results up to phase II but has not yet reached the market. This is due to technological and clinical challenges that require to be overcome with the aim of optimizing the efficacy and the tolerance of drug to re-open new developments in this field. Moreover, recent changes in the therapeutic standard of care for treating the patient with lung cancer also open new opportunities to combine inhaled chemotherapy with standard treatments. AREAS COVERED Clinical and technological concerns are highlighted from the reported clinical trials made with inhaled cytotoxic chemotherapies. This work then focuses on new pharmaceutical developments using dry powder inhalers as inhalation devices and on formulation strategies based on controlled drug release and with sustained lung retention or based on nanomedicine. Finally, new clinical strategies are described in regard to the impact of the immunotherapy on the patient's standard of care. EXPERT OPINION The choice of the drug, inhalation device, and formulation strategy as well as the position of inhaled chemotherapy in the patient's clinical care are crucial factors in optimizing local tolerance and efficacy as well as in its scalability and applicability in clinical practice.
Collapse
Affiliation(s)
- Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| | - Rémi Rosière
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
33
|
Hashem FM, Abd Allah FI, Abdel-Rashid RS, Hassan AAA. Glibenclamide nanosuspension inhaler: development, in vitro and in vivo assessment. Drug Dev Ind Pharm 2020; 46:762-774. [DOI: 10.1080/03639045.2020.1753062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fahima M. Hashem
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Fathy I. Abd Allah
- International Center for Bioavailability, Pharmaceutical and Clinical Research (ICBR), Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar university, Cairo, Egypt
| | | | - Abdelsabour A. A. Hassan
- International Center for Bioavailability, Pharmaceutical and Clinical Research (ICBR), Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar university, Cairo, Egypt
- Metered Dose Inhaler Department (MDI), Cairo, Egypt
- Arab Drug Company for pharmaceuticals and chemical industries (ADCO), Cairo, Egypt
| |
Collapse
|
34
|
Sardeli C, Zarogoulidis P, Kosmidis C, Amaniti A, Katsaounis A, Giannakidis D, Koulouris C, Hohenforst-Schmidt W, Huang H, Bai C, Michalopoulos N, Tsakiridis K, Romanidis K, Oikonomou P, Mponiou K, Vagionas A, Goganau AM, Kesisoglou I, Sapalidis K. Inhaled chemotherapy adverse effects: mechanisms and protection methods. Lung Cancer Manag 2020; 8:LMT19. [PMID: 31983927 PMCID: PMC6978726 DOI: 10.2217/lmt-2019-0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is still diagnosed at a late stage due to a lack of symptoms. Although there are novel therapies, many patients are still treated with chemotherapy. In an effort to reduce adverse effects associated with chemotherapy, inhaled administration of platinum analogs has been investigated. Inhaled administration is used as a local route in order to reduce the systemic adverse effects; however, this treatment modality has its own adverse effects. In this mini review, we present drugs that were administered as nebulized droplets or dry powder aerosols for non-small-cell lung cancer. We present the adverse effects and methods to overcome them.
Collapse
Affiliation(s)
- Chrysanthi Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Third Department of Surgery, 'AHEPA' University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, 'AHEPA' University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Aikaterini Amaniti
- Anesthesiology Department, 'AHEPA' University Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Athanasios Katsaounis
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Giannakidis
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charilaos Koulouris
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology/Pulmonology/Intensive Care/Nephrology, 'Hof' Clinics, University of Erlangen, Hof, Germany
| | - Haidong Huang
- The Diagnostic & Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Chong Bai
- The Diagnostic & Therapeutic Center of Respiratory Diseases, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Nikolaos Michalopoulos
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kosmas Tsakiridis
- Thoracic Surgery Department, 'Interbalkan' European Medical Center, Thessaloniki, Greece
| | - Konstantinos Romanidis
- Second Department of Surgery, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagoula Oikonomou
- Second Department of Surgery, University Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantina Mponiou
- Radiotherapy Department, 'Theageneio' Anti-Cancer Hospital, Thessaloniki, Greece
| | | | - Alexandru Marian Goganau
- General Surgery Clinic 1, University of Medicine and Pharmacy of Craiova, Craiova County Emergency Hospital, Craiova, Romania
| | - Isaak Kesisoglou
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Sapalidis
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
35
|
Meerovich I, Smith DD, Dash AK. Direct solid-phase peptide synthesis on chitosan microparticles for targeting tumor cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|