1
|
Robin J, Djitro N, Song L, Pyrchla P, Yuan B, Htain P, Goh AFN, Lee J, Quach R, Krause B, Kumar A, Siswara P, Hutchison W, Svobodova S, Kumar B, Webber K, Dorwal P. Mutational landscape of ovarian carcinomas: An Australian study of 116 patients. Pathol Res Pract 2025; 270:155958. [PMID: 40252386 DOI: 10.1016/j.prp.2025.155958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
Understanding genetic biomarkers in ovarian cancer allows for access to targeted clinical management. This retrospective mutational analysis of 116 Australian patients with ovarian cancer complements the development of current knowledge on ovarian cancer biomarkers. In the 116 samples, nearly 500 variants were identified including 19 variants of strong clinical significance, 212 variants of potential clinical significance and 268 variants of uncertain clinical significance (VUS) as per the Association for Molecular Pathology (AMP) guidelines. The most frequently altered gene was TP53 which was altered in 75 % of tumours. Other commonly altered genes included PIK3CA, PTEN, ARID1A, KRAS and BRCA1. Moreover, the biggest differences in between mutational profile was observed in between tumour subtypes, more specifically in between HGSOC and endometrioid tumour. Minimal differences in mutational landscape were identified between primary and metastatic lesions, with only PTEN being significantly more prevalent in primary lesions. PTEN and ARID1A pathogenic variants were more frequently reported in younger patient group. These genetic markers could be used to support clinical care, providing information for diagnosis, prognosis and therapeutic option for the patient.
Collapse
Affiliation(s)
- Julie Robin
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - Noel Djitro
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - Liyan Song
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | | | - Bin Yuan
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - Pamela Htain
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | | | - Janice Lee
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - Robert Quach
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - Broden Krause
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | - Amit Kumar
- Diagnostic Genomics, Monash Health, Melbourne, Australia
| | | | | | | | - Beena Kumar
- Diagnostic Genomics, Monash Health, Melbourne, Australia; Anatomical Pathology, Monash Health, Melbourne, Australia; School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kate Webber
- School of Clinical Sciences, Monash University, Melbourne, Australia; Medical Oncology, Monash Health, Melbourne, Australia
| | - Pranav Dorwal
- Diagnostic Genomics, Monash Health, Melbourne, Australia; Anatomical Pathology, Monash Health, Melbourne, Australia; School of Clinical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
2
|
Yang L, Duan Z, Xu D, Peng Y, Wu Y, Yang Y, Yin Q, Fang L, Yan S, Wu C. Edaravone Alleviates BV-2 Microglia-Mediated Neuroinflammation Through the PI3K/AKT/ NF-κB Pathway. Adv Biol (Weinh) 2025:e2400501. [PMID: 40197850 DOI: 10.1002/adbi.202400501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/10/2025] [Indexed: 04/10/2025]
Abstract
Ischemic stroke (IS) poses a significant threat to human health. Research has demonstrated that microglia (MG)-mediated neuroinflammatory responses play a crucial role in the pathogenesis of IS. Consequently, inhibiting MG activation and reducing the inflammatory response may be key strategies for the clinical treatment of stroke and neurodegenerative diseases. Edaravone (EDA), a potent anti-inflammatory and antioxidant, is currently used in the clinical treatment of IS; however, its anti-inflammatory mechanisms remain inadequately understood. To address this, network pharmacology (NP) analysis is employed to identify the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway as a potential mediator of the inflammatory response triggered by activated microglia following EDA treatment. In vitro oxygen-glucose deprivation (OGD) is used to induce BV-2 MG activation, and an in vivo middle cerebral artery occlusion (MCAO) mouse model is established. Western blot and immunofluorescence staining are used to detect changes in the phosphorylation levels of pathway-related proteins and the expression of inflammatory factors. Additionally, the PI3K pathway inhibitor LY294002 and a PI3K overexpression plasmid are introduced to further analyze the expression changes of these markers. The results suggest that EDA may alleviate the inflammatory response mediated by activated MG through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Li Yang
- School of basic medical science, Kunming Medical University, Kunming, 650500, China
| | - Zhaoda Duan
- School of basic medical science, Kunming Medical University, Kunming, 650500, China
- Institute of biomedical engineering, Kunming Medical Univesity, Kunming, 650500, China
| | - Dongyao Xu
- School of basic medical science, Kunming Medical University, Kunming, 650500, China
| | - Yingqi Peng
- School of basic medical science, Kunming Medical University, Kunming, 650500, China
| | - Yuke Wu
- First school of clinical medicine, Kunming Medical University, Kunming, 650500, China
| | - Yujia Yang
- School of basic medical science, Kunming Medical University, Kunming, 650500, China
| | - Qian Yin
- School of basic medical science, Kunming Medical University, Kunming, 650500, China
| | - Lanxi Fang
- First school of clinical medicine, Kunming Medical University, Kunming, 650500, China
| | - Shan Yan
- Institute of biomedical engineering, Kunming Medical Univesity, Kunming, 650500, China
| | - Chunyun Wu
- School of basic medical science, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
3
|
Yuan S, Bacchetti R, Adams J, Cuffaro D, Rossello A, Nuti E, Santamaria S, Rainero E. The protease ADAMTS5 controls ovarian cancer cell invasion, downstream of Rab25. FEBS J 2025. [PMID: 40164572 DOI: 10.1111/febs.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Ovarian cancer is the 3rd most common gynaecological malignancy worldwide, with a 5-year survival rate of < 30% in the presence of metastasis. Metastatic progression is characterised by extensive remodelling of the extracellular matrix, primarily mediated by secreted proteases, including members of the 'a disintegrin and metalloprotease with thrombospondin motif' (ADAMTS) family. In particular, ADAMTS5 has been reported to be upregulated in ovarian malignant tumours compared to borderline and benign lesions, suggesting it might play a role in metastatic progression. Furthermore, it has been suggested that Rab25, a small GTPase of the Ras family, might upregulate ADAMTS5 expression in ovarian cancer cells. Here we demonstrated that Rab25 promotes ADAMTS5 expression through the activation of the nuclear factor κB (NF-κB) signalling pathway. Furthermore, ADAMTS5 was necessary and sufficient to stimulate ovarian cancer cell migration through complex fibroblast-secreted matrices, while selective ADAMTS5 inhibition prevented ovarian cancer spheroid invasion in 3D systems. Finally, in ovarian cancer patients, high ADAMTS5 expression correlated with poor prognosis. Altogether, these data identify ADAMTS5 as a novel regulator of ovarian cancer cell migration and invasion, suggesting it might represent a previously undescribed therapeutic target to prevent ovarian cancer metastasis.
Collapse
Affiliation(s)
| | | | - Jamie Adams
- School of Biosciences, University of Sheffield, UK
- Clinical Medicine, School of Medicine & Population Health, University of Sheffield, UK
| | | | | | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Italy
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
4
|
Choe S, Jeon M, Yoon H. Advanced Therapeutic Approaches for Metastatic Ovarian Cancer. Cancers (Basel) 2025; 17:788. [PMID: 40075635 PMCID: PMC11898553 DOI: 10.3390/cancers17050788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death among women, which is one of the most common gynecological cancers worldwide. Although several cytoreductive surgeries and chemotherapies have been attempted to address ovarian cancer, the disease still shows poor prognosis and survival rates due to prevalent metastasis. Peritoneal metastasis is recognized as the primary route of metastatic progression in ovarian cancer. It causes severe symptoms in patients, but it is generally difficult to detect at an early stage. Current anti-cancer therapy is insufficient to completely treat metastatic ovarian cancer due to its high rates of recurrence and resistance. Therefore, developing strategies for treating metastatic ovarian cancer requires a deeper understanding of the tumor microenvironment (TME) and the identification of effective therapeutic targets through precision oncology. Given that various signaling pathways, including TGF-β, NF-κB, and PI3K/AKT/mTOR pathways, influence cancer progression, their activity and significance can vary depending on the cancer type. In ovarian cancer, these pathways are particularly important, as they not only drive tumor progression but also impact the TME, which contributes to the metastatic potential. The TME plays a critical role in driving metastatic features in ovarian cancer through altered immunologic interactions. Recent therapeutic advances have focused on targeting these distinct features to improve treatment outcomes. Deciphering the complex interaction between signaling pathways and immune populations contributing to metastatic ovarian cancer provides an opportunity to enhance anti-cancer efficacy. Hereby, this review highlights the mechanisms of signaling pathways in metastatic ovarian cancer and immunological interactions to understand improved immunotherapy against ovarian cancer.
Collapse
Affiliation(s)
- Soohyun Choe
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (S.C.); (M.J.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Minyeong Jeon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (S.C.); (M.J.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (S.C.); (M.J.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
5
|
de Li M, Yang J, Wu X, Chen SS. miR-21-5p Targets PIK3R1 to Regulate the NF- κB Signaling Pathway, Inhibiting the Invasion and Progression of Prolactinoma. Int J Endocrinol 2025; 2025:7741091. [PMID: 39949569 PMCID: PMC11824381 DOI: 10.1155/ije/7741091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 02/16/2025] Open
Abstract
Prolactinomas (PRLs) are benign tumors with malignant characteristics that can invade the surrounding tissue structures and are challenging to treat. It has been reported that miR-21-5p expression in pituitary adenomas is correlated with tumor invasion and size. However, the mechanism of action of miR-21-5p in PRL remains unclear. Dysregulation of the phosphoinositide-3-kinase (PI3K) regulatory Subunit 1 pathway occurs frequently in cancer and plays an important role in tumor progression as an important component of the PI3K pathway. However, the role of PIK3R1 in PRL and its regulatory mechanism are unknown. In this study, we first explored the effect of miR-21-5p in PRL and then confirmed that PIK3R1 is a direct target of miR-21-5p using bioinformatics and cellular experiments. Subsequent in vitro experiments demonstrated that overexpression of PIK3R1 significantly attenuated the biological effects of miR-21-5p in PRL cells, such as promoting proliferation and invasion. Finally, we explored the mechanism by which PIK3R1 affects PRL progression and found that the inhibition of IκBa degradation by PIK3R1 impacts PRL progression via the miR-21-5p/PIK3R1/MMP pathway.
Collapse
Affiliation(s)
- Min de Li
- Department of Rehabilitation Medicine, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Juan Yang
- Department of Rehabilitation Medicine, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shang Si Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
6
|
Ajayi AF, Oyovwi MO, Akano OP, Akanbi GB, Adisa FB. Molecular pathways in reproductive cancers: a focus on prostate and ovarian cancer. Cancer Cell Int 2025; 25:33. [PMID: 39901204 PMCID: PMC11792371 DOI: 10.1186/s12935-025-03658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Reproductive cancers, including prostate and ovarian cancer, are highly prevalent worldwide and pose significant health challenges. The molecular underpinnings of these cancers are complex and involve dysregulation of various cellular pathways. Understanding these pathways is crucial for developing effective therapeutic strategies. This review aims to provide an overview of the molecular pathways implicated in prostate and ovarian cancers, highlighting key genetic alterations, signaling cascades, and epigenetic modifications. A comprehensive literature search was conducted using databases such as PubMed, Web of Science, and Google Scholar. Articles focusing on molecular pathways in prostate and ovarian cancer were reviewed and analyzed. In prostate cancer, recurrent mutations in genes like AR, TP53, and PTEN drive tumor growth and progression. Androgen signaling plays a significant role, with alterations in the AR pathway contributing to resistance to antiandrogen therapies. In ovarian cancer, high-grade serous carcinomas are characterized by mutations in TP53, BRCA1/2, and homologous recombination repair genes. PI3K and MAPK pathways are frequently activated, promoting cell proliferation and survival. Epigenetic alterations, including DNA methylation and histone modifications, are also prevalent in both cancer types. The molecular pathways involved in prostate and ovarian cancer are diverse and complex. Targeting these pathways with precision medicine approaches holds promise for improving patient outcomes. Further research is needed to elucidate the mechanisms of resistance and identify novel therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo, Nigeria
- Department of Physiology, Adeleke University, Ede, Osun, Nigeria
| | | | - Oyedayo Phillips Akano
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan Remo, Ogun, Nigeria
| | - Grace Bosede Akanbi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Florence Bukola Adisa
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
7
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
8
|
Russo A, Moy J, Khin M, Dorsey TR, Lopez Carrero A, Burdette JE. Loss of phosphatase and tensin homolog ( PTEN) increases Lysyl oxidase-like 2 ( LOXL2) expression enhancing the growth of fallopian tube epithelial cells as three-dimensional spheroids. CANCER PATHOGENESIS AND THERAPY 2025; 3:68-75. [PMID: 39872364 PMCID: PMC11763906 DOI: 10.1016/j.cpt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 01/30/2025]
Abstract
Background High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of all ovarian cancer-related deaths. Multiple studies have suggested that the fallopian tube epithelium (FTE) serves as the cell of origin of HGSOC. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and its loss is sufficient to induce numerous tumorigenic changes in FTE, including increased migration, formation of multicellular tumor spheroids (MTSs), and ovarian colonization. In murine oviductal epithelial (MOE) cells (the equivalent of human FTE) loss of PTEN results in the upregulation of transcripts associated with the extracellular matrix, with a specific focus on the elevation of lysyl oxidase-like 2 (LOXL2). Although LOXL2 is known to drive transformation and invasion in solid tumors and is associated with a poor prognosis in ovarian cancer, its specific role in the tumorigenesis of ovarian cancer originating from FTE remains unclear. Therefore, we aim to investigate whether LOXL2 mediates tumorigenesis from the fallopian tube epithelium. Methods In this study, we utilized clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (CAS9) technology to delete LOXL2 in PTEN-deficient MOE cells to understand its role in mediating the oncogenic effects of PTEN loss. In addition, CRISPR-CAS9 was used to delete LOXL2 in OVCAR8 ovarian cancer cells. We monitored the changes in tumorigenic properties, such as migration, invasion, and growth of three-dimensional (3D) spheroids, to assess whether the loss of LOXL2 resulted in any changes. Results We found that a reduction in LOXL2 expression did not significantly change the migration or invasive capabilities of PTEN-depleted MOE or human ovarian cancer cells. However, we found that a reduction in LOXL2 expression resulted in a significant reduction in 3D MTS formation and survival in both lines. Conclusions These results reveal for the first time that PTEN loss in FTE cells increases LOXL2 expression through downregulation of Pax2, and LOXL2 deletion blocks 3D spheroid formation.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
| | - Junlone Moy
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | - Manead Khin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
| | | | - Alfredo Lopez Carrero
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
9
|
Reddy T, Puri A, Guzman-Rojas L, Thomas C, Qian W, Zhou J, Zhao H, Mahboubi B, Oo A, Cho YJ, Kim B, Thaiparambil J, Rosato R, Martinez KO, Chervo MF, Ayerbe C, Giese N, Wink D, Lockett S, Wong S, Chang J, Krishnamurthy S, Yam C, Moulder S, Piwnica-Worms H, Meric-Bernstam F, Chang J. NOS inhibition sensitizes metaplastic breast cancer to PI3K inhibition and taxane therapy via c-JUN repression. Nat Commun 2024; 15:10737. [PMID: 39737957 PMCID: PMC11685991 DOI: 10.1038/s41467-024-54651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane. Mechanistically, NOS blockade leads to a decrease in the S-nitrosylation of c-Jun NH2-terminal kinase (JNK)/c-Jun complex to repress its transcriptional output, leading to enhanced tumor differentiation and associated chemosensitivity. As a result, combined NOS and PI3K inhibition with taxane targets MpBC stem cells and improves survival in patient-derived xenograft models relative to single-/dual-agent therapy. Similarly, biopsies from MpBC tumors that responded to L-NMMA+taxane therapy showed a post-treatment reversal of epithelial-to-mesenchymal transition and decreased stemness. Our findings suggest that combined inhibition of iNOS and PI3K is a unique strategy to decrease chemoresistance and improve clinical outcomes in MpBC.
Collapse
Affiliation(s)
- Tejaswini Reddy
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Akshjot Puri
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | | | - Christoforos Thomas
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Wei Qian
- Houston Methodist Research Institute, Houston, TX, USA
| | - Jianying Zhou
- Houston Methodist Research Institute, Houston, TX, USA
| | - Hong Zhao
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Bijan Mahboubi
- Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Young-Jae Cho
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | | - Camila Ayerbe
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Noah Giese
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - David Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, USA
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stephen Wong
- Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Neal Cancer Center, Houston, TX, USA
| | - Jeffrey Chang
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Clinton Yam
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Jenny Chang
- Houston Methodist Research Institute, Houston, TX, USA.
- Houston Methodist Neal Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Tafazoli P, Rad HM, Mashayekhi M, Siadat SF, Fathi R. miRNAs in ovarian disorders: Small but strong cast. Pathol Res Pract 2024; 264:155709. [PMID: 39522318 DOI: 10.1016/j.prp.2024.155709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This research aimed to analyze alterations in microRNA expression in the diseases POF (Premature Ovarian Failure), PCOS (Polycystic Ovarian Syndrome), and ovarian cancer in order to understand the molecular changes associated with these conditions. The findings could potentially be utilized for diagnostic, therapeutic, predictive, and preventive purposes. Furthermore, the impact and role of microRNAs in each ailment, along with their functional pathways, were elucidated and examined. METHODS In this study, the genes involved in the disease were studied, and then the miRNAs that targeted these genes were evaluated, and finally the signaling and functional pathways of each of the miRNAs were assessed. In this process, genetic databases and previous studies were carefully assessed. RESULTS miRNAs are short nucleotide sequences that belong to the category of non-coding RNAs. They play a crucial role in various physiological activities, including cell division, growth, differentiation, and cell death (necrosis and apoptosis), miRNAs are involved in various physiological processes Such alterations are common in various diseases, including cancer. miRNAs are involved in various physiological processes, such as folliculogenesis and steroidogenesis, as well as in pathological conditions such as POF, PCOS, and ovarian cancer. They have powerful regulatory effects and controlling the most activities of normal and pathological cells. While microRNAs (miRNAs) play a significant role in normal ovarian functions, there are reports of their expression changes in PCOS, ovarian cancer, and POF. CONCLUSIONS miRNAs have been found to exert significant influence on both physiological and pathological cellular processes. Understanding the dynamic patterns of miRNA alterations can provide valuable insights for researchers and therapists, enabling them to utilize these biomarkers effectively in diagnostic, therapeutic, and preventive applications.
Collapse
Affiliation(s)
- Parsa Tafazoli
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hanieh Motahari Rad
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehri Mashayekhi
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
12
|
Huang YK, Wang TM, Chen CY, Li CY, Wang SC, Irshad K, Pan Y, Chang KC. The role of ALDH1A1 in glioblastoma proliferation and invasion. Chem Biol Interact 2024; 402:111202. [PMID: 39128802 DOI: 10.1016/j.cbi.2024.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
High-grade gliomas, including glioblastoma multiforme (GBM), continue to be a leading aggressive brain tumor in adults, marked by its rapid growth and invasive nature. Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), an enzyme, plays a significant role in tumor progression, yet its function in high-grade gliomas is still poorly investigated. In this study, we evaluated ALDH1A1 levels in clinical samples of GBM. We also assessed the prognostic significance of ALDH1A1 expression in GBM and LGG (low grade glioma) patients using TCGA (The Cancer Genome Atlas) database analysis. The MTT and transwell assays were utilized to examine cell growth and the invasive capability of U87 cells, respectively. We quantitatively examined markers for cell proliferation (Ki-67 and cyclin D1) and invasion (MMP2 and 9). A Western blot test was conducted to determine the downstream signaling of ALDH1A1. We found a notable increase in ALDH1A1 expression in high-grade gliomas compared to their low-grade counterparts. U87 cells that overexpressed ALDH1A1 showed increased cell growth and invasion. We found that ALDH1A1 promotes the phosphorylation of AKT, and inhibiting AKT phosphorylation mitigates the ALDH1A1's effects on tumor growth and migration. In summary, our findings suggest ALDH1A1 as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Ming Wang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
13
|
Thaklaewphan P, Wikan N, Potikanond S, Nimlamool W. Oxyresveratrol Enhances the Anti-Cancer Effect of Cisplatin against Epithelial Ovarian Cancer Cells through Suppressing the Activation of Protein Kinase B (AKT). Biomolecules 2024; 14:1140. [PMID: 39334906 PMCID: PMC11430010 DOI: 10.3390/biom14091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Epithelial ovarian carcinoma poses a significant challenge due to its resistance to chemotherapy and propensity for metastasis, thereby reducing the effectiveness of conventional treatments. Hence, the identification of novel compounds capable of augmenting the anti-cancer efficacy of platinum-based chemotherapy is imperative. Oxyresveratrol (OXY), a derivative of resveratrol, has been demonstrated to possess antiproliferative and apoptosis-inducing effects across various cancer cell lines. Notably, OXY appears to exert its effects by inhibiting the PI3K/AKT/mTOR signaling pathway. However, the synergistic potential of OXY in combination with cisplatin against epithelial ovarian cancer has not yet been elucidated. The current study investigated the synergistic effects of OXY and cisplatin on the ovarian cancer cell lines SKOV3 and TOV21G. We found that OXY significantly enhanced cisplatin's ability to reduce cell viability, induce apoptosis, induce cell cycle arrest, and increase the proportion of cells in the sub-G1 phase. Furthermore, OXY treatment alone dose-dependently inhibited the production of anti-apoptotic proteins including Mcl-1, Bcl-xL, and XIAP under EGF activation. Mechanistically, OXY suppressed the PI3K/AKT/mTOR signaling pathway by reducing phosphorylated AKT, while having no discernible effect on the MAPK pathway. These findings highlight OXY's potential to enhance ovarian cancer cell sensitivity to chemotherapy, suggesting its development as a pharmaceutical adjunct for clinical use in combination therapies.
Collapse
Affiliation(s)
- Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (N.W.); (S.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (N.W.); (S.P.)
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (N.W.); (S.P.)
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (N.W.); (S.P.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Dong L, Tang Y, Wen S, He Y, Li F, Deng Y, Tao Z. Fecal Microbiota Transplantation Alleviates Allergic Rhinitis via CD4 + T Cell Modulation Through Gut Microbiota Restoration. Inflammation 2024; 47:1278-1297. [PMID: 38294580 DOI: 10.1007/s10753-024-01975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Allergic rhinitis (AR) is an allergic condition of the upper respiratory tract with a complex pathogenesis, including epithelial barrier disruption, immune regulation, and gut microbiota, which is not yet fully understood. Gut microbiota is closely linked to allergic diseases, including AR. Fecal microbiota transplantation (FMT) has recently been recognized as a potentially effective therapy for allergic diseases. However, the efficacy and mechanism of action of FMT in AR remain unknown. Herein, we aimed to observe the implications of gut microbiota on epithelial barrier function and T cell homeostasis, as well as the effect of FMT in AR, using the ovalbumin (OVA)-induced AR mice. The intestinal microbiota of recipient mice was cleared using an antibiotic cocktail; thereafter, FMT was performed. Subsequently, the nasal symptom scores and histopathological features of colon and nasal mucosa tissues of mice were monitored, and serum OVA-sIgE and cytokines of IL-4, IFNγ, IL-17A, and IL-10 cytokine concentrations were examined. Thereafter, tight junction protein and CD4+ T cell-related transcription factor and cytokine expressions were observed in the colon and nasal mucosa, and changes in the expression of PI3K/AKT/mTOR and NFκB signaling pathway were detected by WB assay in each group. Fecal DNA was extracted from the four mice groups for high-throughput 16S rRNA sequencing. FMT ameliorated nasal symptoms and reduced nasal mucosal inflammation in AR mice. Moreover, according to 16S rRNA sequencing, FMT restored the disordered gut microbiota in AR mice. Following FMT, ZO-1 and claudin-1 and Th1/Th2/Th17-related transcription factor and cytokine expressions were upregulated, whereas Treg cell-related Foxp3 and IL-10 expressions were downregulated. Mechanistic studies have revealed that FMT also inhibited PI3K/AKT/mTOR and NF-κB pathway protein phosphorylation in AR mouse tissues. FMT alleviates allergic inflammation in AR by repairing the epithelial barrier and modulating CD4+ T cell balance and exerts anti-inflammatory effects through the PI3K/AKT/mTOR and NF-κB signaling pathways. Moreover, gut microbiota disorders are involved in AR pathogenesis. Disturbed gut microbiota causes an altered immune-inflammatory state in mice and increases susceptibility to AR. This study suggested the regulatory role of the gut-nose axis in the pathogenesis of AR is an emerging field, which provides novel directions and ideas for the treatment of AR.
Collapse
Affiliation(s)
- Lin Dong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yulei Tang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan He
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China.
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
15
|
Zhao C, Zhang F, Tian Y, Tang B, Luo J, Zhang J. m 6 A reader IGF2BP1 reduces the sensitivity of nasopharyngeal carcinoma cells to Taxol by upregulation of AKT2. Anticancer Drugs 2024; 35:501-511. [PMID: 38478015 DOI: 10.1097/cad.0000000000001591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Taxol is widely used in the treatment of nasopharyngeal carcinoma (NPC); nevertheless, the acquired resistance of NPC to Taxol remains one of the major obstacles in clinical treatment. In this study, we aimed to investigate the role and mechanism of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in Taxol resistance of NPC. Taxol-resistant NPC cell lines were established by exposing to gradually increased concentration of Taxol. Relative mRNA and protein levels were tested using qRT-PCR and western blot, respectively. NPC cell viability and apoptosis were assessed by cell counting kit-8 and flow cytometry analysis, respectively. Cell migration and invasion capacities were measured using transwell assay. Interaction between IGF2BP1 and AKT2 was examined by RNA immunoprecipitation assay. The N6-methyladenosine level of AKT2 was tested using methylated RNA immunoprecipitation-qPCR. IGF2BP1 expression was enhanced in Taxol-resistant NPC cell lines. Knockdown of IGF2BP1 strikingly enhanced the sensitivity of NPC cells to Taxol and repressed the migration and invasion of NPC cells. Mechanistically, IGF2BP1 elevated the expression of AKT2 by increasing its mRNA stability. Furthermore, overexpression of AKT2 reversed the inhibitory roles of IGF2BP1 silence on Taxol resistance and metastasis. Our results indicated that IGF2BP1 knockdown enhanced the sensitivity of NPC cells to Taxol by decreasing the expression of AKT2, implying that IGF2BP1 might be promising candidate target for NPC treatment.
Collapse
Affiliation(s)
- Chong Zhao
- Department of Otorhinolaryngology and Head and Neck Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | | | | | | | | | | |
Collapse
|
16
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
17
|
Bae S, Bae S, Kim HS, Lim YJ, Kim G, Park IC, So KA, Kim TJ, Lee JH. Deguelin Restores Paclitaxel Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells via Inhibition of the EGFR Signaling Pathway. Cancer Manag Res 2024; 16:507-525. [PMID: 38827785 PMCID: PMC11144006 DOI: 10.2147/cmar.s457221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ovarian cancer is one of women's malignancies with the highest mortality among gynecological cancers. Paclitaxel is used in first-line ovarian cancer chemotherapy. Research on paclitaxel-resistant ovarian cancer holds significant clinical importance. Methods Cell viability and flow cytometric assays were conducted at different time and concentration points of deguelin and paclitaxel treatment. Immunoblotting was performed to assess the activation status of key signaling molecules important for cell survival and proliferation following treatment with deguelin and paclitaxel. The fluo-3 acetoxymethyl assay for P-glycoprotein transport activity assay and cell viability assay in the presence of N-acetyl-L-cysteine were also conducted. Results Cell viability and flow cytometric assays demonstrated that deguelin resensitized paclitaxel in a dose- and time-dependent manner. Cotreatment with deguelin and paclitaxel inhibited EGFR and its downstream signaling molecules, including AKT, ERK, STAT3, and p38 MAPK, in SKOV3-TR cells. Interestingly, cotreatment with deguelin and paclitaxel suppressed the expression level of EGFR via the lysosomal degradation pathway. Cotreatment did not affect the expression and function of P-glycoprotein. N-acetyl-L-cysteine failed to restore cell cytotoxicity when used in combination with deguelin and paclitaxel in SKOV3-TR cells. The expression of BCL-2, MCL-1, and the phosphorylation of the S155 residue of BAD were downregulated. Moreover, inhibition of paclitaxel resistance by deguelin was also observed in HeyA8-MDR cells. Conclusion Our research showed that deguelin effectively suppresses paclitaxel resistance in SKOV3-TR ovarian cancer cells by downregulating the EGFR and its downstream signaling pathway and modulating the BCL-2 family proteins. Furthermore, deguelin exhibits inhibitory effects on paclitaxel resistance in HeyA8-MDR ovarian cancer cells, suggesting a potential mechanism for paclitaxel resensitization that may not be cell-specific. These findings suggest that deguelin holds promise as an anticancer therapeutic agent for overcoming chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
18
|
Xia Q, Gao W, Yang J, Xing Z, Ji Z. The deregulation of arachidonic acid metabolism in ovarian cancer. Front Oncol 2024; 14:1381894. [PMID: 38764576 PMCID: PMC11100328 DOI: 10.3389/fonc.2024.1381894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.
Collapse
Affiliation(s)
- Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhifang Xing
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Zhang B, Zhang M, Tian J, Zhang X, Zhang D, Li J, Yang L. Advances in the regulation of radiation-induced apoptosis by polysaccharides: A review. Int J Biol Macromol 2024; 263:130173. [PMID: 38360238 DOI: 10.1016/j.ijbiomac.2024.130173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polysaccharides are biomolecules composed of monosaccharides that are widely found in animals, plants and microorganisms and are of interest for their various health benefits. Cumulative studies have shown that the modulation of radiation-induced apoptosis by polysaccharides can be effective in preventing and treating a wide range of radiation injuries with safety and few side effects. Therefore, this paper summarizes the monosaccharide compositions, molecular weights, and structure-activity relationships of natural polysaccharides that regulate radiation-induced apoptosis, and also reviews the molecular mechanisms by which these polysaccharides modulate radiation-induced apoptosis, primarily focusing on promoting cancer cell apoptosis to enhance radiotherapy efficacy, reducing radiation damage to normal tissues, and inhibiting apoptosis in normal cells. Additionally, the role of gut microbiota in mediating the interaction between polysaccharides and radiation is discussed, providing innovative ideas for various radiation injuries, including hematopoiesis, immunity, and organ damage. This review will contribute to a better understanding of the value of natural polysaccharides in the field of radiation and provide guidance for the development of natural radioprotective agents and radiosensitizers.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Mingyu Zhang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xi Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Dan Zhang
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Jiabao Li
- Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China
| | - Lei Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Department of Nutrition, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, China.
| |
Collapse
|
20
|
Li Y, Li L, Wang X, Huang H, Han T. Determining the Mechanism of Banxia Xiexin Decoction for Gastric Cancer Treatment through Network Analysis and Experimental Validation. ACS OMEGA 2024; 9:10119-10131. [PMID: 38463316 PMCID: PMC10918669 DOI: 10.1021/acsomega.3c06330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Gastric cancer (GC) is a widespread malignancy. Banxia Xiexin decoction (BXD) has been used for GC treatment, but the specific mechanisms underlying its therapeutic effects remain controversial. This study used a comprehensive approach to network pharmacology combined with experimental validation to elucidate the mechanism of BXD's anti-GC effects. Initially, we used the UHPLC-LTQ-Orbitrap-MS/MS technology to identify the main chemical constituents of BXD, as well as potential targets associated with these constituents. Then, we employed the Genecard and Online Mendelian Inheritance in Man (OMIM) to determine the targets specifically related to GC. We employed a combination of Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction analysis to predict the crucial targets of BXD and uncover the pathways involved in its therapeutic effects against GC. The results were subsequently verified through cell experiments. The analysis revealed 174 common targets shared by BXD and GC. GO enrichment analysis highlighted biological processes, such as autophagy, protein kinase activity, and apoptosis. Moreover, the enrichment analysis revealed several significant pathways that serve as the primary mechanisms by which BXD exerts its effects. Notably, these pathways include PI3K-Akt, HIF-1, and Pathways in cancer. Subsequent in vitro experiments demonstrated that BXD effectively hindered GC cell proliferation, stimulated autophagy, and facilitated apoptosis by PI3K-Akt-mTOR signaling pathway regulation. These findings reveal the effectiveness of BXD against GC through diverse components, targets, and pathways, indicating that BXD holds potential therapeutic value in GC treatment. This study uncovers the intricate biological mechanisms that underlie BXD's efficacy in treating GC through the integration of network pharmacology analysis and rigorous in vitro experiments.
Collapse
Affiliation(s)
- Yaxing Li
- Pharmacology
of Traditional Chinese Medical Formulas, College of Traditional Chinese
Medicine, Shandong University of Traditional
Chinese Medicine, Jinan, Shandong 250000, China
| | - Ling Li
- Pharmacology
of Traditional Chinese Medical Formulas, College of Traditional Chinese
Medicine, Shandong University of Traditional
Chinese Medicine, Jinan, Shandong 250000, China
| | - Xue Wang
- Pharmacology
of Traditional Chinese Medical Formulas, College of Traditional Chinese
Medicine, Shandong University of Traditional
Chinese Medicine, Jinan, Shandong 250000, China
| | - Hailiang Huang
- Rehabilitation
Medicine and Physiotherapy, School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Tao Han
- Pharmacology
of Traditional Chinese Medical Formulas, College of Traditional Chinese
Medicine, Shandong University of Traditional
Chinese Medicine, Jinan, Shandong 250000, China
| |
Collapse
|
21
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:141-158. [PMID: 38557273 DOI: 10.1080/13543776.2024.2338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
22
|
Gala K, Jain M, Shah P, Pandey A, Garg M, Khattar E. Role of p53 transcription factor in determining the efficacy of telomerase inhibitors in cancer treatment. Life Sci 2024; 339:122416. [PMID: 38216120 DOI: 10.1016/j.lfs.2024.122416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
AIM Telomerase expression is unique to cancer cells, making it a promising target for therapy. However, a major drawback of telomerase inhibition is that it affects cancer cell proliferation only when telomeres shorten, creating a lag phase post-continuous drug treatment. Acute cytotoxicity of telomerase inhibitors is dependent on their ability to induce DNA damage. p53 senses DNA damage and is the primary effector required for sensitizing cells towards apoptosis. MAIN METHODS Isogenic p53+/+ and p53-/- ovarian cancer cell lines were generated using the CRISPR/Cas9 system and the anti-cancer effect of telomerase inhibitors MST-312 and BIBR1532 were determined. Flow cytometry, real-time PCR, and western blot were performed to study cell cycle, apoptosis, and gene expression. KEY FINDINGS We report that MST-312 exhibits p53-dependent cytotoxicity, while BIBR1532 exhibits p53-independent cytotoxicity. Colony-forming ability also confirms the p53-dependent effect of MST-312. Re-expression of p53 in p53-/- cells could rescue MST-312 sensitivity. In p53+/+ cells, MST-312 causes S phase arrest and activation of p53-dependent target genes like anti-apoptosis markers (Fas and Puma) and cell cycle markers (p21 and cyclinB). In p53-/- cells, MST-312 causes S/G2/M arrest. BIBR1532 induces S/G2/M phase cell cycle arrest irrespective of p53 status. This correlates with the expression of the DNA damage marker (γ-H2AX). Long-term continuous treatment with MST-312 or BIBR1532 results in p53-independent telomere shortening. SIGNIFICANCE In summary, we demonstrate that acute anti-cancer effects of MST-312 are dependent on p53 expression. Hence, it is important to consider the p53 expression status in cancer cells when selecting and administering telomerase inhibitors.
Collapse
Affiliation(s)
- Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India
| | - Meghna Jain
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India
| | - Prachi Shah
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India
| | - Amit Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Vile Parle West, Mumbai 400056, India.
| |
Collapse
|
23
|
Alzahrani AA, Almajidi YQ, Jasim SA, Hjazi A, Olegovich BD, Alkhafaji AT, Abdulridui HA, Ahmed BA, Alawadi A, Alsalamy A. Getting to know ovarian cancer: Focusing on the effect of LncRNAs in this cancer and the effective signaling pathways. Pathol Res Pract 2024; 254:155084. [PMID: 38244434 DOI: 10.1016/j.prp.2023.155084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024]
Abstract
This article undertakes a comprehensive investigation of ovarian cancer, examining the complex nature of this challenging disease. The main focus is on understanding the role of long non-coding RNAs (lncRNAs) in the context of ovarian cancer (OC), and their regulatory functions in disease progression. Through extensive research, the article identifies specific lncRNAs that play significant roles in the intricate molecular processes of OC. Furthermore, the study examines the signaling pathways involved in the development of OC, providing a detailed comprehension of the underlying molecular mechanisms. By connecting lncRNA dynamics with signaling pathways, this exploration not only advances our understanding of ovarian cancer but also reveals potential targets for therapeutic interventions. The findings open up opportunities for targeted treatments, highlighting the importance of personalized approaches in addressing this complex disease and driving progress in ovarian cancer research and treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia
| | - Bokov Dmitry Olegovich
- Institute of Pharmacy, Moscow Medical University, Moscow, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | | | | | - Batool Ali Ahmed
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Iraq
| |
Collapse
|
24
|
Zhu J, Han M, Yang Y, Feng R, Hu Y, Wang Y. Exploring the Mechanism of Brucea Javanica against Ovarian Cancer based on Network Pharmacology and the Influence of Luteolin on the PI3K/AKT Pathway. Comb Chem High Throughput Screen 2024; 27:157-167. [PMID: 37366364 DOI: 10.2174/1386207326666230627114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is a commonly diagnosed female cancer around the world. The Chinese herbal medicine Brucea Javanica has an anti-cancer effect. However, there is no relevant report on whether Brucea Javanica is effective in treating OC, and the corresponding mechanism is also unknown. OBJECTIVE This study was projected to excavate the active components and underpinned molecular mechanisms of Brucea Javanica in treating ovarian cancer (OC) through network pharmacology combined with in vitro experiments. METHODS The essential active components of Brucea Javanica were selected using the TCMSP database. The OC-related targets were selected by GeneCards, intersecting targets were obtained by Venn Diagram. The core targets were obtained through the PPI network and Cytoscape, and the key pathway was gained through GO and KEGG enrichment analyses. Meanwhile, docking conformation was observed as reflected by molecular docking. MTT, colony formation assay and flow cytometer (FCM) analysis were performed to determine cell proliferation and apoptosis, respectively. Finally, Levels of various signaling proteins were evaluated by western blotting. RESULTS Luteolin, β-sitosterol and their corresponding targets were selected as the essential active components of Brucea Javanica. 76 intersecting targets were obtained by Venn Diagram. TP53, AKT1, and TNF were obtained through the PPI network and Cytoscape, and the key pathway PI3K/AKT was gained through GO and KEGG enrichment analyses. A good docking conformation was observed between luteolin and AKT1. Luteolin could hinder A2780 cell proliferation, induce cell apoptosis and enhance the inhibition of the PI3K/AKT pathway. CONCLUSION It was verified in vitro that luteolin could hinder OC cell proliferation and activate the PI3K/AKT pathway to lead to apoptosis.
Collapse
Affiliation(s)
- Jufan Zhu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Mengfei Han
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yiheng Yang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Renqian Feng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yan Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yuli Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
25
|
Wu Y, Li CS, Meng RY, Jin H, Chai OH, Kim SM. Regulation of Hippo-YAP/CTGF signaling by combining an HDAC inhibitor and 5-fluorouracil in gastric cancer cells. Toxicol Appl Pharmacol 2024; 482:116786. [PMID: 38086440 DOI: 10.1016/j.taap.2023.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Histone deacetylase (HDAC) inhibitors diminish carcinogenesis, metastasis, and cancer cell proliferation by inducing death in cancer cells. Tissue regeneration and organ development are highly dependent on the Hippo signaling pathway. Targeting the dysregulated hippo pathway is an excellent approach for cancer treatment. According to the results of this study, the combination of panobinostat, a histone deacetylase inhibitor, and 5-fluorouracil (5-FU), a chemotherapy drug, can act synergistically to induce apoptosis in gastric cancer cells. The combination of panobinostat and 5-FU was more effective in inhibiting cell viability than either treatment alone by elevating the protein levels of cleaved PARP and cleaved caspase-9. By specifically targeting E-cadherin, vimentin, and MMP-9, the combination of panobinostat and 5-FU significantly inhibited cell migration. Additionally, panobinostat significantly increased the anticancer effects of 5-FU by activating Hippo signaling (Mst 1 and 2, Sav1, and Mob1) and inhibiting the Akt signaling pathway. As a consequence, there was a decrease in the amount of Yap protein. The combination therapy of panobinostat with 5-FU dramatically slowed the spread of gastric cancer in a xenograft animal model by deactivating the Akt pathway and supporting the Hippo pathway. Since combination treatment exhibits much higher anti-tumor potential than 5-FU alone, panobinostat effectively potentiates the anti-tumor efficacy of 5-FU. As a result, it is believed that panobinostat and 5-FU combination therapy will be useful as supplemental chemotherapy in the future.
Collapse
Affiliation(s)
- Yanling Wu
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Cong Shan Li
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Ruo Yu Meng
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ok Hee Chai
- Department of Anatomy, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
26
|
Huang Z, Byrd O, Tan S, Hu K, Knight B, Lo G, Taylor L, Wu Y, Berchuck A, Murphy SK. Periostin facilitates ovarian cancer recurrence by enhancing cancer stemness. Sci Rep 2023; 13:21382. [PMID: 38049490 PMCID: PMC10695946 DOI: 10.1038/s41598-023-48485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The lethality of epithelial ovarian cancer (OC) is largely due to a high rate of recurrence and development of chemoresistance, which requires synergy between cancer cells and the tumor microenvironment (TME) and is thought to involve cancer stem cells. Our analysis of gene expression microarray data from paired primary and recurrent OC tissues revealed significantly elevated expression of the gene encoding periostin (POSTN) in recurrent OC compared to matched primary tumors (p = 0.015). Secreted POSTN plays a role in the extracellular matrix, facilitating epithelial cell migration and tissue regeneration. We therefore examined how elevated extracellular POSTN, as we found is present in recurrent OC, impacts OC cell functions and phenotypes, including stemness. OC cells cultured with conditioned media with high levels of periostin (CMPOSTNhigh) exhibited faster migration (p = 0.0044), enhanced invasiveness (p = 0.006), increased chemoresistance (p < 0.05), and decreased apoptosis as compared to the same cells cultured with control medium (CMCTL). Further, CMPOSTNhigh-cultured OC cells exhibited an elevated stem cell side population (p = 0.027) along with increased expression of cancer stem cell marker CD133 relative to CMCTL-cultured cells. POSTN-transfected 3T3-L1 cells that were used to generate CMPOSTNhigh had visibly enhanced intracellular and extracellular lipids, which was also linked to increased OC cell expression of fatty acid synthetase (FASN) that functions as a central regulator of lipid metabolism and plays a critical role in the growth and survival of tumors. Additionally, POSTN functions in the TME were linked to AKT pathway activities. The mean tumor volume in mice injected with CMPOSTNhigh-cultured OC cells was larger than that in mice injected with CMCTL-cultured OC cells (p = 0.0023). Taken together, these results show that elevated POSTN in the extracellular environment leads to more aggressive OC cell behavior and an increase in cancer stemness, suggesting that increased levels of stromal POSTN during OC recurrence contribute to more rapid disease progression and may be a novel therapeutic target. Furthermore, they also demonstrate the utility of having matched primary-recurrent OC tissues for analysis and support the need for better understanding of the molecular changes that occur with OC recurrence to develop ways to undermine those processes.
Collapse
Affiliation(s)
- Zhiqing Huang
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
- Department of Obstetrics and Gynecology, Duke University Medical Center, 701 West Main Street, Suite 510, Duke, PO Box 90534, Durham, NC, 27701, USA.
| | - Olivia Byrd
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Sarah Tan
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Katrina Hu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Bailey Knight
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Gaomong Lo
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Lila Taylor
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Yuan Wu
- Biostatistics & Bioinformatics, Division of Biostatistics, Biostatistics & Bioinformatics, Duke University, Durham, USA
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Susan K Murphy
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
27
|
Wang M, Zhong XG. Detection and significance of AKT/mTOR/P70S6K signaling pathway in gastrointestinal stromal tumors. Asian J Surg 2023; 46:5707-5708. [PMID: 37625962 DOI: 10.1016/j.asjsur.2023.08.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Affiliation(s)
- Meng Wang
- Department of Gastrointestinal Hernia Intestinal Fistula Surgery, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, 530000, Guangxi Zhuang Autonomous Region, China.
| | - Xiao Gang Zhong
- Department of Gastrointestinal Hernia Intestinal Fistula Surgery, Guangxi Zhuang Autonomous Region People's Hospital, Nanning, 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
28
|
Gai R, Chen C, Zhang W, Ma J, Wang X, Chi X, Li G. Safety and Toxicology Study of Hu7691, a Novel AKT Inhibitor, following Oral Administration in Rats. TOXICS 2023; 11:880. [PMID: 37999532 PMCID: PMC10674281 DOI: 10.3390/toxics11110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Hu7691 represents a novel Pan-Akt kinase inhibitor, demonstrating excellent selectivity towards non-AGC kinase families and pronounced inhibitory effects on the proliferation of multiple tumor cell lines. However, there is currently a notable absence of in vivo toxicological research evidence concerning Hu7691. This study represents the first investigation into the 14-day repeated-dose toxicity of Hu7691 in male and female Sprague Dawley (SD) rats. Male rats were administered daily doses of 12.5, 50, 100, and 150 mg/kg/day, while female rats received doses of 12.5, 25, 50, and 75 mg/kg/day for 14 consecutive days. Hematological assessments, organ weights, and histopathological examinations revealed corresponding alterations, suggesting potential target organs for toxicity including the spleen, thymus, and gastrointestinal tract. It is worth noting that the test substance may also impact the liver, kidneys, heart, and ovaries. The No Observed Effect Level (NOAEL) was determined to be no greater than 12.5 mg/kg/day. Based on the observed gender-related toxicity differences in preliminary trials, it is recommended that the high dose reference dose for male animals in formal experiments should not be less than 100 mg/kg/day, while for female animals, it should be less than 50 mg/kg/day.
Collapse
Affiliation(s)
- Renhua Gai
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China;
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.C.); (W.Z.); (J.M.); (X.W.); (X.C.)
| | - Chao Chen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.C.); (W.Z.); (J.M.); (X.W.); (X.C.)
| | - Wei Zhang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.C.); (W.Z.); (J.M.); (X.W.); (X.C.)
| | - Jian Ma
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.C.); (W.Z.); (J.M.); (X.W.); (X.C.)
| | - Xiaomeng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.C.); (W.Z.); (J.M.); (X.W.); (X.C.)
| | - Xiaoqing Chi
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (C.C.); (W.Z.); (J.M.); (X.W.); (X.C.)
| | - Guangxing Li
- College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China;
| |
Collapse
|
29
|
Li M, Yan Y, Liu Y, Zhao J, Guo F, Chen J, Nie L, Zhang Y, Wang Y. Comprehensive analyses of fatty acid metabolism-related lncRNA for ovarian cancer patients. Sci Rep 2023; 13:14675. [PMID: 37673886 PMCID: PMC10482851 DOI: 10.1038/s41598-023-35218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 09/08/2023] Open
Abstract
Ovarian cancer (OC) is a disease with difficult early diagnosis and treatment and poor prognosis. OC data profiles were downloaded from The Cancer Genome Atlas. Eight key fatty acid metabolism-related long non-coding RNAs (lncRNAs) were finally screened for building a risk scoring model by univariate/ multifactor and least absolute shrinkage and selection operator (LASSO) Cox regression. To make this risk scoring model more applicable to clinical work, we established a nomogram containing the clinical characteristics of OC patients after confirming that the model has good reliability and validity and the ability to distinguish patient prognosis. To further explore how these key lncRNAs are involved in OC progression, we explored their relationship with LUAD immune signatures and tumor drug resistance. The structure shows that the risk scoring model established based on these 8 fatty acid metabolism-related lncRNAs has good reliability and validity and can better predict the prognosis of patients with different risks of OC, and LINC00861in these key RNAs may be a hub gene that affects the progression of OC and closely related to the sensitivity of current OC chemotherapy drugs. In addition, combined with immune signature analysis, we found that patients in the high-risk group are in a state of immunosuppression, and Tfh cells may play an important role in it. We innovatively established a prognostic prediction model with excellent reliability and validity from the perspective of OC fatty acid metabolism reprogramming and lncRNA regulation and found new molecular/cellular targets for future OC treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Jincheng People's Hospital, Jincheng, 048026, China
| | - Ye Yan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianzhen Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fei Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianqin Chen
- Department of Gynecology, Jincheng People's Hospital, Jincheng, 048026, China
| | - Lifang Nie
- Department of Gynecology, Jincheng People's Hospital, Jincheng, 048026, China
| | - Yong Zhang
- Department of Pathology, Jincheng People's Hospital, Jincheng, 048026, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
30
|
Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol 2023; 14:1255727. [PMID: 37680708 PMCID: PMC10482416 DOI: 10.3389/fphar.2023.1255727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
31
|
AbdulHussein AH, Al-Taee MM, Radih ZA, Aljuboory DS, Mohammed ZQ, Hashesh TS, Riadi Y, Hadrawi SK, Najafi M. Mechanisms of cancer cell death induction by triptolide. Biofactors 2023; 49:718-735. [PMID: 36876465 DOI: 10.1002/biof.1944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Drug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti-cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti-cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti-cancer drugs and also radiotherapy. Resistance to therapy can increase mortality and reduce survival following cancer therapy. Thus, overcoming mechanisms of resistance to cell death in malignant cells can facilitate tumor elimination and increase the efficiency of anti-cancer therapy. Natural-derived molecules are intriguing agents that may be suggested to be used as an adjuvant in combination with other anticancer drugs or radiotherapy to sensitize cancer cells to therapy with at least side effects. This paper aims to review the potential of triptolide for inducing various types of cell death in cancer cells. We review the induction or resistance to different cell death mechanisms such as apoptosis, autophagic cell death, senescence, pyroptosis, ferroptosis, and necrosis following the administration of triptolide. We also review the safety and future perspectives for triptolide and its derivatives in experimental and human studies. The anticancer potential of triptolide and its derivatives may make them effective adjuvants for enhancing tumor suppression in combination with anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salema K Hadrawi
- Refrigeration and Air-Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
Qiu B, Sun Y, Nie W, Yang Q, Guo X. FBXW7 promotes autophagy and inhibits proliferation of oral squamous cell carcinoma. Immun Inflamm Dis 2023; 11:e845. [PMID: 37249289 PMCID: PMC10187000 DOI: 10.1002/iid3.845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND F-box and WD repeat domain containing 7 (FBXW7) is a critical tumor suppressor. The expression of FBXW7 is decreased in oral squamous cell carcinoma (OSCC) tissues and shows diagnosis value. We aimed to investigate the influence of FBXW7 overexpression on OSCC cell proliferation and autophagy. METHODS In Balb/c nude mice, CAL27 xenograft tumor model was established. Western blot was employed to evaluate protein level. Messenger RNA level was analyzed by quantitative reverse transcription-polymerase chain reaction. Colony formation assay and MTT assay were employed to evaluate cell proliferation. RESULTS FBXW7 expression was decreased in OSCC cell lines. FBXW7 inhibited cell proliferation of SCC9 and CAL27. FBXW7 increased Autophagy related 7 (Atg7), Beclin1 (BECN1), B-cell lymphoma 2 (BCL2) -associated X (BAX), BCL2 antagonist killer (BAK), and microtubule-associated protein 1 light chain 3 (LC3) levels and decreased MCL1 and BCL2 levels in CAL27 cells. FBXW7 decreased tumor volume and weight in CAL27 xenograft tumor model. FBXW7 increased BECN1, Atg7, and LC3 levels in CAL27 xenograft tumor model. CONCLUSION In conclusion, decreased expression of FBXW7 is confirmed in diverse OSCC cell lines. The enhanced FBXW7 expression inhibits cancer cell proliferation and promotes autophagy in both OSCC cells and xenograft tumor model.
Collapse
Affiliation(s)
- Bo Qiu
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Yang Sun
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Wei Nie
- Dental DepartmentCangzhou People's HospitalCangzhouHebeiChina
| | - Qi Yang
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Xiangjun Guo
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|
33
|
Liu L, Wang Q, Zhou JY, Zhang B. Developing four cuproptosis-related lncRNAs signature to predict prognosis and immune activity in ovarian cancer. J Ovarian Res 2023; 16:88. [PMID: 37122030 PMCID: PMC10150549 DOI: 10.1186/s13048-023-01165-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND There has been a recent discovery of a new type of cell death produced by copper-iron ions, called Cuproptosis (copper death). The purpose of this study was to identify LncRNA signatures associated with Cuproptosis in ovarian cancer that could be used as prognostic indicators. METHODS RNA sequencing (RNA-seq) profiles with clinicopathological data from TCGA database were used to select prognostic CRLs and then constructed prognostic risk model using multivariate regression analysis and LASSO algorithms. An independent dataset from GEO database was used to validate the prognostic performance. Combined with clinical factors, we further constructed a prognostic nomogram. In addition, tumor immune microenvironment, somatic mutation and drug sensitivity were analyzed using ssGSEA, GSVA, ESTIMATE and CIBERSORT algorithms. RESULT A total of 129 CRLs were selected whose expression levels were significantly related to expression levels of 10 cuproptosis-related genes. The univariate Cox regression analysis showed that 12 CRLs were associated with overall survival (OS). Using LASSO algorithms and multivariate regression analysis, we constructed a four-CRLs prognostic signature in the training dataset. Patients in the training dataset could be classified into high- or low-risk subgroups with significantly different OS (log-rank p < 0.001). The prognostic performance was confirmed in TCGA-OC cohort (log-rank p < 0.001) and an independent GEO cohort (log-rank p = 0.023). Multivariate cox regression analysis proved the four-CRLs signature was an independent prognostic factor for OC. Additionally, different risk subtypes showed significantly different levels of immune cells, signal pathways, and drug response. CONCLUSION We established a prognostic signature based on cuproptosis-related lncRNAs for OC patients, which will be of great value in predicting the prognosis patients and may provide a new perspective for research and individualized treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of Obstetrics and Gynecology, Graduate School of Bengbu Medical College, Bengbu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, China
| | - Jia-Yun Zhou
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, China
- Department of Obstetrics and Gynecology, Graduate School of Xuzhou Medical University, Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Graduate School of Bengbu Medical College, Bengbu, China.
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, China.
- Department of Obstetrics and Gynecology, Graduate School of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
34
|
Nakamura K, Asanuma K, Okamoto T, Iino T, Hagi T, Nakamura T, Sudo A. Combination of Everolimus and Bortezomib Inhibits the Growth and Metastasis of Bone and Soft Tissue Sarcomas via JNK/p38/ERK MAPK and AKT Pathways. Cancers (Basel) 2023; 15:cancers15092468. [PMID: 37173935 PMCID: PMC10177427 DOI: 10.3390/cancers15092468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The combination of the mammalian target of rapamycin and proteasome inhibitors is a new treatment strategy for various tumors. Herein, we investigated the synergistic effect of everolimus and bortezomib on tumor growth and metastasis in bone and soft tissue sarcomas. The antitumor effects of everolimus and bortezomib were assessed in a human fibrosarcoma (FS) cell line (HT1080) and mouse osteosarcoma (OS) cell line (LM8) by MTS assays and Western blotting. The effects of everolimus and bortezomib on HT1080 and LM8 tumor growth in xenograft mouse models were evaluated using tumor volume and the number of metastatic nodes of the resected lungs. Immunohistochemistry was used to evaluate cleaved PARP expression. The combination therapy decreased FS and OS cell proliferation compared with either drug alone. This combination induced more intense p-p38, p-JNK, and p-ERK and activated apoptosis signals, such as caspase-3, compared with single-agent treatment. The combination treatment reduced p-AKT and MYC expression, decreased FS and OS tumor volumes, and suppressed lung metastases of OS. The combination therapy inhibited tumor growth in FS and OS and metastatic progression of OS via the JNK/p38/ERK MAPK and AKT pathways. These results could aid in the development of new therapeutic strategies for sarcomas.
Collapse
Affiliation(s)
- Koichi Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Kunihiro Asanuma
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Tomohito Hagi
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-0001, Japan
| |
Collapse
|
35
|
Lu H, Hu H, Yang Z, Li S. Aberrant serum and tissue levels of Beclin1 and mechanistic target of rapamycin (mTOR) proteins in epithelial ovarian cancer. Medicine (Baltimore) 2023; 102:e33515. [PMID: 37115089 PMCID: PMC10145793 DOI: 10.1097/md.0000000000033515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Beclin1 and mechanistic target of rapamycin (mTOR) can be used as tumor markers of epithelial ovarian cancer. This study aimed to assess the association of Beclin1 and mTOR expression with clinicopathological and prognostic data in epithelial ovarian cancer patients. Serum and tissue samples from 45 epithelial ovarian cancer patients and 20 controls were analyzed by enzyme-linked immunosorbent assay and immunohistochemistry for Beclin1 and mTOR expression. The online datasets from gene expression profiling interactive analysis (n = 426), Kaplan-Meier plotter (n = 398), cBioPortal (n = 585), and UALCAN (n = 302) were also analyzed. Beclin1 expression was associated with low-grade differentiation (P = .003), earlier clinical stage (P = .013), fewer local lymph node metastases (P = .02) and lower serum Beclin1 level (P = .001). mTOR expression was associated with high-grade differentiation (P = .013), advanced clinical stage (P = .021), ascites (P = .028), and higher serum mTOR level (P = .001). The online datasets showed that a high mTOR expression level (HR = 1.44; 95% CI = 1.08-1.92; P = .013) was associated with a poor overall survival of 426 patients. Beclin1 was mutated in 1.8% and mTOR was mutated in 5% of epithelial ovarian cancer patients. Serum Beclin1 and mTOR levels were able to predict tumor differentiation, clinical stage, lymph node metastasis, and ascites in epithelial ovarian cancer patients.
Collapse
Affiliation(s)
- Huixia Lu
- Department of Gynecology, College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Hong Hu
- The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Zhihong Yang
- Health Commission of Dali, Longshan District, Dali, Yunnan, China
| | - Shaobo Li
- Department of Surgery, College of Clinical Medicine, Dali University, Dali, Yunnan, China
| |
Collapse
|
36
|
Paes MF, Zipinotti Dos Santos D, Massariol Pimenta T, Ribeiro Junior RS, da Silva Martins B, Greco SJ, Carvalho AA, Bacchi C, Duarte C, Carvalho Í, Silva IV, Azevedo Rangel LB. Overexpression of CLDN16 in ovarian cancer is modulated by PI3K and PKC pathways. Exp Cell Res 2023; 426:113523. [PMID: 36889572 DOI: 10.1016/j.yexcr.2023.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Epithelial ovarian cancer (EOC) is the gynecological malignant tumor of poorest prognosis and higher mortality rate. Chemotherapy is the base of high-grade serous ovarian cancer (HGSOC) treatment; however, it favors the emergence of chemoresistance and metastasis. Thus, there is an urge to search for new therapeutic targets, such as proteins related to cellular proliferation and invasion. Herein, we investigated the expression profile of claudin-16 (CLDN16 protein and CLDN16 transcript) and its possible functions in EOC. In silico analysis of CLDN16 expression profile was performed using data extracted from GENT2 and GEPIA2 platforms. A retrospective study was carried out with 55 patients to evaluate the expression of CLDN16. The samples were evaluated by immunohistochemistry, immunofluorescence, qRT-PCR, molecular docking, sequencing, and immunoblotting assays. Statistical analyzes were performed using Kaplan-Meier curves, one-way ANOVA, Turkey posttest. Data were analyzed using GraphPad Prism 8.0. In silico experiments showed that CLDN16 is overexpressed in EOC. 80.0% of all EOC types overexpressed CLDN16, of which in 87% of the cases the protein is restricted to cellular cytoplasm. CLDN16 expression was not related to tumor stage, tumor cells differentiation status, tumor responsiveness to cisplatin, or patients' survival rate. When compared to data obtained from in silico analysis regarding EOC stage and degree of differentiation, differences were found in the former but not in the later, neither in survival curves. CLDN16 expression in HGSOC OVCAR-3 cells increased by 1.95-fold (p < 0.001), 2.32-fold (p < 0.001), and 6.57-fold (p < 0.001) via PKC, PI3K, and estrogen pathways, respectively. Altogether, our results suggest that despite the low number of samples included in our in vitro studies, adding to the expression profile findings, we provided a comprehensive study of CLDN16 expression in EOC. Therefore, we hypothesize that CLDN16 is a potential target in the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Marcela Ferreira Paes
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Diandra Zipinotti Dos Santos
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Tatiana Massariol Pimenta
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Roberto Silva Ribeiro Junior
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bárbara da Silva Martins
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Sandro José Greco
- Chemistry Department, Exact Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Alex Assis Carvalho
- Department of Pathology, Cassiano Antonio de Moraes Hospital, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | | | | | - Ian Victor Silva
- Department of Morphology, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Leticia Bdnatista Azevedo Rangel
- Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil; Biochemistry Program, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
37
|
Analyzing the Expression of Ovarian Cancer Genes in PA-1 Cells Lines After the Treatment of Thymoquinone. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2023. [DOI: 10.1007/s40944-022-00699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Ampelopsin induces MDA-MB-231 cell cycle arrest through cyclin B1-mediated PI3K/AKT/mTOR pathway in vitro and in vivo. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:75-90. [PMID: 36692465 DOI: 10.2478/acph-2023-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Breast cancer is one of the most common malignant tumors in women and it is the most frequently diagnosed cancer in the world. Ampelopsin (AMP) is a purified component from the root of Ampelopsis grossedentata. It is reported that AMP could significantly inhibit the proliferation of breast cancer cells. However, the antitumor mechanism against breast cancer has not yet been fully elucidated. The purpose of this work was to study the role of AMP against breast cancer MDA-MB-231 cells and to further investigate the underlying mechanism. PI3K/AKT/mTOR plays a very important role in tumor cell growth and proliferation and we hypothesize that AMP may inhibit this pathway. In the present work, the results showed that AMP could significantly inhibit the growth of breast cancer MDA-MB-231 cells in vitro and in vivo. In addition, treatment with AMP decreased the levels of PI3K, AKT and mTOR, as well as cyclin B1 expression, followed by p53/p21 pathway activation to arrest the cell cycle at G2/M. Moreover, it demonstrated a positive association between cyclin B1 and PI3K/AKT/mTOR levels. Importantly, this pathway was found to be regulated by cyclin B1 in MDA-MB-231 cells treated with AMP. Also, it was observed that cyclin B1 overexpression attenuated cell apoptosis and weakened the inhibitory effects of AMP on cell proliferation. Together, AMP could inhibit breast cancer MDA-MB-231 cell proliferation in vitro and in vivo, due to cell cycle arrest at G2/M by inactivating PI3K/AKT/mTOR pathway regulated by cyclin B1.
Collapse
|
39
|
Kollara A, Burt BD, Ringuette MJ, Brown TJ. The adaptor protein VEPH1 interacts with the kinase domain of ERBB2 and impacts EGF signaling in ovarian cancer cells. Cell Signal 2023; 106:110634. [PMID: 36828346 DOI: 10.1016/j.cellsig.2023.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Upregulation of ERBB2 and activating mutations in downstream KRAS/BRAF and PIK3CA are found in several ovarian cancer histotypes. ERBB2 enhances signaling by the ERBB family of EGF receptors, and contains docking positions for proteins that transduce signaling through multiple pathways. We identified the adaptor protein ventricular zone-expressed pleckstrin homology domain-containing protein 1 (VEPH1) as a potential interacting partner of ERBB2 in a screen of proteins co-immunoprecipitated with VEPH1. In this study, we confirm a VEPH1 - ERBB2 interaction by co-immunoprecipitation and biotin proximity labelling and show that VEPH1 interacts with the juxtamembrane-kinase domain of ERBB2. In SKOV3 ovarian cancer cells, which bear a PIK3CA mutation and ERBB2 overexpression, ectopic VEPH1 expression enhanced EGF activation of ERK1/2, and mTORC2 activation of AKT. In contrast, in ES2 ovarian cancer cells, which bear a BRAFV600E mutation with VEPH1 amplification but low ERBB2 expression, loss of VEPH1 expression enabled further activation of ERK1/2 by EGF and enhanced EGF activation of AKT. VEPH1 expression in SKOV3 cells enhanced EGF-induced cell migration consistent with increased Snail2 and decreased E-cadherin levels. In comparison, loss of VEPH1 expression in ES2 cells led to decreased cell motility independent of EGF treatment despite higher levels of N-cadherin and Snail2. Importantly, we found that loss of VEPH1 expression rendered ES2 cells less sensitive to BRAF and MEK inhibition. This study extends the range of adaptor function of VEPH1 to ERBB2, and indicates VEPH1 has differential effects on EGF signaling in ovarian cancer cells that may be influenced by driver gene mutations.
Collapse
Affiliation(s)
- Alexandra Kollara
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Brian D Burt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Maurice J Ringuette
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Xu S, Gao X, Qiu J, Hong F, Gao F, Wang X, Zhang S. TIPE2 acts as a tumor suppressor and correlates with tumor microenvironment immunity in epithelial ovarian cancer. Aging (Albany NY) 2023; 15:1052-1073. [PMID: 36801818 PMCID: PMC10008487 DOI: 10.18632/aging.204529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is one of the deadliest gynecologic cancers. The etiology of EOC has still not been elucidated thoroughly. Tumor necrosis factor-α-induced protein 8-like2 (TNFAIP8L2, TIPE2), an important regulator of inflammation and immune homeostasis, plays a critical role in the progression of various cancers. This study aims to investigate the role of TIPE2 in EOC. METHODS Expression of TIPE2 protein and mRNA in EOC tissues and cell lines was examined using Western blot and quantitative real-time PCR (qRT-PCR). The functions of TIPE2 in EOC were investigated by cell proliferation assay, colony assay, transwell assay, and apoptosis analysis in vitro. To further investigate the regulatory mechanisms of TIPE2 in EOC, RNA-seq and western blot were performed. Finally, the CIBERSORT algorithm and databases including Tumor Immune Single-cell Hub (TISCH), Tumor Immune Estimation Resource (TIMER), Tumor-Immune System Interaction (TISIDB), and The Gene Expression Profiling Interactive Analysis (GEPIA) were used to elucidate its potential role in regulating tumor immune infiltration in the tumor microenvironment (TME). RESULTS TIPE2 expression was shown to be considerably lower in both EOC samples and cell lines. Overexpression of TIPE2 suppressed EOC cell proliferation, colony formation, and motility in vitro. Mechanistically, TIPE2 suppressed EOC by blocking the PI3K/Akt signaling pathway, according to bioinformatics analysis and western blot in TIPE2 overexpression EOC cell lines, and the anti-oncogenic potentials of TIPE2 in EOC cells could be partially abrogated by the PI3K agonist, 740Y-P. Finally, TIPE2 expression was positively associated with various immune cells and possibly involved in the regulation of macrophage polarization in ovarian cancer. CONCLUSIONS We detail the regulatory mechanism of TIPE2 in EOC carcinogenesis, as well as how it correlates with immune infiltration, emphasizing its potential as a therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Xiaolin Gao
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Jianqing Qiu
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Fanzhen Hong
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Fufeng Gao
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xia Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Shiqian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
41
|
Goyal A, Agrawal A, Verma A, Dubey N. The PI3K-AKT pathway: A plausible therapeutic target in Parkinson's disease. Exp Mol Pathol 2023; 129:104846. [PMID: 36436571 DOI: 10.1016/j.yexmp.2022.104846] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Parkinson's disease is a common progressive and multifactorial neurodegenerative disease, characterized by the loss of midbrain dopaminergic neurons. Numerous pathological processes including, inflammation, oxidative stress, mitochondrial dysfunction, neurotransmitter imbalance, and apoptosis as well as genetic factors may lead to neuronal degeneration. With the emergence of aging population, the health problem and economic burden caused by PD also increase. Phosphatidylinositol 3-kinases-protein kinase B (PI3K-AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K-AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. The current review provides an overview of the PI3K-AKT signaling pathway and review the relationship between this signaling pathway and PD.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Anant Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aanchal Verma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nandini Dubey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
42
|
Zwimpfer TA, Tal O, Geissler F, Coelho R, Rimmer N, Jacob F, Heinzelmann-Schwarz V. Low grade serous ovarian cancer - A rare disease with increasing therapeutic options. Cancer Treat Rev 2023; 112:102497. [PMID: 36525716 DOI: 10.1016/j.ctrv.2022.102497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
High-grade serous ovarian cancers (HGSOCs) most commonly arise from the fimbrial end of the fallopian tube and harbor TP53 gene mutations. In contrast, low-grade serous ovarian cancers (LGSOCs) appear to have different pathological, epidemiological, and clinical features and should be seen as a distinct serous epithelial ovarian cancer subtype. Our current understanding of LGSOC is limited, and treatment has generally been derived from the more common HGSOCs due to a lack of separate trial data. LGSOCs are characterized by slow tumor growth and are assumed to develop from serous borderline ovarian tumors as precursors. These cancers are often estrogen-receptor positive and show an activated mitogen-activated protein kinase pathway together with KRAS and BRAF mutations and, rarely, TP53 mutations. These characteristics are now commonly used to guide therapeutical decision making and, consequently, a substantial part of treatment consists of maintenance with endocrine treatment, thus balancing disease stabilization and mild toxicity. Additionally, new trials are ongoing that examine the role of targeted therapies such as MEK inhibitors in combination with endocrine treatments. The purpose of this work is to summarize current knowledge and present ongoing trial efforts for LGSOCs.
Collapse
Affiliation(s)
- Tibor A Zwimpfer
- Peter MacCallum Cancer Center, East Melbourne, Victoria 3002, Australia; Department of Gynecological Oncology, University Hospital Basel, 4031 Basel, Switzerland.
| | - Ori Tal
- Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, Israel
| | - Franziska Geissler
- Department of Gynecological Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Ricardo Coelho
- Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Natalie Rimmer
- Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Peter MacCallum Cancer Center, East Melbourne, Victoria 3002, Australia; Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
43
|
Geng Y, Geng Y, Liu X, Chai Q, Li X, Ren T, Shang Q. PI3K/AKT/mTOR pathway-derived risk score exhibits correlation with immune infiltration in uveal melanoma patients. Front Oncol 2023; 13:1167930. [PMID: 37152048 PMCID: PMC10157141 DOI: 10.3389/fonc.2023.1167930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Uveal melanoma (UVM) is a rare but highly aggressive intraocular tumor with a poor prognosis and limited therapeutic options. Recent studies have implicated the PI3K/AKT/mTOR pathway in the pathogenesis and progression of UVM. Here, we aimed to explore the potential mechanism of PI3K/AKT/mTOR pathway-related genes (PRGs) in UVM and develop a novel prognostic-related risk model. Using unsupervised clustering on 14 PRGs profiles, we identified three distinct subtypes with varying immune characteristics. Subtype A demonstrated the worst overall survival and showed higher expression of human leukocyte antigen, immune checkpoints, and immune cell infiltration. Further enrichment analysis revealed that subtype A mainly functioned in inflammatory response, apoptosis, angiogenesis, and the PI3K/AKT/mTOR signaling pathway. Differential analysis between different subtypes identified 56 differentially expressed genes (DEGs), with the major enrichment pathway of these DEGs associated with PI3K/AKT/mTOR. Based on these DEGs, we developed a consensus machine learning-derived signature (RSF model) that exhibited the best power for predicting prognosis among 76 algorithm combinations. The novel signature demonstrated excellent robustness and predictive ability for the overall survival of patients. Moreover, we observed that patients classified by risk scores had distinguishable immune status and mutation. In conclusion, our study identified a consensus machine learning-derived signature as a potential biomarker for prognostic prediction in UVM patients. Our findings suggest that this signature is correlated with tumor immune infiltration and may serve as a valuable tool for personalized therapy in the clinical setting.
Collapse
Affiliation(s)
- Yuxin Geng
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yulei Geng
- Department of Ophthalmology, Shijiazhuang People’s Hospital, Shijiazhaung, China
| | - Xiaoli Liu
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qiannan Chai
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuejing Li
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Taoran Ren
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Qingli Shang, ;
| |
Collapse
|
44
|
Ghoneum A, Gonzalez D, Afify H, Shu J, Hegarty A, Adisa J, Kelly M, Lentz S, Salsbury F, Said N. Compound C Inhibits Ovarian Cancer Progression via PI3K-AKT-mTOR-NFκB Pathway. Cancers (Basel) 2022; 14:5099. [PMID: 36291886 PMCID: PMC9600774 DOI: 10.3390/cancers14205099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Epithelial Ovarian cancer (OvCa) is the leading cause of death from gynecologic malignancies in the United States, with most patients diagnosed at late stages. High-grade serous cancer (HGSC) is the most common and lethal subtype. Despite aggressive surgical debulking and chemotherapy, recurrence of chemo-resistant disease occurs in ~80% of patients. Thus, developing therapeutics that not only targets OvCa cell survival, but also target their interactions within their unique peritoneal tumor microenvironment (TME) is warranted. Herein, we report therapeutic efficacy of compound C (also known as dorsomorphin) with a novel mechanism of action in OvCa. We found that CC not only inhibited OvCa growth and invasiveness, but also blunted their reciprocal crosstalk with macrophages, and mesothelial cells. Mechanistic studies indicated that compound C exerts its effects on OvCa cells through inhibition of PI3K-AKT-NFκB pathways, whereas in macrophages and mesothelial cells, CC inhibited cancer-cell-induced canonical NFκB activation. We further validated the specificity of the PI3K-AKT-NFκB as targets of compound C by overexpression of constitutively active subunits as well as computational modeling. In addition, real-time monitoring of OvCa cellular bioenergetics revealed that compound C inhibits ATP production, mitochondrial respiration, and non-mitochondrial oxygen consumption. Importantly, compound C significantly decreased tumor burden of OvCa xenografts in nude mice and increased their sensitivity to cisplatin-treatment. Moreover, compound C re-sensitized patient-derived resistant cells to cisplatin. Together, our findings highlight compound C as a potent multi-faceted therapeutic in OvCa.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Hesham Afify
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Abigail Hegarty
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Jemima Adisa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Michael Kelly
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
| | - Samuel Lentz
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Freddie Salsbury
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Department of Physics, Wake Forest University, Winston Salem, NC 27109, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center, Wake Forest Baptist Health Sciences, Winston Salem, NC 27157, USA
- Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
45
|
Yun H, Han GH, Kim J, Chung J, Kim J, Cho H. NANOG
regulates epithelial–mesenchymal transition via
AMPK
/
mTOR
signalling pathway in ovarian cancer
SKOV
‐3 and
A2780
cells. J Cell Mol Med 2022; 26:5277-5291. [PMID: 36114703 PMCID: PMC9575063 DOI: 10.1111/jcmm.17557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
NANOG engages with tumour initiation and metastasis by regulating the epithelial–mesenchymal transition (EMT) in epithelial ovarian cancer (EOC). However, its role in association with pAMPKα, and its clinical significance in EOC have not been elucidated even though AMPK is known to degrade NANOG in various human cancers. Hence, we investigated the role of pAMPKα and its association with NANOG as potential prognostic biomarkers in EOC. Both NANOG and pAMPKα expression were significantly overexpressed in EOCs comparing nonadjacent normal epithelial tissues, benign tissues, and borderline tumours. NANOG overexpression was significantly associated with poor disease‐free survival (DFS) and overall survival (OS), whereas pAMPKα overexpression was associated with good DFS and OS. Importantly, multivariate analysis revealed that the combination of high NANOG and low pAMPKα expression was a poor independent prognostic factor for DFS and was associated with platinum resistance. In ovarian cancer cell lines, siRNA‐mediated NANOG knockdown diminished migration and invasion properties by regulating the EMT process via the AMPK/mTOR signalling pathway. Furthermore, treatment with AMPK activator suppressed expression of stemness factors such as NANOG, Oct4 and Sox2. Collectively, these findings established that the combination of high NANOG and low pAMPKα expression was associated with EOC progression and platinum resistance, suggesting a potential prognostic biomarker for clinical management in EOC patients.
Collapse
Affiliation(s)
- Hee Yun
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital Yonsei University College of Medicine Seoul Korea
| | - Gwan Hee Han
- Department of Obstetrics and Gynecology Kyung Hee University Hospital at Gangdong Seoul Korea
| | - Julie Kim
- Weill Cornell Medical College New York New York USA
| | - Joon‐Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda Maryland USA
| | - Jae‐Hoon Kim
- Department of Obstetrics and Gynecology Yonsei University College of Medicine Seoul Korea
- Institute of Women's Life Medical Science Yonsei University College of Medicine Seoul Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology Yonsei University College of Medicine Seoul Korea
- Institute of Women's Life Medical Science Yonsei University College of Medicine Seoul Korea
| |
Collapse
|
46
|
Li Z, Liu Q, Zhu Y, Wu L, Liu W, Li J, Zhang Z, Tao F. Network Pharmacology, Molecular Docking, and Experimental Validation to Unveil the Molecular Targets and Mechanisms of Compound Fuling Granule to Treat Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2896049. [PMID: 36062197 PMCID: PMC9428684 DOI: 10.1155/2022/2896049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Background Compound fuling granule (CFG) is a traditional Chinese medicine formula that is used for more than twenty years to treat ovarian cancer (OC) in China. However, the underlying processes have yet to be completely understood. This research is aimed at uncovering its molecular mechanism and identifying possible therapeutic targets. Methods Significant genes were collected from Therapeutic Target Database and Database of Gene-Disease Associations. The components of CFG were analyzed by LC-MS/MS, and the active components of CFG were screened according to their oral bioavailability and drug-likeness index. The validated targets were extracted from PharmMapper and PubChem databases. Venn diagram and STRING website diagrams were used to identify intersection targets, and a protein-protein interaction network was prepared using STRING. The ingredient-target network was established using Cytoscape. Molecular docking was performed to visualize the molecule-protein interactions using PyMOL 2.3. Enrichment and pathway analyses were performed using FunRich software and Reactome pathway, respectively. Experimental validations, including CCK-8 assay, wound-scratch assay, flow cytometry, western blot assay, histopathological examination, and immunohistochemistry, were conducted to verify the effects of CFG on OC cells. Results A total of 56 bioactive ingredients of CFG and 185 CFG-OC-related targets were screened by network pharmacology analysis. The potential therapeutic targets included moesin, glutathione S-transferase kappa 1, ribonuclease III (DICER1), mucin1 (MUC1), cyclin-dependent kinase 2 (CDK2), E1A binding protein p300, and transcription activator BRG1. Reactome analysis showed 51 signaling pathways (P < 0.05), and FunRich revealed 44 signaling pathways that might play an important role in CFG against OC. Molecular docking of CDK2 and five active compounds (baicalin, ignavine, lactiflorin, neokadsuranic acid B, and deoxyaconitine) showed that baicalin had the highest affinity to CDK2. Experimental approaches confirmed that CFG could apparently inhibit OC cell proliferation and migration in vitro; increase apoptosis; decrease the protein expression of MUC1, DICER1, and CDK2; and suppress the progression and distant metastasis of OC in vivo. DICER1, a tumor suppressor, is essential for microRNA synthesis. Our findings suggest that CFG may impair the production of miRNAs in OC cells. Conclusion Based on network pharmacology, molecular docking, and experimental validation, the potential mechanism underlying the function of CFG in OC was explored, which supplies the theoretical groundwork for additional pharmacological investigation.
Collapse
Affiliation(s)
- Zhaoyi Li
- Department of Dermatology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingling Liu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Zhu
- Department of Medical Oncology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lichao Wu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wenhong Liu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Junfeng Li
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Fangfang Tao
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
47
|
Astaxanthin Inhibits Matrix Metalloproteinase Expression by Suppressing PI3K/AKT/mTOR Activation in Helicobacter pylori-Infected Gastric Epithelial Cells. Nutrients 2022; 14:nu14163427. [PMID: 36014933 PMCID: PMC9412703 DOI: 10.3390/nu14163427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) increases production of reactive oxygen species (ROS) and activates signaling pathways associated with gastric cell invasion, which are mediated by matrix metalloproteinases (MMPs). We previously demonstrated that H. pylori activated mitogen-activated protein kinase (MAPK) and increased expression of MMP-10 in gastric epithelial cells. MMPs degrade the extracellular matrix, enhancing tumor invasion and cancer progression. The signaling pathway of phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase B (AKT)/mammalian target of rapamycin (mTOR) is associated with MMP expression. ROS activates PIK3/AKT/mTOR signaling in cancer. Astaxanthin, a xanthophyll carotenoid, shows antioxidant activity by reducing ROS levels in gastric epithelial cells infected with H. pylori. This study aimed to determine whether astaxanthin inhibits MMP expression, cell invasion, and migration by reducing the PI3K/AKT/mTOR signaling in H. pylori-infected gastric epithelial AGS cells. H. pylori induced PIK3/AKT/mTOR and NF-κB activation, decreased IκBα, and induced MMP (MMP-7 and -10) expression, the invasive phenotype, and migration in AGS cells. Astaxanthin suppressed these H. pylori-induced alterations in AGS cells. Specific inhibitors of PI3K, AKT, and mTOR reversed the H. pylori-stimulated NF-κB activation and decreased IκBα levels in the cells. In conclusion, astaxanthin suppressed MMP expression, cell invasion, and migration via inhibition of PI3K/AKT/mTOR/NF-κB signaling in H. pylori-stimulated gastric epithelial AGS cells.
Collapse
|
48
|
Li X, Zheng J, Wang J, Tang X, Zhang F, Liu S, Liao Y, Chen X, Xie W, Tang Y. Effects of Uremic Clearance Granules on p38 MAPK/NF-κB Signaling Pathway, Microbial and Metabolic Profiles in End-Stage Renal Disease Rats Receiving Peritoneal Dialysis. Drug Des Devel Ther 2022; 16:2529-2544. [PMID: 35946040 PMCID: PMC9357387 DOI: 10.2147/dddt.s364069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Xiaosheng Li
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Jie Zheng
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Jian Wang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xianhu Tang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Fengxia Zhang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Shufeng Liu
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yunqiang Liao
- First Clinical Medical College of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiaoqing Chen
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wenjuan Xie
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yang Tang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- Correspondence: Yang Tang, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Qingnian Road, Suite 23, Ganzhou, 341000, People’s Republic of China, Email
| |
Collapse
|
49
|
Li HL, Deng NH, He XS, Li YH. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma. Biomark Res 2022; 10:52. [PMID: 35883139 PMCID: PMC9327212 DOI: 10.1186/s40364-022-00397-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck in Southeast Asia and southern China. The Phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway is involved in processes related to tumour initiation/progression, such as proliferation, apoptosis, metastasis, and drug resistance, and is closely related to the clinicopathological features of NPC. In addition, key genes involved in the PI3K/AKT/mTOR signalling pathway undergo many changes in NPC. More interestingly, a growing body of evidence suggests an interaction between this signalling pathway and microRNAs (miRNAs), a class of small noncoding RNAs. Therefore, in this review, we discuss the interactions between key components of the PI3K/AKT/mTOR signalling pathway and various miRNAs and their importance in NPC pathology and explore potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hai-Long Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China
| | - Xiu-Sheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P.R. China.
| | - Yue-Hua Li
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, P.R. China.
| |
Collapse
|
50
|
Ortiz-Rivera J, Albors A, Kucheryavykh Y, Harrison JK, Kucheryavykh L. The Dynamics of Tumor-Infiltrating Myeloid Cell Activation and the Cytokine Expression Profile in a Glioma Resection Site during the Post-Surgical Period in Mice. Brain Sci 2022; 12:brainsci12070893. [PMID: 35884700 PMCID: PMC9313002 DOI: 10.3390/brainsci12070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is the most aggressive brain cancer and is highly infiltrated with cells of myeloid lineage (TIM) that support tumor growth and invasion. Tumor resection is the primary treatment for glioblastoma; however, the activation state of TIM at the site of tumor resection and its impact on glioma regrowth are poorly understood. Using the C57BL/6/GL261 mouse glioma implantation model, we investigated the state of TIM in the tumor resection area during the post-surgical period. TIM isolated from brain tissue at the resection site were analyzed at 0, 1, 4, 7, 14, and 21 days after tumor resection. An increase in expression of CD86 during the first 7 days after surgical resection and then upregulation of arginase 1 from the 14th to 21st days after resection were detected. Cytokine expression analysis combined with qRT-PCR revealed sustained upregulation of IL4, IL5, IL10, IL12, IL17, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein 1 (MCP1/CCL2) in TIM purified from regrown tumors compared with primary implanted tumors. Flow cytometry analysis revealed increased CD86+/CD206+ population in regrown tumors compared with primary implanted tumors. Overall, we found that TIM in primary implanted tumors and tumors regrown after resection exhibited different phenotypes and cytokine expression patterns.
Collapse
Affiliation(s)
- Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
- Correspondence:
| | - Alejandro Albors
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Yuriy Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Lilia Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| |
Collapse
|