1
|
Ro J, Kim J, Park J, Choi Y, Cho Y. ODSEI Chip: An Open 3D Microfluidic Platform for Studying Tumor Spheroid-Endothelial Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410659. [PMID: 39805002 PMCID: PMC11967799 DOI: 10.1002/advs.202410659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis. As proof of concept, the crosstalk between breast cancer spheroids and vasculature is monitored, validating the roles of endothelial cells in acquired tamoxifen resistance. Cancer spheroids exhibited reduced sensitivity to tamoxifen in the presence of vasculature. Further analysis through single-cell RNA sequencing of extracted spheroids and protein arrays elucidated gene expression profiles and cytokines associated with acquired tamoxifen resistance, particularly involving the TNF-α pathway via NF-κB and mTOR signaling. By targeting the highly expressed cytokines (IL-8, TIMP1) identified, tamoxifen resistance in cancer spheroid can be effectively reversed. In summary, the ODSEI chip allows to study spheroid and endothelial interaction in various contexts, leading to improved insights into tumor biology and therapeutic strategies.
Collapse
Affiliation(s)
- Jooyoung Ro
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Junyoung Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Juhee Park
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Yongjun Choi
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Yoon‐Kyoung Cho
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| |
Collapse
|
2
|
Deng X, Jiao Y, Hao H, Guo Z, An G, Zhang W, Xue D, Han S. Dandelion extract suppresses the stem-like properties of triple-negative breast cancer cells by regulating CUEDC2/β-catenin/OCT4 signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119408. [PMID: 39864604 DOI: 10.1016/j.jep.2025.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, featuring a high proportion of cancer stem cells (CSCs) and the poorest clinical outcomes. Taraxacum mongolicum Hand. -Mazz., widely recognized as dandelion, is a traditional medicinal herb that has demonstrated promising anti-TNBC potential. However, the efficacy of dandelion in anti-TNBC stem-like properties remains to be elucidated. AIM OF THE STUDY The aim was to examine the impact of dandelion extract on the stemness properties of TNBC and to delineate the underlying mechanisms. MATERIALS AND METHODS UHPLC-Q-Orbitrap HRMS was employed to characterize the components present in dandelion extract. Network pharmacology was utilized to explore the impact of dandelion-derived compounds on the molecular pathways associated with TNBC. The assessment of TNBC stem-like properties was conducted through mammosphere formation assays and flow cytometry analysis. Western blotting, qRT-PCR, and immunofluorescence were employed to investigate the mechanisms of dandelion extract. 4T1-luc xenograft tumor model was used to assess the anti-tumor effect of dandelion extract in vivo. IVIS imaging technology was used to monitor lung metastasis. RESULTS In this study, pharmacological network analysis revealed the potential regulatory effects of dandelion extract on TNBC stemness. Dandelion extract disrupts the stem-like properties in MDA-MB-231 and MDA-MB-468 cell lines via reducing ALDH + cells proportion, impeding mammosphere formation, and downregulating CSC-related markers, including SOX2, SOX9, NANOG, and FOXM1. Furthermore, CUE domain containing protein 2 (CUEDC2) promotes the maintenance of TNBC stemness and contributes to the anti-stemness effects of dandelion extract. Mechanistically, dandelion extract inhibits CUEDC2-mediated nuclear translocation of β-catenin, thereby reducing the transcriptional activity of OCT4. In vivo, dandelion extract suppresses tumor growth, lung metastasis, and decreases the expression of CSC-related markers. CONCLUSION These findings suggest that dandelion extract inhibits TNBC stem-like properties via modulating the CUEDC2/β-catenin/OCT4 signaling axis, highlighting its potential as a therapeutic option for TNBC.
Collapse
Affiliation(s)
- Xinxin Deng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanna Jiao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Huifeng Hao
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhengwang Guo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Guo An
- Department of Laboratory Animal, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenlong Zhang
- Department of Laboratory Animal, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dong Xue
- Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Leng F, Huang J, Wu L, Zhang J, Lin X, Deng R, Zhu J, Li Z, Li Z, Wang Y, Zhang H, Lu D, Kipps TJ, Zhang S. Targeting ROR2 homooligomerization disrupts ROR2-dependent signaling and suppresses stem-like cell properties of human breast adenocarcinoma. iScience 2025; 28:111589. [PMID: 39829682 PMCID: PMC11742321 DOI: 10.1016/j.isci.2024.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/22/2025] Open
Abstract
Breast cancer stem-like cells (CSCs) are enriched following treatment with chemotherapy, and posited as having a high level of plasticity and enhanced tumor-initiation capacity, which can enable cancer relapse. Here, we show that such features are shared by breast cancer (BCA) cells that express receptor tyrosine kinase-like orphan receptor (ROR2), which is expressed primarily during embryogenesis and by various cancers. We find that Wnt5a can induce ROR2 homooligomerization to activate noncanonical Wnt signaling and enhance tumor-initiation capacity of BCA cells. Molecular analysis reveals that the cysteine-rich domain and transmembrane domain are required for ROR2 homooligomerization to activate ROR2. Treatment with a newly generated monoclonal antibody (mAb) specific for ROR2 can block Wnt5a-induced ROR2 homooligomerization, ROR2-dependent noncanonical Wnt signaling, and impair the capacity of BCA patient-derived xenografts to initiate tumor in immune-deficient mice. Collectively, these results indicate that targeting ROR2 (e.g., using mAb) suppresses BCA stemness and, thereby, may prevent BCA relapse.
Collapse
Affiliation(s)
- Feng Leng
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liufeng Wu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jianchao Zhang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xinxin Lin
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ruhuan Deng
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jinhang Zhu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zhen Li
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zhenghao Li
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yimeng Wang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Han Zhang
- Xenta Biomedical Science Co., Ltd, Guangzhou 510060, China
| | - Desheng Lu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, USA
| | - Suping Zhang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, USA
| |
Collapse
|
4
|
Sethi A, Mishra S, Upadhyay V, Dubey P, Siddiqui S, Singh AK, Chowdhury S, Srivastava S, Srivastava P, Sahoo P, Bhatt MLB, Mishra A, Trivedi AK. USP10 deubiquitinates and stabilizes CD44 leading to enhanced breast cancer cell proliferation, stemness and metastasis. Biochem J 2024; 481:1877-1900. [PMID: 39564770 DOI: 10.1042/bcj20240611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Despite extensive research, strategies to effectively combat breast cancer stemness and achieve a definitive cure remains elusive. CD44, a well-defined cancer stem cell (CSC) marker is reported to promote breast cancer tumorigenesis, metastasis, and chemoresistance. However, mechanisms leading to its enhanced expression and function is poorly understood. Here, we demonstrate that USP10 positively regulates CD44 protein levels and its downstream actions. While USP10 depletion prominently down-regulates CD44 protein levels and functions, its overexpression significantly enhances CD44 protein levels, leading to enhanced cluster tumor cell formation, stemness, and metastasis in breast cancer cells both in vitro and ex vivo in primary human breast tumor cells. USP10 interacts with CD44 and stabilizes it through deubiquitination both in breast cancer cell lines and human breast cancer-derived primary tumor cells. Stabilized CD44 shows enhanced interaction with cytoskeleton proteins Ezrin/Radixin/Moesin and potently activates PDGFRβ/STAT3 signaling which are involved in promoting CSC traits. Using USP10 stably expressing 4T1 cells, we further demonstrate that the USP10-CD44 axis potently promotes tumorigenicity in vivo in mice, while simultaneous depletion of CD44 in these cells renders them ineffective. In line with these findings, we further showed that inhibition of USP10 either through RNAi or the pharmacological inhibitor Spautin-1 significantly mitigated CD44 levels and its downstream function ex vivo in primary breast tumor cells. Finally, we demonstrated that primary breast tumor cells are more susceptible to chemotherapy when co-treated with USP10 inhibitor indicating that the USP10-CD44 axis could be an attractive therapeutic target in combination with chemotherapy in CD44 expressing breast cancers.
Collapse
Affiliation(s)
- Arppita Sethi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivkant Mishra
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Vishal Upadhyay
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Dubey
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Shumaila Siddiqui
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar Singh
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangita Chowdhury
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Pragya Srivastava
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| | - Prasannajit Sahoo
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Anand Mishra
- King George's Medical University, Lucknow, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Yuan J, Yang L, Zhang H, Beeraka NM, Zhang D, Wang Q, Wang M, Pr HV, Sethi G, Wang G. Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers. Biomed Pharmacother 2024; 181:117714. [PMID: 39615165 DOI: 10.1016/j.biopha.2024.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) play crucial roles in the initiation and progression of tumors. TME is composed of various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as non-cellular components like extracellular matrix (ECM) proteins and soluble factors. These elements interact with tumor cells through a complex network of signaling pathways involving cytokines, growth factors, metabolites, and non-coding RNA-carrying exosomes. Hypoxic conditions within the TME further modulate these interactions, collectively influencing tumor growth, metastatic potential, and response to therapy. EMT represents a dynamic and reversible process where epithelial cells undergo phenotypic changes to adopt mesenchymal characteristics in several cancers, including breast cancers. This transformation enhances cell motility and imparts stem cell-like properties, which are closely associated with increased metastatic capability and resistance to conventional cancer treatments. Thus, understanding the crosstalk between the TME and EMT is essential for unraveling the underlying mechanisms of breast cancer metastasis and therapeutic resistance. This review uniquely examines the intricate interplay between the tumor TME and epithelial-mesenchymal transition EMT in driving breast cancer metastasis and treatment resistance. It explores the therapeutic potential of targeting the TME-EMT axis, specifically through CD73-TGF-β dual-blockade, to improve outcomes in triple-negative breast cancer. Additionally, it underscores new strategies to enhance immune checkpoint blockade (ICB) responses by modulating EMT, thereby offering innovative insights for more effective cancer treatment.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India; Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Danfeng Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
6
|
Yuan J, Yang L, Li Z, Zhang H, Wang Q, Wang B, Chinnathambi A, Govindasamy C, Basappa S, Nagaraja O, Madegowda M, Beeraka NM, Nikolenko VN, Wang M, Wang G, Rangappa KS, Basappa B. Pyrimidine-triazole-tethered tert-butyl-piperazine-carboxylate suppresses breast cancer by targeting estrogen receptor signaling and β-catenin activation. IUBMB Life 2024; 76:1309-1324. [PMID: 39275910 DOI: 10.1002/iub.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/16/2024]
Abstract
Several chemotherapeutics against breast cancer are constrained by their adverse effects and chemoresistance. The development of novel chemotherapeutics to target metastatic breast cancer can bring effective clinical outcomes. Many breast cancer patients present with tumors that are positive for estrogen receptors (ERs), highlighting the importance of targeting the ER pathway in this particular subtype. Although selective estrogen receptor modulators (SERMs) are commonly used, their side effects and resistance issues necessitate the development of new ER-targeting agents. In this study, we report that a newly synthesized compound, TTP-5, a hybrid of pyrimidine, triazole, and tert-butyl-piperazine-carboxylate, effectively binds to estrogen receptor alpha (ERα) and suppresses breast cancer cell growth. We assessed the impact of TTP-5 on cell proliferation using MTT and colony formation assays and evaluated its effect on cell motility through wound healing and invasion assays. We further explored the mechanism of action of this novel compound by detecting protein expression changes using Western blotting. Molecular docking was used to confirm the interaction of TTP-5 with ERα. The results indicated that TTP-5 significantly reduced the proliferation of MCF-7 cells by blocking the ERα signaling pathway. Conversely, although it did not influence the growth of MDA-MB-231 cells, TTP-5 hindered their motility by modulating the expression of proteins associated with epithelial-mesenchymal transition (EMT), possibly via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi Li
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bei Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Medchal, India
| | | | | | - Narasimha M Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, India
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| |
Collapse
|
7
|
Yao K, Zhan XY, Feng M, Yang KF, Zhou MS, Jia H. Furin, ADAM, and γ-secretase: Core regulatory targets in the Notch pathway and the therapeutic potential for breast cancer. Neoplasia 2024; 57:101041. [PMID: 39208688 PMCID: PMC11399603 DOI: 10.1016/j.neo.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
The activation of the Notch pathway promotes the occurrence and progression of breast cancer. The Notch signal plays different roles in different molecular subtypes of breast cancer. In estrogen receptor-positive (ER+) breast cancer, the Notch pathway regulates the activity of estrogen receptors. In human epidermal growth factor receptor 2-positive (HER2+) breast cancer, crosstalk between Notch and HER2 enhances HER2 signal expression. In triple-negative breast cancer (TNBC), Notch pathway activation is closely linked to tumor invasion and drug resistance. This article offers a comprehensive review of the structural domains, biological functions, and key targets of Notch with a specific focus on the roles of Furin protease, ADAM metalloprotease, and γ-secretase in breast cancer and their potential as therapeutic targets. We discuss the functions and mutual regulatory mechanisms of these proteinases in the Notch pathway as well as other potential targets in the Notch pathway, such as the glycosylation process and key transcription factors. This article also introduces new approaches in the treatment of breast cancer, with a special focus on the molecular characteristics and treatment response differences of different subtypes. We propose that the core regulatory molecules of the Notch pathway may become key targets for development of personalized treatment, which may significantly improve treatment outcomes and prognosis for patients with breast cancer.
Collapse
Affiliation(s)
- Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Xiang-Yi Zhan
- School of Traditional Chinese Medicine, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Shenyang Key Laboratory of Vascular Biology, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China; Science and Experimental Research Center of Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| | - Hui Jia
- Shenyang Key Laboratory of Vascular Biology, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China; School of Traditional Chinese Medicine, Shenyang Medical College, No. 146 Huanghe North Street, Yuhong District, Shenyang City 110034, Liaoning Province, PR China.
| |
Collapse
|
8
|
Yuan L, Zhou D, Li W, Guan J, Li J, Xu B. TFAP2C Activates CST1 Transcription to Facilitate Breast Cancer Progression and Suppress Ferroptosis. Biochem Genet 2024; 62:3858-3875. [PMID: 38243003 DOI: 10.1007/s10528-023-10660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/30/2023] [Indexed: 01/21/2024]
Abstract
Cystatin SN (CST1) appears to have pro-tumor effects in breast cancer (BC) and is involved in ferroptosis; however, there is no report on the regulation of ferroptosis by CST1 for BC development. The purpose of this study is to investigate the functions and mechanisms operated by CST1 in BC development and ferroptosis. Transcription Factor Activator Protein 2γ (TFAP2C) and CST1 levels in BC tissues and estrogen receptor (ER)+ cells were quantified by RT-qPCR and western blotting. After knocking down TFAP2C and CST1 expression in MCF7 and T47D cells, the proliferation, colony formation ability, apoptosis, and cell cycle were assessed. Ferroptosis was verified by detecting glutathione peroxidase 4 (GPX4) and 4-hydroxy-2-nonenal (4HNE) levels. The kits were used to test Fe2+, reactive oxygen species, malondialdehyde, and glutathione levels, and ultrastructure of mitochondria was observed through transmission electron microscope. Dual-luciferase reporter assay and chromatin immunoprecipitation test were carried out to investigate the interaction of TFAP2C and CST1. A transplanted tumor model was established to explore the function of TFAP2C in tumorigenesis by quantifying TFAP2C, CST1, Ki67, and GPX4 levels through western blotting and immunochemistry after silencing TFAP2C. TFAP2C and CST1 were predominantly expressed in BC cells. Silencing of TFAP2C or CST1 expression suppressed ER+ BC cell proliferation, promoted apoptosis and ferroptosis, and blocked cell cycle transition from G1 phase to S phase. TFAP2C knockdown in transplanted tumors inhibited tumor growth and GPX4 level. Upregulating CST1 nullified the anti-tumor effects of TFAP2C knockdown and TFAP2C promoted CST1 expression through transcription activation. TFAP2C activates CST1 transcription to facilitate BC development and block ferroptosis.
Collapse
Affiliation(s)
- Lin Yuan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, No. 613 West Whampoa Avenue, Guangzhou, Guangdong, 510630, P.R. China
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, 529030, P.R. China
| | - Di Zhou
- Department of Health Examination, Jiangmen Central Hospital, Jiangmen, Guangdong, 529030, P.R. China
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, 529030, P.R. China
| | - Jianhua Guan
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, 529030, P.R. China
| | - Junda Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, 529030, P.R. China
| | - Bo Xu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, No. 613 West Whampoa Avenue, Guangzhou, Guangdong, 510630, P.R. China.
- Departments of General Surgery and Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, P.R. China.
| |
Collapse
|
9
|
Zhuo D, Lei Z, Dong L, Chan AML, Lin J, Jiang L, Qiu B, Jiang X, Tan Y, Yao X. Orai1 and Orai3 act through distinct signalling axes to promote stemness and tumorigenicity of breast cancer stem cells. Stem Cell Res Ther 2024; 15:256. [PMID: 39135143 PMCID: PMC11321067 DOI: 10.1186/s13287-024-03875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND One of major challenges in breast tumor therapy is the existence of breast cancer stem cells (BCSCs). BCSCs are a small subpopulation of tumor cells that exhibit characteristics of stem cells. BCSCs are responsible for progression, recurrence, chemoresistance and metastasis of breast cancer. Ca2+ signalling plays an important role in diverse processes in cancer development. However, the role of Ca2+ signalling in BCSCs is still poorly understood. METHODS A highly effective 3D soft fibrin gel system was used to enrich BCSC-like cells from ER+ breast cancer lines MCF7 and MDA-MB-415. We then investigated the role of two Ca2+-permeable ion channels Orai1 and Orai3 in the growth and stemness of BCSC-like cells in vitro, and tumorigenicity in female NOD/SCID mice in vivo. RESULTS Orai1 RNA silencing and pharmacological inhibition reduced the growth of BCSC-like cells in tumor spheroids, decreased the expression levels of BCSC markers, and reduced the growth of tumor xenografts in NOD/SCID mice. Orai3 RNA silencing also had similar inhibitory effect on the growth and stemness of BCSC-like cells in vitro, and tumor xenograft growth in vivo. Mechanistically, Orai1 and SPCA2 mediate store-operated Ca2+ entry. Knockdown of Orai1 or SPCA2 inhibited glycolysis pathway, whereas knockdown of Orai3 or STIM1 had no effect on glycolysis. CONCLUSION We found that Orai1 interacts with SPCA2 to mediate store-independent Ca2+ entry, subsequently promoting the growth and tumorigenicity of BCSC-like cells via glycolysis pathway. In contrast, Orai3 and STIM1 mediate store-operated Ca2+ entry, promoting the growth and tumorigenicity of BCSC-like cells via a glycolysis-independent pathway. Together, our study uncovered a well-orchestrated mechanism through which two Ca2+ entry pathways act through distinct signalling axes to finely control the growth and tumorigenicity of BCSCs.
Collapse
Affiliation(s)
- Duan Zhuo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
- Heart and Vascular Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhenchuan Lei
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
- Heart and Vascular Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Andrew Man Lok Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Jiacheng Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Beibei Qiu
- Affiliated Hospital (Feicheng) of Shandong First Medical University, Tai'an, People's Republic of China
| | - Xiaohua Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People's Republic of China.
- Heart and Vascular Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
| |
Collapse
|
10
|
Dehghanian F, Ghahnavieh LE, Nilchi AN, Khalilian S, Joonbakhsh R. Breast cancer drug resistance: Decoding the roles of Hippo pathway crosstalk. Gene 2024; 916:148424. [PMID: 38588933 DOI: 10.1016/j.gene.2024.148424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
The most significant factors that lead to cancer-related death in breast cancer (BC) patients include drug resistance, migration, invasion, and metastasis. Several signaling pathways are involved in the development of BC. The different types of BC are initially sensitive to chemotherapy, and drug resistance can occur through multiple molecular mechanisms. Regardless of developing targeted Therapy, due to the heterogenic nature and complexity of drug resistance, it is a major clinical challenge with the low survival rate in BC patients. The deregulation of several signaling pathways, particularly the Hippo pathway (HP), is one of the most recent findings about the molecular mechanisms of drug resistance in BC, which are summarized in this review. Given that HP is one of the recent cancer research hotspots, this review focuses on its implication in BC drug resistance. Unraveling the different molecular basis of HP through its crosstalk with other signaling pathways, and determining the effectiveness of HP inhibitors can provide new insights into possible therapeutic strategies for overcoming chemoresistance in BC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran.
| | - Laleh Ebrahimi Ghahnavieh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Amirhossein Naghsh Nilchi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Sheyda Khalilian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| | - Rezvan Joonbakhsh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, Isfahan 81746-73441, Iran
| |
Collapse
|
11
|
Zhao Y, Tan H, Zhang J, Zhan D, Yang B, Hong S, Pan B, Wang N, Chen T, Shi Y, Wang Z. Developing liver-targeted naringenin nanoparticles for breast cancer endocrine therapy by promoting estrogen metabolism. J Nanobiotechnology 2024; 22:122. [PMID: 38504208 PMCID: PMC10953142 DOI: 10.1186/s12951-024-02356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Endocrine therapy is standard for hormone receptor-positive (HR+) breast cancer treatment. However, current strategies targeting estrogen signaling pay little attention to estradiol metabolism in the liver and is usually challenged by treatment failure. In a previous study, we demonstrated that the natural compound naringenin (NAR) inhibited HR+ breast cancer growth by activating estrogen sulfotransferase (EST) expression in the liver. Nevertheless, the poor water solubility, low bio-barrier permeability, and non-specific distribution limited its clinical application, particularly for oral administration. Here, a novel nano endocrine drug NAR-cell penetrating peptide-galactose nanoparticles (NCG) is reported. We demonstrated that NCG presented specific liver targeting and increased intestinal barrier permeability in both cell and zebrafish xenotransplantation models. Furthermore, NCG showed liver targeting and enterohepatic circulation in mouse breast cancer xenografts following oral administration. Notably, the cancer inhibition efficacy of NCG was superior to that of both NAR and the positive control tamoxifen, and was accompanied by increased hepatic EST expression and reduced estradiol levels in the liver, blood, and tumor tissue. Moreover, few side effects were observed after NCG treatment. Our findings reveal NCG as a promising candidate for endocrine therapy and highlight hepatic EST targeting as a novel therapeutic strategy for HR+ breast cancer.
Collapse
Affiliation(s)
- Yuying Zhao
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hanxu Tan
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Juping Zhang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dandan Zhan
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Yang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shicui Hong
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Pan
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yafei Shi
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Zhiyu Wang
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Clinical Research On Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Mousa NA, Hussein A, Elemam NM, Mohammed G, Elwany M, Basha T, AlHammadi AA, Majzob RS, Talaat IM. Are embryonic stem cell markers and ALDH1A1 relevant in the context of breast cancer estrogen positivity? Cancer Med 2024; 13:e7004. [PMID: 38400679 PMCID: PMC10891463 DOI: 10.1002/cam4.7004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Embryonic pluripotency markers are recognized for their role in ER- BC aggressiveness, but their significance in ER+ BC remains unclear. This study aims to investigate the prevalence of expression of pluripotency markers in ER+ BC and their effect on survival and prognostic indicators. METHODS We analyzed data of ER+ BC patients from three large cancer datasets to assess the expression of three pluripotency markers (NANOG, SOX-2, and OCT4), and the stem cell marker ALDH1A1. Additionally, we investigated associations between gene expression, through mRNA-Seq analysis, and overall survival (OS). The prevalence of mutational variants within these genes was explored. Using immunohistochemistry (IHC), we examined the expression and associations with clinicopathologic prognostic indicators of the four markers in 81 ER+ BC patients. RESULTS Through computational analysis, NANOG and ALDH1A1 genes were significantly upregulated in ER+ BC compared to ER- BC patients (p < 0.001), while POU5F1 (OCT4) was downregulated (p < 0.001). NANOG showed an adverse impact on OS whereas ALDH1A1 was associated with a highly significant improved survival in ER+ BC (p = 4.7e-6), except for the PR- and HER2+ subgroups. Copy number alterations (CNAs) ranged from 0.4% to 1.6% in these genes, with the highest rate detected in SOX2. In the IHC study, approximately one-third of tumors showed moderate to strong expression of each of the four markers, with 2-4 markers strongly co-expressed in 56.8% of cases. OCT-4 and ALDH1A1 showed a significant association with a high KI-67 index (p = 0.009 and 0.008, respectively), while SOX2 showed a significant association with perinodal fat invasion (p = 0.017). CONCLUSION Pluripotency markers and ALDH1A1 are substantially expressed in ER+ BC tumors with different, yet significant, associations with prognostic and survival outcomes. This study suggests these markers as targets for prospective clinical validation studies of their prognostic value and their possible therapeutic roles.
Collapse
Affiliation(s)
- Noha A. Mousa
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Amal Hussein
- Family and Community Medicine and Behavioural Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Noha M. Elemam
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Research Institute for Medical and Health Sciences, University of SharjahSharjahUnited Arab Emirates
| | - Ghada Mohammed
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Mona Elwany
- Medical Research Institute, Alexandria UniversityAlexandriaEgypt
| | - Tasneem Basha
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Amal A. AlHammadi
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Rana S. Majzob
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Medical Research Institute, Alexandria UniversityAlexandriaEgypt
- Pathology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| |
Collapse
|
13
|
Barbosa S, Laureano NK, Hadiwikarta WW, Visioli F, Bonrouhi M, Pajdzik K, Conde-Lopez C, Herold-Mende C, Eidt G, Langie R, Lamers ML, Stögbauer F, Hess J, Kurth I, Jou A. The Role of SOX2 and SOX9 in Radioresistance and Tumor Recurrence. Cancers (Basel) 2024; 16:439. [PMID: 38275880 PMCID: PMC10814462 DOI: 10.3390/cancers16020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) exhibits considerable variability in patient outcome. It has been reported that SOX2 plays a role in proliferation, tumor growth, drug resistance, and metastasis in a variety of cancer types. Additionally, SOX9 has been implicated in immune tolerance and treatment failures. SOX2 and SOX9 induce treatment failure by a molecular mechanism that has not yet been elucidated. This study explores the inverse association of SOX2/SOX9 and their distinct expression in tumors, influencing the tumor microenvironment and radiotherapy responses. Through public RNA sequencing data, human biopsy samples, and knockdown cellular models, we explored the effects of inverted SOX2 and SOX9 expression. We found that patients expressing SOX2LowSOX9High showed decreased survival compared to SOX2HighSOX9Low. A survival analysis of patients stratified by radiotherapy and human papillomavirus brings additional clinical relevance. We identified a gene set signature comprising newly discovered candidate genes resulting from inverted SOX2/SOX9 expression. Moreover, the TGF-β pathway emerges as a significant predicted contributor to the overexpression of these candidate genes. In vitro findings reveal that silencing SOX2 enhances tumor radioresistance, while SOX9 silencing enhances radiosensitivity. These discoveries lay the groundwork for further studies on the therapeutic potential of transcription factors in optimizing HNSCC treatment.
Collapse
Affiliation(s)
- Silvia Barbosa
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Natalia Koerich Laureano
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Wahyu Wijaya Hadiwikarta
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Fernanda Visioli
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Mahnaz Bonrouhi
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kinga Pajdzik
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Cristina Conde-Lopez
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gustavo Eidt
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Renan Langie
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Marcelo Lazzaron Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Fabian Stögbauer
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Germany and Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 80337 Munich, Germany
| | - Jochen Hess
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ina Kurth
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Adriana Jou
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Dentistry, Institute of Toxicology and Pharmacology, Pontifícial Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| |
Collapse
|
14
|
Zhu J, Ye L, Sun S, Yuan J, Huang J, Zeng Z. Involvement of RFC3 in tamoxifen resistance in ER-positive breast cancer through the cell cycle. Aging (Albany NY) 2023; 15:13738-13752. [PMID: 38059884 PMCID: PMC10756131 DOI: 10.18632/aging.205260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Since the establishment of the molecular subtyping system, ER positive breast cancer was considered to be the most prevalent type of breast cancer, and endocrine therapy was a very important solution. However, numerous studies have shown that the cell cycle plays a key role in the progression and metastasis of breast cancer. The present study showed that RFC3 was involved in the cell cycle through DNA replication. Furthermore, RFC3 expression was significantly higher in breast cancer-resistant cells than in parental cells, which correlated with the cell cycle. We confirmed these results by established drug-resistant cell lines for breast cancer, raw letter analysis and immunohistochemical analysis of primary and recurrent tissues from three ER+ breast cancers. In addition, analysis of the results through an online database revealed that RFC3 expression was significantly associated with poor prognosis in ER+ breast cancer. We also demonstrated that in ER positive breast cancer-resistant cells, knockdown of RFC3 blocked the S-phase of cells and significantly attenuated cell proliferation, migration and invasion. Furthermore, RFC3 overexpression in ER positive breast cancer cells enhanced cell proliferation, migration and invasion. Taking all these findings into account, we could conclude that RFC3 was involved in endocrine resistance in breast cancer through the cell cycle. Thus, RFC3 may be a target to address endocrine therapy resistance in ER positive breast cancer and may be an independent prognostic factor in ER positive breast cancer.
Collapse
Affiliation(s)
- Jintao Zhu
- Department of Breast, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Lei Ye
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Shishen Sun
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Jie Yuan
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Jianfeng Huang
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Zhiqiang Zeng
- Department of Breast, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| |
Collapse
|
15
|
Guo H, Tan YQ, Huang X, Zhang S, Basappa B, Zhu T, Pandey V, Lobie PE. Small molecule inhibition of TFF3 overcomes tamoxifen resistance and enhances taxane efficacy in ER+ mammary carcinoma. Cancer Lett 2023; 579:216443. [PMID: 37858772 DOI: 10.1016/j.canlet.2023.216443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Even though tamoxifen has significantly improved the survival of estrogen receptor positive (ER+) mammary carcinoma (MC) patients, the development of drug resistance with consequent disease recurrence has limited its therapeutic efficacy. Trefoil factor-3 (TFF3) has been previously reported to mediate anti-estrogen resistance in ER+MC. Herein, the efficacy of a small molecule inhibitor of TFF3 (AMPC) in enhancing sensitivity and mitigating acquired resistance to tamoxifen in ER+MC cells was investigated. AMPC induced apoptosis of tamoxifen-sensitive and resistant ER+MC cells and significantly reduced cell survival in 2D and 3D culture in vitro. In addition, AMPC reduced cancer stem cell (CSC)-like behavior in ER+MC cells in a BCL2-dependent manner. Synergistic effects of AMPC and tamoxifen were demonstrated in ER+MC cells and AMPC was observed to improve tamoxifen efficacy in tamoxifen-sensitive cells and to re-sensitize cells to tamoxifen in tamoxifen-resistant ER+MC in vitro and in vivo. Additionally, tamoxifen-resistant ER+MC cells were concomitantly resistant to anthracycline, platinum and fluoropyrimidine drugs, but not to Taxanes. Taxane treatment of tamoxifen-sensitive and resistant ER+MC cells increased TFF3 expression indicating a combination vulnerability for tamoxifen-resistant ER+MC cells. Taxanes increased CSC-like behavior of tamoxifen-sensitive and resistant ER+MC cells which was reduced by AMPC treatment. Taxanes synergized with AMPC to promote apoptosis and reduce CSC-like behavior in vitro and in vivo. Hence, AMPC restored the sensitivity of tamoxifen and enhanced the efficacy of Taxanes in tamoxifen-resistant ER+MC. In conclusion, pharmacological inhibition of TFF3 may serve as an effective combinatorial therapeutic strategy for the treatment of tamoxifen-resistant ER+MC.
Collapse
Affiliation(s)
- Hui Guo
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoming Huang
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, 570006, India
| | - Tao Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute and the Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
16
|
Yuan J, Yang L, Li Z, Zhang H, Wang Q, Huang J, Wang B, Mohan CD, Sethi G, Wang G. The role of the tumor microenvironment in endocrine therapy resistance in hormone receptor-positive breast cancer. Front Endocrinol (Lausanne) 2023; 14:1261283. [PMID: 37900137 PMCID: PMC10611521 DOI: 10.3389/fendo.2023.1261283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Endocrine therapy is the prominent strategy for the treatment of hormone-positive breast cancers. The emergence of resistance to endocrine therapy is a major health concern among hormone-positive breast cancer patients. Resistance to endocrine therapy demands the design of newer therapeutic strategies. The understanding of underlying molecular mechanisms of endocrine resistance, components of the tumor microenvironment (TME), and interaction of resistant breast cancer cells with the cellular/acellular components of the intratumoral environment are essential to formulate new therapeutic strategies for the treatment of endocrine therapy-resistant breast cancers. In the first half of the article, we have discussed the general mechanisms (including mutations in estrogen receptor gene, reregulated activation of signaling pathways, epigenetic changes, and cell cycle alteration) responsible for endocrine therapy resistance in hormone-positive breast cancers. In the latter half, we have emphasized the precise role of cellular (cancer-associated fibroblasts, immune cells, and cancer stem cells) and acellular components (collagen, fibronectin, and laminin) of TME in the development of endocrine resistance in hormone-positive breast cancers. In sum, the article provides an overview of the relationship between endocrine resistance and TME in hormone-positive breast cancers.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhi Li
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Hua Zhang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Qun Wang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Jun Huang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Bei Wang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore Karnataka, India
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Geng Wang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| |
Collapse
|
17
|
Khallouki F, Hajji L, Saber S, Bouddine T, Edderkaoui M, Bourhia M, Mir N, Lim A, El Midaoui A, Giesy JP, Aboul-Soud MAM, Silvente-Poirot S, Poirot M. An Update on Tamoxifen and the Chemo-Preventive Potential of Vitamin E in Breast Cancer Management. J Pers Med 2023; 13:jpm13050754. [PMID: 37240924 DOI: 10.3390/jpm13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.
Collapse
Affiliation(s)
- Farid Khallouki
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Lhoussain Hajji
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Somayya Saber
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Toufik Bouddine
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Nora Mir
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Adrian Lim
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Adil El Midaoui
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
| | - Mourad A M Aboul-Soud
- Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| |
Collapse
|
18
|
Flood E, Krasnow A, Orbegoso C, Karantzoulis S, Bailey J, Bayet S, Elghouayel A, Foxley A, Sommavilla R, Schiavon G. Using qualitative interviews to identify patient-reported clinical trial endpoints and analyses that are the most meaningful to patients with advanced breast cancer. PLoS One 2023; 18:e0280259. [PMID: 36649275 PMCID: PMC9844842 DOI: 10.1371/journal.pone.0280259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Designing clinical trials with the emphasis on the patient-centered approach and focusing on clinical outcomes that are meaningful to patients is viewed as a priority by drug developers, regulatory agencies, payers, clinicians, and patients. This study aimed to capture information on clinical trial endpoints that would be most important and relevant for patients with advanced breast cancer, based on patient-reported outcomes. METHODS Patients with either advanced triple-negative breast cancer [TNBC] and a maximum of two lines of systemic therapy or hormone receptor-positive/human epidermal growth factor receptor 2-negative [HR+/HER2-] breast cancer and a maximum of three lines of systemic therapy, participated in semi-structured concept elicitation interviews. Concept saturation was assessed. A sign, symptom, or impact was defined as "salient" if mentioned by ≥ 60% of participants, with an average bother rating of ≥ 5 (0-10 Scale). Participants were also asked about treatment priorities and to evaluate hypothetical scenarios showing different health-related functioning and quality-of-life treatment outcomes, using graphical representations. RESULTS Thirty-two participants (97% women; aged 29+ years) with TNBC (n = 17) or HR+/HER2- breast cancer (n = 15) provided generally similar reports on symptom experience, with fatigue and pain being most salient, though importance of certain treatment-related symptoms varied between the two groups. Patients reported consistent perspectives on the importance of treatment outcomes: when considering a new treatment, they prioritized efficacy of the therapy, acceptable tolerability, stability, predictability of symptoms over time, and the duration of preserved health-related quality of life and physical functioning. The meaningful difference in preserved physical functioning was 2-3 months for 46% of participants with TNBC, whereas for most participants with HR+/HER2- breast cancer it started from 6-7 months. Both groups of participants found it easier to accept some toxicity at the beginning of therapy if it was followed by improvement, as opposed to improvement followed by deterioration. CONCLUSION The results may help to inform the design of patient-centered clinical trials, to interpret health-related quality of life and/or patient-reported outcomes, and to optimize care for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Emuella Flood
- AstraZeneca plc, Patient-Centered Science, Gaithersburg, Maryland, United States of America
| | - Anna Krasnow
- IQVIA Real World Solutions, Patient-Centered Solutions, London, United Kingdom
| | | | - Stella Karantzoulis
- IQVIA Real World Solutions, Patient-Centered Solutions, New York, New York, United States of America
| | - Julie Bailey
- IQVIA Real World Solutions, Patient-Centered Solutions, New York, New York, United States of America
| | - Solène Bayet
- IQVIA Real World Solutions, Patient-Centered Solutions, Courbevoie, France
| | - Arthur Elghouayel
- IQVIA Real World Solutions, Patient-Centered Solutions, New York, New York, United States of America
| | - Andrew Foxley
- AstraZeneca plc, R&D Oncology, Cambridge, United Kingdom
| | | | - Gaia Schiavon
- AstraZeneca plc, R&D Oncology, Cambridge, United Kingdom
| |
Collapse
|
19
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
20
|
Chen J, Ma D, Zeng C, White LV, Zhang H, Teng Y, Lan P. Solasodine suppress MCF7 breast cancer stem-like cells via targeting Hedgehog/Gli1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154448. [PMID: 36116198 DOI: 10.1016/j.phymed.2022.154448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recently, a novel therapy to treat cancer has been to target cancer stem-like cells (CSCs). The aim of this study was to investigate the effect of solasodine, a steroidal alkaloid isolated from Solanum incanum L., on MCF7 CSCs and to understand the compound's underlying mechanism of action. METHOD A tumorsphere formation assay was used to evaluate the effects of solasodine on the proliferation and self-renewal ability of MCF7 CSCs. The level of expression of proteins associated with cancer stemness markers and Hh signaling mediators was determined. The interaction between solasodine and Gli1 was calculated by molecular docking and further demonstrated by cellular thermal shift assay. RESULTS Solasodine significantly decreased the proliferation of MCF7 tumorspheres and showed a stronger cytotoxicity on breast cancer cells with higher levels of Gli1 expression. The results showed that the levels of CD44 and ALDH1 expression were suppressed. Furthermore, expression of CD24 was enhanced by solasodine, via a mechanism that involved dampening Gli1 expression and blocking the nuclear translocation of this protein in MCF7 tumorspheres. Computational studies predicted that solasodine showed a high affinity with the Gli1 zinc finger domain that resulted from hydrogen-bonds to the THR243 and ASP216 amino acids residues. In addition, solasodine specifically bound with Gli1 and enhanced Gli1 protein stability in MCF7 cells. CONCLUSION Here, our findings indicated that solasodine can directly suppresses Hh/Gli1 signaling, and is a novel anticancer candidate that targets CSCs.
Collapse
Affiliation(s)
- Jing Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Da Ma
- College of Packaging engineering, Jinan University, Zhuhai, 519070, China.
| | - Cuicui Zeng
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lorenzo V White
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Huanqing Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yinglai Teng
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ping Lan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Effects of Combined Pentadecanoic Acid and Tamoxifen Treatment on Tamoxifen Resistance in MCF−7/SC Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231911340. [PMID: 36232636 PMCID: PMC9570034 DOI: 10.3390/ijms231911340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Estrogen receptors are indicators of breast cancer adaptability to endocrine therapies, such as tamoxifen. Deficiency or absence of estrogen receptor α (ER−α) in breast cancer cells results in reduced efficacy of endocrine therapy. Here, we investigated the effect of combined tamoxifen and pentadecanoic acid therapy on ER−α−under−expressing breast cancer cells. Drug resistance gene expression patterns were determined by RNA sequencing analysis and in vitro experiments. For the first time, we demonstrate that the combined treatment of pentadecanoic acid, an odd−chain fatty acid, and tamoxifen synergistically suppresses the growth of human breast carcinoma MCF−7 stem cells (MCF−7/SCs), which were found to be tamoxifen−resistant and showed reduced ER−α expression compared with the parental MCF−7 cells. In addition, the combined treatment synergistically induced apoptosis and accumulation of sub−G1 cells and suppressed epithelial−to−mesenchymal transition (EMT). Exposure to this combination induces re−expression of ER−α at the transcriptional and protein levels, along with suppression of critical survival signal pathways, such as ERK1/2, MAPK, EGFR, and mTOR. Collectively, decreased ER−α expression was restored by pentadecanoic acid treatment, resulting in reversal of tamoxifen resistance. Overall, pentadecanoic acid exhibits the potential to enhance the efficacy of endocrine therapy in the treatment of ER−α−under−expressing breast cancer cells.
Collapse
|
22
|
Strillacci A, Sansone P, Rajasekhar VK, Turkekul M, Boyko V, Meng F, Houck-Loomis B, Brown D, Berger MF, Hendrickson RC, Chang Q, de Stanchina E, Pareja F, Reis-Filho JS, Rajappachetty RS, Del Priore I, Liu B, Cai Y, Penson A, Mastroleo C, Berishaj M, Borsetti F, Spisni E, Lyden D, Chandarlapaty S, Bromberg J. ERα-LBD, an isoform of estrogen receptor alpha, promotes breast cancer proliferation and endocrine resistance. NPJ Breast Cancer 2022; 8:96. [PMID: 35999225 PMCID: PMC9399095 DOI: 10.1038/s41523-022-00470-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/26/2022] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα) drives mammary gland development and breast cancer (BC) growth through an evolutionarily conserved linkage of DNA binding and hormone activation functions. Therapeutic targeting of the hormone binding pocket is a widely utilized and successful strategy for breast cancer prevention and treatment. However, resistance to this endocrine therapy is frequently encountered and may occur through bypass or reactivation of ER-regulated transcriptional programs. We now identify the induction of an ERα isoform, ERα-LBD, that is encoded by an alternative ESR1 transcript and lacks the activation function and DNA binding domains. Despite lacking the transcriptional activity, ERα-LBD is found to promote breast cancer growth and resistance to the ERα antagonist fulvestrant. ERα-LBD is predominantly localized to the cytoplasm and mitochondria of BC cells and leads to enhanced glycolysis, respiration and stem-like features. Intriguingly, ERα-LBD expression and function does not appear to be restricted to cancers that express full length ERα but also promotes growth of triple-negative breast cancers and ERα-LBD transcript (ESR1-LBD) is also present in BC samples from both ERα(+) and ERα(-) human tumors. These findings point to ERα-LBD as a potential mediator of breast cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Antonio Strillacci
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Pasquale Sansone
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Children's Cancer and Blood Foundation Laboratories, Weill Cornell Medicine, New York, NY, USA
| | | | - Mesruh Turkekul
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vitaly Boyko
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fanli Meng
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Houck-Loomis
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Brown
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ramya Segu Rajappachetty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabella Del Priore
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bo Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyan Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francesca Borsetti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Weill Cornell Medicine, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Ham A, Cho MH, Won HS, Jo J, Lee KE. β‑catenin blockers enhance the effect of CDK4/6 inhibitors on stemness and proliferation suppression in endocrine‑resistant breast cancer cells. Oncol Rep 2022; 48:130. [PMID: 35656884 DOI: 10.3892/or.2022.8341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/17/2022] [Indexed: 11/05/2022] Open
Abstract
Wnt/β‑catenin signaling is involved in endocrine resistance and stem cell‑like properties of hormone receptor‑positive breast cancer cells. Palbociclib is a well‑known inhibitor of cyclin‑dependent kinase 4 and 6 (CDK4/6 inhibitor) that downregulates the activation of retinoblastoma protein, thereby inhibiting the cell cycle in breast cancer cells. The inhibitory effects of a combination of palbociclib and ICG‑001, a β‑catenin small‑molecule inhibitor, were investigated in tamoxifen‑resistant breast cancer cell lines. Tamoxifen‑resistant MCF‑7 (TamR) cells were established by continuously exposing MCF‑7 cells to tamoxifen. The characteristics associated with the stem cell‑like property of cancer were assessed using western blotting, cell cycle analysis, and the mammosphere assay. The effects of the combination of palbociclib and ICG‑001 were evaluated in control MCF‑7 and TamR cell lines. Compared with control cells, TamR cells exhibited elevated levels of Nanog, Sox2, ALDH1, and p‑STAT3, indicating stem cell‑like characteristics, and elevated β‑catenin activity. TamR cells also showed significantly higher mammosphere‑forming efficiency. Several markers of stem cell‑like nature of TamR cells showed reduced levels upon treatment of cells with the drug combination; there was a greater reduction in the levels of these markers when the cells were treated with the combination than in the case where cells were treated with one of the drugs individually (combination index value for 25 µM palbociclib and 50 µM ICG‑001 was 1.1±0.02). TamR cells treated with the palbociclib and ICG‑001 combination demonstrated significantly reduced cell proliferation and mammosphere‑forming efficiency compared with the cells treated with one of these drugs. The combination of the drugs could additively inhibit proliferation and suppress stem cell‑like characteristics. These results suggest that β‑catenin plays a role in endocrine‑resistant breast cancer; the inhibition of β‑catenin and CDK4/6 together can overcome endocrine resistance in breast cancer cells.
Collapse
Affiliation(s)
- Ahrong Ham
- Division of Hematology‑Oncology, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Min Hee Cho
- Division of Hematology‑Oncology, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Hye Sung Won
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jungmin Jo
- Division of Hematology‑Oncology, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Kyoung Eun Lee
- Division of Hematology‑Oncology, Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| |
Collapse
|
24
|
Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:805-836. [PMID: 35582386 PMCID: PMC8992449 DOI: 10.20517/cdr.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the main challenges in cancer therapy, including in the treatment of female-specific malignancies, which account for more than 60% of cancer cases among women. Therefore, elucidating the underlying molecular mechanisms is an urgent need in gynecological cancers to foster novel therapeutic approaches. Notably, Notch signaling, including either receptors or ligands, has emerged as a promising candidate given its multifaceted role in almost all of the hallmarks of cancer. Concerning the connection between Notch pathway and drug resistance in the afore-mentioned tumor contexts, several studies focused on the Notch-dependent regulation of the cancer stem cell (CSC) subpopulation or the induction of the epithelial-to-mesenchymal transition (EMT), both features implicated in either intrinsic or acquired resistance. Indeed, the present review provides an up-to-date overview of the published results on Notch signaling and EMT- or CSC-driven drug resistance. Moreover, other drug resistance-related mechanisms are examined such as the involvement of the Notch pathway in drug efflux and tumor microenvironment. Collectively, there is a long way to go before every facet will be fully understood; nevertheless, some small pieces are falling neatly into place. Overall, the main aim of this review is to provide strong evidence in support of Notch signaling inhibition as an effective strategy to evade or reverse resistance in female-specific cancers.
Collapse
Affiliation(s)
- Maria V Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Angelica Mancusi
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Eugenia Giuliani
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, Rome 00144, Italy
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina 04100, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
25
|
Fukuoka M, Ichikawa Y, Osako T, Fujita T, Baba S, Takeuchi K, Tsunoda N, Ebata T, Ueno T, Ohno S, Saitoh N. The ELEANOR non-coding RNA expression contributes to cancer dormancy and predicts late recurrence of ER-positive breast cancer. Cancer Sci 2022; 113:2336-2351. [PMID: 35415910 PMCID: PMC9277265 DOI: 10.1111/cas.15373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
The recurrence risk of estrogen receptor (ER)-positive breast cancer remains high for a long period of time, unlike the other types of cancer. The late recurrence reflects the ability of cancer cells to remain dormant through various events, including cancer stemness acquisition, but the detailed mechanism is unknown. ESR1 locus enhancing and activating non-coding RNAs (ELEANORS) are a cluster of nuclear non-coding RNAs originally identified in a recurrent breast cancer cell model. Although their functions as chromatin regulators in vitro are well characterized, their roles in vivo remain elusive. In this study, we evaluated the clinicopathological features of ELEANORS, using primary and corresponding metastatic breast cancer tissues. The ELEANOR expression was restricted to ER-positive cases and well-correlated with the ER and progesterone receptor expression levels, especially at the metastatic sites. ELEANORS were detected in both primary and metastatic tumors (32% and 29%, respectively), and frequently in postmenopausal cases. Interestingly, after surgery, patients with ELEANOR-positive primary tumors exhibited increased relapse rates after, but not within, 5 years. Multivariate analysis showed that ELEANORS are independent recurrence risk factor. Consistently, analyses with cell lines, mouse xenografts and patient tissues revealed that ELEANORS upregulate a breast cancer stemness gene, CD44, and maintain the cancer stem cell population, which may facilitate tumor dormancy. Our findings highlight a new role of nuclear long non-coding RNAs and their clinical potential as predictive biomarkers and therapeutic targets for late recurrence of ER-positive breast cancer.
Collapse
Affiliation(s)
- Megumi Fukuoka
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan.,Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Ichikawa
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| | - Tomo Osako
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR
| | - Tomoko Fujita
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| | - Satoko Baba
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR.,Pathology Project for Molecular Targets, Cancer Institute
| | - Kengo Takeuchi
- Division of Pathology, The Cancer Institute of JFCR.,Department of Pathology, The Cancer Institute Hospital of JFCR.,Pathology Project for Molecular Targets, Cancer Institute
| | - Nobuyuki Tsunoda
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Japan
| | - Takayuki Ueno
- Breast Oncology Center, The Cancer Institute Hospital of JFCR
| | - Shinji Ohno
- Breast Oncology Center, The Cancer Institute Hospital of JFCR
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, 135-8550, Japan
| |
Collapse
|
26
|
Ogle MM, Trevino R, Schell J, Varmazyad M, Horikoshi N, Gius D. Manganese Superoxide Dismutase Acetylation and Regulation of Protein Structure in Breast Cancer Biology and Therapy. Antioxidants (Basel) 2022; 11:635. [PMID: 35453320 PMCID: PMC9024550 DOI: 10.3390/antiox11040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The loss and/or dysregulation of several cellular and mitochondrial antioxidants' expression or enzymatic activity, which leads to the aberrant physiological function of these proteins, has been shown to result in oxidative damage to cellular macromolecules. In this regard, it has been surmised that the disruption of mitochondrial networks responsible for maintaining normal metabolism is an established hallmark of cancer and a novel mechanism of therapy resistance. This altered metabolism leads to aberrant accumulation of reactive oxygen species (ROS), which, under specific physiological conditions, leads to a potential tumor-permissive cellular environment. In this regard, it is becoming increasingly clear that the loss or disruption of mitochondrial oxidant scavenging enzymes may be, in specific tumors, either an early event in transformation or exhibit tumor-promoting properties. One example of such an antioxidant enzyme is manganese superoxide dismutase (MnSOD, also referred to as SOD2), which detoxifies superoxide, a ROS that has been shown, when its normal physiological levels are disrupted, to lead to oncogenicity and therapy resistance. Here, we will also discuss how the acetylation of MnSOD leads to a change in detoxification function that leads to a cellular environment permissive for the development of lineage plasticity-like properties that may be one mechanism leading to tumorigenic and therapy-resistant phenotypes.
Collapse
Affiliation(s)
- Meredith M. Ogle
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Rolando Trevino
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Joseph Schell
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Mahboubeh Varmazyad
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, 7979 Wurzbach Road, San Antonio, TX 78229, USA; (M.M.O.); (R.T.J.); (J.S.); (M.V.); (N.H.)
- Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
27
|
Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Front Oncol 2022; 12:856974. [PMID: 35392236 PMCID: PMC8979779 DOI: 10.3389/fonc.2022.856974] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent type of malignancy in women worldwide, and drug resistance to the available systemic therapies remains a major challenge. At the molecular level, breast cancer is heterogeneous, where the cancer-initiating stem-like cells (bCSCs) comprise a small yet distinct population of cells within the tumor microenvironment (TME) that can differentiate into cells of multiple lineages, displaying varying degrees of cellular differentiation, enhanced metastatic potential, invasiveness, and resistance to radio- and chemotherapy. Based on the expression of estrogen and progesterone hormone receptors, expression of human epidermal growth factor receptor 2 (HER2), and/or BRCA mutations, the breast cancer molecular subtypes are identified as TNBC, HER2 enriched, luminal A, and luminal B. Management of breast cancer primarily involves resection of the tumor, followed by radiotherapy, and systemic therapies including endocrine therapies for hormone-responsive breast cancers; HER2-targeted therapy for HER2-enriched breast cancers; chemotherapy and poly (ADP-ribose) polymerase inhibitors for TNBC, and the recent development of immunotherapy. However, the complex crosstalk between the malignant cells and stromal cells in the breast TME, rewiring of the many different signaling networks, and bCSC-mediated processes, all contribute to overall drug resistance in breast cancer. However, strategically targeting bCSCs to reverse chemoresistance and increase drug sensitivity is an underexplored stream in breast cancer research. The recent identification of dysregulated miRNAs/ncRNAs/mRNAs signatures in bCSCs and their crosstalk with many cellular signaling pathways has uncovered promising molecular leads to be used as potential therapeutic targets in drug-resistant situations. Moreover, therapies that can induce alternate forms of regulated cell death including ferroptosis, pyroptosis, and immunotherapy; drugs targeting bCSC metabolism; and nanoparticle therapy are the upcoming approaches to target the bCSCs overcome drug resistance. Thus, individualizing treatment strategies will eliminate the minimal residual disease, resulting in better pathological and complete response in drug-resistant scenarios. This review summarizes basic understanding of breast cancer subtypes, concept of bCSCs, molecular basis of drug resistance, dysregulated miRNAs/ncRNAs patterns in bCSCs, and future perspective of developing anticancer therapeutics to address breast cancer drug resistance.
Collapse
Affiliation(s)
- Taniya Saha
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
28
|
Xiao M, He J, Yin L, Chen X, Zu X, Shen Y. Tumor-Associated Macrophages: Critical Players in Drug Resistance of Breast Cancer. Front Immunol 2022; 12:799428. [PMID: 34992609 PMCID: PMC8724912 DOI: 10.3389/fimmu.2021.799428] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Drug resistance is one of the most critical challenges in breast cancer (BC) treatment. The occurrence and development of drug resistance are closely related to the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), the most important immune cells in TIME, are essential for drug resistance in BC treatment. In this article, we summarize the effects of TAMs on the resistance of various drugs in endocrine therapy, chemotherapy, targeted therapy, and immunotherapy, and their underlying mechanisms. Based on the current overview of the key role of TAMs in drug resistance, we discuss the potential possibility for targeting TAMs to reduce drug resistance in BC treatment, By inhibiting the recruitment of TAMs, depleting the number of TAMs, regulating the polarization of TAMs and enhancing the phagocytosis of TAMs. Evidences in our review support it is important to develop novel therapeutic strategies to target TAMs in BC to overcome the treatment of resistance.
Collapse
Affiliation(s)
- Maoyu Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liyang Yin
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiguan Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
29
|
Attia YM, Salama SA, Shouman SA, Ivan C, Elsayed AM, Amero P, Rodriguez-Aguayo C, Lopez-Berestein G. Targeting CDK7 reverses tamoxifen resistance through regulating stemness in ER+ breast cancer. Pharmacol Rep 2022; 74:366-378. [PMID: 35000145 DOI: 10.1007/s43440-021-00346-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although tamoxifen is the mainstay endocrine therapy for estrogen receptor-positive (ER+) breast cancer patients, the emergence of tamoxifen resistance is still the major challenge that results in treatment failure. Tamoxifen is very effective in halting breast cancer cell proliferation; nonetheless, the ability of tamoxifen to target cancer stem and progenitor cell populations (CSCs), a major key player for the emergence of tamoxifen resistance, has not been adequately investigated yet. Thus, we explored whether targeting CDK7 modulates CSCs subpopulation and tamoxifen resistance in ER+ breast cancer cells. METHODS Mammosphere-formation assay, stem cell biomarkers and tamoxifen sensitivity were analyzed in MCF7 tamoxifen-sensitive cell line and its resistant counterpart, LCC2, following CDK7 targeting by THZ1 or siRNA. RESULTS Analysis of clinically relevant data indicated that expression of stemness factor, SOX2, was positively correlated with CDK7 expression in tamoxifen-treated patients. Moreover, overexpression of the stemness gene, SOX2, was associated with shorter overall survival in those patients. Importantly, the number of CSC populations and the expression of CDK7, P-Ser118-ER-α and c-MYC were significantly higher in LCC2 cells compared with parental MCF-7 cells. Moreover, targeting CDK7 inhibited mammosphere formation, CSC-regulating genes, and CSC biomarkers expression in MCF-7 and LCC2 cells. CONCLUSION Our data indicate, for the first time, that CDK7-targeted therapy in ER+ breast cancer ameliorates tamoxifen resistance, at least in part, by inhibiting cancer stemness. Thus, targeting CDK7 might represent a potential approach for relieving tamoxifen resistance in ER+ breast cancer.
Collapse
Affiliation(s)
- Yasmin M Attia
- Pharmacology and Experimental Therapeutics Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt. .,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Salama A Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt.
| | - Samia A Shouman
- Pharmacology and Experimental Therapeutics Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abdelrahman M Elsayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
30
|
Babyshkina N, Dronova T, Erdyneeva D, Gervas P, Cherdyntseva N. Role of TGF-β signaling in the mechanisms of tamoxifen resistance. Cytokine Growth Factor Rev 2021; 62:62-69. [PMID: 34635390 DOI: 10.1016/j.cytogfr.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022]
Abstract
The transforming growth factor beta (TGF-β) signaling pathway plays complex role in the regulation of cell proliferation, apoptosis and differentiation in breast cancer. TGF-β activation can lead to multiple cellular responses mediating the drug resistance evolution, including the resistance to antiestrogens. Tamoxifen is the most commonly prescribed antiestrogen that functionally involved in regulation of TGF-β activity. In this review, we focus on the role of TGF-β signaling in the mechanisms of tamoxifen resistance, including its interaction with estrogen receptors alfa (ERα) pathway and breast cancer stem cells (BCSCs). We summarize the current reported data regarding TGF-β signaling components as markers of tamoxifen resistance and review current approaches to overcoming tamoxifen resistance based on studies of TGF-β signaling.
Collapse
Affiliation(s)
- Nataliya Babyshkina
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation; Siberian State Medical University, Tomsk 634050, Russian Federation.
| | - Tatyana Dronova
- Department of Biology of Tumor Progression, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Daiana Erdyneeva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Polina Gervas
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| | - Nadejda Cherdyntseva
- Department of Molecular Oncology and Immunology, Саncеr Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russian Federation
| |
Collapse
|
31
|
Mahadik N, Bhattacharya D, Padmanabhan A, Sakhare K, Narayan KP, Banerjee R. Targeting steroid hormone receptors for anti-cancer therapy-A review on small molecules and nanotherapeutic approaches. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1755. [PMID: 34541822 DOI: 10.1002/wnan.1755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The steroid hormone receptors (SHRs) among nuclear hormone receptors (NHRs) are steroid ligand-dependent transcription factors that play important roles in the regulation of transcription of genes promoted via hormone responsive elements in our genome. Aberrant expression patterns and context-specific regulation of these receptors in cancer, have been routinely reported by multiple research groups. These gave an window of opportunity to target those receptors in the context of developing novel, targeted anticancer therapeutics. Besides the development of a plethora of SHR-targeting synthetic ligands and the availability of their natural, hormonal ligands, development of many SHR-targeted, anticancer nano-delivery systems and theranostics, especially based on small molecules, have been reported. It is intriguing to realize that these cytoplasmic receptors have become a hot target for cancer selective delivery. This is in spite of the fact that these receptors do not fall in the category of conventional, targetable cell surface bound or transmembrane receptors that enjoy over-expression status. Glucocorticoid receptor (GR) is one such exciting SHR that in spite of it being expressed ubiquitously in all cells, we discovered it to behave differently in cancer cells, thus making it a truly druggable target for treating cancer. This review selectively accumulates the knowledge generated in the field of SHR-targeting as a major focus for cancer treatment with various anticancer small molecules and nanotherapeutics on progesterone receptor, mineralocorticoid receptor, and androgen receptor while selectively emphasizing on GR and estrogen receptor. This review also briefly highlights lipid-modification strategy to convert ligands into SHR-targeted cancer nanotherapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namita Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Akshaya Padmanabhan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Dittmer J. Nuclear Mechanisms Involved in Endocrine Resistance. Front Oncol 2021; 11:736597. [PMID: 34604071 PMCID: PMC8480308 DOI: 10.3389/fonc.2021.736597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Abstract
Endocrine therapy is a standard treatment offered to patients with ERα (estrogen receptor α)-positive breast cancer. In endocrine therapy, ERα is either directly targeted by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency. Resistance to these drugs (endocrine resistance) compromises the efficiency of this treatment and requires additional measures. Endocrine resistance is often caused by deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6 activities allowing inhibitors of these factors to be used clinically to counteract endocrine resistance. The nuclear mechanisms involved in endocrine resistance are beginning to emerge. Exploring these mechanisms may reveal additional druggable targets, which could help to further improve patients' outcome in an endocrine resistance setting. This review intends to summarize our current knowledge on the nuclear mechanisms linked to endocrine resistance.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
33
|
Chien TJ. A review of the endocrine resistance in hormone-positive breast cancer. Am J Cancer Res 2021; 11:3813-3831. [PMID: 34522451 PMCID: PMC8414389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023] Open
Abstract
Hormone-positive breast cancer (BC) is a unique heterogeneous disease with a favorable prognosis compared to other types of breast cancer. As tumor biology influences the prognosis and clinical treatment, a deep understanding of how the molecular mechanisms regulate hormone sensitivity or resistance is critical in improving the efficacy and overcoming the endocrine resistance. This article comprehensively reviews the endocrine resistance in hormone-positive BC from a molecular and genetic perspective, encompassing the updated treatment and developing direction. This review includes the mechanisms of hormone resistance, which vary from epigenetic changes, crosstalk between signaling networks, cell cycle aberrance, and even change in the tumor microenvironment (TME) or stem cell. These mechanisms may contribute to treatment resistance. Current targeted therapy for hormone-resistant tumors includes PI3K/AKT/mTOR and cdk4/6 inhibitors. Several relevant pathways, biomarkers, and predictor genes have also been identified. Immunotherapy so far has a relatively less crucial role in hormone-positive than in triple-negative BC. Furthermore, the methodology to identify the PDL1 is not standardized. In a molecule and gene study, next-generation sequencing with circulating tumor DNA (ctDNA) has recently appeared as a sensitive and minimally invasive tool worth investigating.
Collapse
Affiliation(s)
- Tsai-Ju Chien
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Zhong-Zhou, Taipei City HospitalTaipei, Taiwan
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Jen-Ai, Taipei City HospitalTaipei, Taiwan
- Institute of Traditional Medicine, National Yang-Ming Chiao Tung UniversityTaipei, Taiwan
| |
Collapse
|
34
|
Jin X, Zhu L, Xiao S, Cui Z, Tang J, Yu J, Xie M. MST1 inhibits the progression of breast cancer by regulating the Hippo signaling pathway and may serve as a prognostic biomarker. Mol Med Rep 2021; 23:383. [PMID: 33760220 PMCID: PMC7986037 DOI: 10.3892/mmr.2021.12022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BCa) is the most common malignancy threatening the health of women worldwide, and the incidence rate has significantly increased in the last 10 years. Mammalian STE20-like protein kinase 1 (MST1) is involved in the development of various types of malignant tumor. The present study aimed to investigate the role of MST1 in BCa and its potential involvement in the poor prognosis of patients with BCa. Reverse transcription-quantitative PCR and immunohistochemistry were used to analyze the expression levels of MST1 in BCa, and the clinicopathological characteristics and prognosis of patients with BCa were further analyzed by statistical analysis. MST1 was overexpressed in BCa cell lines (MCF-7, MDA-MB-231 and SKBR3). Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine and flow cytometry assays were used to analyze cell proliferation and apoptosis, respectively, and a wound healing assay was used to analyze cell migration. The results of the present study revealed that the downregulated expression levels of MST1 in BCa were closely associated with the poor prognosis of patients, and MST1 may be an independent risk factor for BCa. The overexpression of MST1 significantly inhibited the proliferation and migration, and promoted the apoptosis of BCa cells. In addition, the overexpression of MST1 significantly activated the Hippo signaling pathway. Treatment with XMU-MP-1 downregulated the expression levels of MST1 and partially reversed the inhibitory effects of MST1 on proliferation, migration and apoptosis-related proteins, and inhibited the Hippo signaling pathway. In conclusion, the results of the present study suggested that MST1 expression levels may be downregulated in BCa and closely associated with tumor size and clinical stage, as well as the poor prognosis of affected patients. Furthermore, MST1 may inhibit the progression of BCa by targeting the Hippo signaling pathway.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Lihua Zhu
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Sheng Xiao
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Zhuhong Cui
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Jing Tang
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Jiangyong Yu
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Mingjun Xie
- Department of Breast Surgery, The First People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| |
Collapse
|
35
|
Zhang R, Tu J, Liu S. Novel molecular regulators of breast cancer stem cell plasticity and heterogeneity. Semin Cancer Biol 2021; 82:11-25. [PMID: 33737107 DOI: 10.1016/j.semcancer.2021.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Tumors consist of heterogeneous cell populations, and tumor heterogeneity plays key roles in regulating tumorigenesis, metastasis, recurrence and resistance to anti-tumor therapies. More and more studies suggest that cancer stem cells (CSCs) promote tumorigenesis, metastasis, recurrence and drug resistance as well as are the major source for heterogeneity of cancer cells. CD24-CD44+ and ALDH+ are the most common markers for breast cancer stem cells (BCSCs). Previous studies showed that different BCSC markers label different BCSC populations, indicating the heterogeneity of BCSCs. Therefore, defining the regulation mechanisms of heterogeneous BCSCs is essential for precisely targeting BCSCs and treating breast cancer. In this review, we summarized the novel regulators existed in BCSCs and their niches for BCSC heterogeneity which has been discovered in recent years, and discussed their regulation mechanisms and the latest corresponding cancer treatments, which will extend our understanding on BCSC heterogeneity and plasticity, and provide better prognosis prediction and more efficient novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
La Camera G, Gelsomino L, Caruso A, Panza S, Barone I, Bonofiglio D, Andò S, Giordano C, Catalano S. The Emerging Role of Extracellular Vesicles in Endocrine Resistant Breast Cancer. Cancers (Basel) 2021; 13:cancers13051160. [PMID: 33800302 PMCID: PMC7962645 DOI: 10.3390/cancers13051160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Two-thirds of breast cancer patients present an estrogen receptor–positive tumor at diagnosis, and the main treatment options for these patients are endocrine therapies such as aromatase inhibitors, selective modulators of estrogen receptor activity or selective estrogen receptor down-regulators. Although endocrine therapies have high efficacy in early-stage breast cancers, the failure of the therapeutic response to these hormonal treatments remains the major clinical challenge. Recently, extracellular vesicles (EVs) have emerged as a novel mechanism of drug resistance. Indeed, EVs isolated from tumor and stromal cells act as key messengers in intercellular communications able to propagate traits of resistance and/or educate the microenvironment to sustain a breast cancer resistant phenotype. Understanding the EV-mediated molecular mechanisms involved in hormonal resistance can provide the rationale for novel and effective treatment modalities and allow for the identification of potential biomarkers to monitor therapy response in ER-positive breast cancer patients. Abstract Breast cancer is the most common solid malignancy diagnosed in females worldwide, and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment, which has significantly reduced patient mortality, resistance to the endocrine treatments often develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible for local and systemic intercellular communications, might represent a newly identified mechanism underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during the tumor evolution under endocrine therapy, is still an open question in the cancer research area and the molecular mechanisms involved should be better defined to discover alternative therapeutic approaches to overcome resistance. In this review, we will provide an overview of recent findings on the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities for their potential use as biomarkers to monitor the therapeutic response and disease progression.
Collapse
Affiliation(s)
- Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy; (G.L.C.); (L.G.); (A.C.); (S.P.); (I.B.); (D.B.); (S.A.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
- Correspondence: (C.G.); (S.C.); Tel.: +39-0984-496216 (C.G.); +39-0984-496207 (S.C.)
| |
Collapse
|
37
|
López-Sánchez LM, Mena R, Guil-Luna S, Mantrana A, Peñarando J, Toledano-Fonseca M, Conde F, De la Haba-Rodríguez JR, Aranda E, Rodríguez-Ariza A. Nitric oxide-targeted therapy inhibits stemness and increases the efficacy of tamoxifen in estrogen receptor-positive breast cancer cells. J Transl Med 2021; 101:292-303. [PMID: 33262438 DOI: 10.1038/s41374-020-00507-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/20/2023] Open
Abstract
Cancer stem cells (CSCs) are involved in the resistance of estrogen (ER)-positive breast tumors against endocrine therapy. On the other hand, nitric oxide (NO) plays a relevant role in CSC biology, although there are no studies addressing how this important signaling molecule may contribute to resistance to antihormonal therapy in ER+ breast cancer. Therefore, we explored whether targeting NO in ER+ breast cancer cells impacts CSC subpopulation and sensitivity to hormonal therapy with tamoxifen. NO was targeted in ER+ breast cancer cells by specific NO depletion and NOS2 silencing and mammosphere formation capacity, stem cell markers and tamoxifen sensitivity were analyzed. An orthotopic breast tumor model in mice was also performed to analyze the efficacy of NO-targeted therapy plus tamoxifen. Kaplan-Meier curves were made to analyze the association of NOS2 gene expression with survival of ER+ breast cancer patients treated with tamoxifen. Our results show that targeting NO inhibited mamosphere formation, CSC markers expression and increased the antitumoral efficacy of tamoxifen in ER+ breast cancer cells, whereas tamoxifen-resistant cells displayed higher expression levels of NOS2 and Notch-1 compared with parental cells. Notably, NO-targeted therapy plus tamoxifen was more effective than either treatment alone in an orthotopic breast tumor model in immunodeficient mice. Furthermore, low NOS2 expression was significantly associated with a higher metastasis-free survival in ER+ breast cancer patients treated with tamoxifen. In conclusion, our data support that NO-targeted therapy in ER+ breast cancer may contribute to increase the efficacy of antihormonal therapy avoiding the development of resistance to these treatments.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Rafael Mena
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Silvia Guil-Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Mantrana
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Jon Peñarando
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Marta Toledano-Fonseca
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Francisco Conde
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Juan R De la Haba-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Unidad de Gestión Clínica de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
38
|
Kim R, Kin T. Clinical Perspectives in Addressing Unsolved Issues in (Neo)Adjuvant Therapy for Primary Breast Cancer. Cancers (Basel) 2021; 13:926. [PMID: 33672204 PMCID: PMC7927115 DOI: 10.3390/cancers13040926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 01/13/2023] Open
Abstract
The treatment of primary breast cancer has evolved over the past 50 years based on the concept that breast cancer is a systemic disease, with the escalation of adjuvant and neoadjuvant therapies and de-escalation of breast cancer surgery. Despite the development of these therapies, recurrence with distant metastasis during the 10 years after surgical treatment is observed, albeit infrequently. Recent advances in genomic analysis based on circulating tumor cells and circulating tumor DNA have enabled the development of targeted therapies based on genetic mutations in residual tumor cells. A paradigm shift involving the application of neoadjuvant chemotherapy (NAC) has enabled the prediction of treatment response and long-term prognoses; additional adjuvant chemotherapy targeting remaining tumor cells after NAC improves survival. The activation of antitumor immunity by anticancer agents may be involved in the eradication of residual tumor cells. Elucidation of the manner in which antitumor immunity is induced by anticancer agents and unknown factors, and the overcoming of drug resistance via the targeted eradication of residual tumor cells based on genomic profiles, will inevitably lead to the achievement of 0% distant recurrence and a complete cure for primary breast cancer.
Collapse
Affiliation(s)
- Ryungsa Kim
- Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome, Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, 7-33, Moto-machi, Naka-ku, Hiroshima 730-8518, Japan;
| |
Collapse
|
39
|
Bitton A, Zheng Y, Houston JP, Houston KD. Investigating differences between tamoxifen resistant and sensitive breast cancer cells with flow cytometry. Cytometry A 2021; 99:164-169. [PMID: 33508166 PMCID: PMC7986838 DOI: 10.1002/cyto.a.24306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
The active metabolite of tamoxifen, 4‐hydroxytamoxifen, functions as an anti‐estrogen in breast cancer cells and thus inhibits proliferation. While tamoxifen continues to be successfully used to treat estrogen‐dependent breast cancer, most patients receiving treatment will develop chemoresistance over time. Two commonly reported biomarkers of tamoxifen resistance are decreased expression of insulin‐like growth factor 1 receptor (IGF‐1R) and increased expression of epidermal growth factor receptor (EGFR). In prior work we have shown that these receptors facilitate chemoresistance and have unique regulatory functions measurable in resistant cell lines compared with nonresistant. Thus, we hypothesized that these receptors and a newly identified biomarker, integrin β1, may be used to search for the presence of resistant breast cancer cells within a population of cells that are sensitive to tamoxifen therapy. We tested this by designing a straightforward cell‐labeling approach to measure differences in the receptor expression of resistant vs. sensitive cells cytometrically. Our results show that separation is possible when observing the expression of IGF‐1R as well as integrin β1. Interestingly, we found no detectable difference in EGFR expression between tamoxifen resistant and ‐sensitive cells when measured with cytometry despite the fact that EGFR is upregulated in resistant cells. Our long‐term goal is to utilize sorting to isolate tamoxifen resistant subpopulations of cells by receptor expression level. Isolating rare resistant cells that reside within a population of drug‐sensitive cells will offer new insights into why chemoresistance occurs.
Collapse
Affiliation(s)
- Aric Bitton
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| | - Yan Zheng
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| | - Jessica P Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| | - Kevin D Houston
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
40
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
41
|
Dahn ML, Marcato P. Targeting the Roots of Recurrence: New Strategies for Eliminating Therapy-Resistant Breast Cancer Stem Cells. Cancers (Basel) 2020; 13:cancers13010054. [PMID: 33379132 PMCID: PMC7795348 DOI: 10.3390/cancers13010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Margaret L. Dahn
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-(902)-494-4239
| |
Collapse
|
42
|
Androgen Deprivation Induces Transcriptional Reprogramming in Prostate Cancer Cells to Develop Stem Cell-Like Characteristics. Int J Mol Sci 2020; 21:ijms21249568. [PMID: 33339129 PMCID: PMC7765584 DOI: 10.3390/ijms21249568] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Enzalutamide, an antiandrogen, is approved for therapy of castration resistant prostate cancer. Clinical applications have shown that approximately 30% of patients acquire resistance after a short period of treatment. However, the molecular mechanisms underlying this resistance is not completely understood. To identify transcriptomic signatures associated with acquisition of drug resistance we profiled gene expression of paired enzalutamide sensitive and resistant human prostate cancer LNCaP (lymph node carcinoma of the prostate) and C4-2B cells. Overlapping genes differentially regulated in the enzalutamide resistant cells were ranked by Ingenuity Pathway Analysis and their functional validation was performed using ingenuity knowledge database followed by confirmation to correlate transcript with protein expression. Analysis revealed that genes associated with cancer stem cells, such as POU5F1 (OCT4), SOX2, NANOG, BMI1, BMP2, CD44, SOX9, and ALDH1 were markedly upregulated in enzalutamide resistant cells. Amongst the pathways enriched in the enzalutamide-resistant cells were those associated with RUNX2, hedgehog, integrin signaling, and molecules associated with elastic fibers. Further examination of a patient cohort undergoing ADT and its comparison with no-ADT group demonstrated high expression of POU5F1 (OCT4), ALDH1, and SOX2 in ADT specimens, suggesting that they may be clinically relevant therapeutic targets. Altogether, our approach exhibits the potential of integrative transcriptomic analyses to identify critical genes and pathways of antiandrogen resistance as a promising approach for designing novel therapeutic strategies to circumvent drug resistance.
Collapse
|
43
|
Regulatory mechanisms and clinical significance of vimentin in breast cancer. Biomed Pharmacother 2020; 133:111068. [PMID: 33378968 DOI: 10.1016/j.biopha.2020.111068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Vimentin, a kind of intermediate filament protein III in mesenchymal cells, has become a highly researched topic around the world in recent years, as it holds complex biological functions and plays an important role in the epithelial-mesenchymal transition in the evolution of various tumors. This article reviews the biological function of vimentin and its relationship with breast cancer in order to provide novel ideas about the clinical diagnosis and targeted therapy of breast cancer.
Collapse
|
44
|
BeLow M, Osipo C. Notch Signaling in Breast Cancer: A Role in Drug Resistance. Cells 2020; 9:cells9102204. [PMID: 33003540 PMCID: PMC7601482 DOI: 10.3390/cells9102204] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a heterogeneous disease that can be subdivided into unique molecular subtypes based on protein expression of the Estrogen Receptor, Progesterone Receptor, and/or the Human Epidermal Growth Factor Receptor 2. Therapeutic approaches are designed to inhibit these overexpressed receptors either by endocrine therapy, targeted therapies, or combinations with cytotoxic chemotherapy. However, a significant percentage of breast cancers are inherently resistant or acquire resistance to therapies, and mechanisms that promote resistance remain poorly understood. Notch signaling is an evolutionarily conserved signaling pathway that regulates cell fate, including survival and self-renewal of stem cells, proliferation, or differentiation. Deregulation of Notch signaling promotes resistance to targeted or cytotoxic therapies by enriching of a small population of resistant cells, referred to as breast cancer stem cells, within the bulk tumor; enhancing stem-like features during the process of de-differentiation of tumor cells; or promoting epithelial to mesenchymal transition. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance through reduction or elimination of breast cancer stem cells. However, Notch inhibitors have yet to be clinically approved for the treatment of breast cancer, mainly due to dose-limiting gastrointestinal toxicity. In this review, we discuss potential mechanisms of Notch-mediated resistance in breast cancer cells and breast cancer stem cells, and various methods of targeting Notch through γ-secretase inhibitors, Notch signaling biologics, or transcriptional inhibitors. We also discuss future plans for identification of novel Notch-targeted therapies, in order to reduce toxicity and improve outcomes for women with resistant breast cancer.
Collapse
Affiliation(s)
- McKenna BeLow
- Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA;
| | - Clodia Osipo
- Integrated Cell Biology Program, Loyola University Chicago, Maywood, IL 60513, USA;
- Department of Cancer Biology, Loyola University Chicago, Maywood, IL 60513, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60513, USA
- Correspondence: ; Tel.: +1-708-327-2372
| |
Collapse
|
45
|
Lee S, Lee D, Ryoo R, Kim JC, Park HB, Kang KS, Kim KH. Calvatianone, a Sterol Possessing a 6/5/6/5-Fused Ring System with a Contracted Tetrahydrofuran B-Ring, from the Fruiting Bodies of Calvatia nipponica. JOURNAL OF NATURAL PRODUCTS 2020; 83:2737-2742. [PMID: 32940037 DOI: 10.1021/acs.jnatprod.0c00673] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calvatia nipponica is an extremely rare mushroom with a limited number of studies on its chemical components and biological activities published. Here we report the isolation of a novel sterol, calvatianone (1), possessing a 6/5/6/5-fused ring system with a contracted tetrahydrofuran B-ring, and four known steroids (2-5) from the fruiting bodies of C. nipponica. The structure of calvatianone including its absolute configuration was determined by NMR spectroscopic analyses, HR-ESIMS, gauge-including atomic orbital NMR chemical shift calculations, and ECD calculations. Ergosterol peroxide (3) and cyathisterol (4) suppressed the cell viability increase induced by 17β-estradiol in MCF-7 breast cancer cell lines, suggesting a possible approach for these compounds to serve as ERα antagonists.
Collapse
Affiliation(s)
- Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jin-Chul Kim
- KIST Gangneung Institute of Natural Products, Natural Product Informatics Research Center, Gangneung 25451, Republic of Korea
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
46
|
Elgendy SM, Alyammahi SK, Alhamad DW, Abdin SM, Omar HA. Ferroptosis: An emerging approach for targeting cancer stem cells and drug resistance. Crit Rev Oncol Hematol 2020; 155:103095. [PMID: 32927333 DOI: 10.1016/j.critrevonc.2020.103095] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
Resistance to chemotherapeutic agents remains a major challenge in the fierce battle against cancer. Cancer stem cells (CSCs) are a small population of cells in tumors that possesses the ability to self-renew, initiate tumors, and cause resistance to conventional anticancer agents. Targeting this population of cells was proven as a promising approach to eliminate cancer recurrence and improve the clinical outcome. CSCs are less susceptible to death by classical anticancer agents inducing apoptosis. CSCs can be eradicated by ferroptosis, which is a non-apoptotic-regulated mechanism of cell death. The induction of ferroptosis is an attractive strategy to eliminate tumors due to its ability to selectively target aggressive CSCs. The current review critically explored the crosstalk and regulatory pathways controlling ferroptosis, which can selectively induce CSCs death. In addition, successful chemotherapeutic agents that achieve better therapeutic outcomes through the induction of ferroptosis in CSCs were discussed to highlight their promising clinical impact.
Collapse
Affiliation(s)
- Sara M Elgendy
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shatha K Alyammahi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Dima W Alhamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shifaa M Abdin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
47
|
Sterneck E, Poria DK, Balamurugan K. Slug and E-Cadherin: Stealth Accomplices? Front Mol Biosci 2020; 7:138. [PMID: 32760736 PMCID: PMC7371942 DOI: 10.3389/fmolb.2020.00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
During physiological epithelial-mesenchymal transition (EMT), which is important for embryogenesis and wound healing, epithelial cells activate a program to remodel their structure and achieve a mesenchymal fate. In cancer cells, EMT confers increased invasiveness and tumor-initiating capacity, which contribute to metastasis and resistance to therapeutics. However, cellular plasticity that navigates between epithelial and mesenchymal states and maintenance of a hybrid or partial E/M phenotype appears to be even more important for cancer progression. Besides other core EMT transcription factors, the well-characterized Snail-family proteins Snail (SNAI1) and Slug (SNAI2) play important roles in both physiological and pathological EMT. Often mentioned in unison, they do, however, differ in their functions in many scenarios. Indeed, Slug expression does not always correlate with complete EMT or loss of E-cadherin (CDH1). For example, Slug plays important roles in mammary epithelial cell progenitor cell lineage commitment and differentiation, DNA damage responses, hematopoietic stem cell self-renewal, and in pathologies such as pulmonary fibrosis and atherosclerosis. In this Perspective, we highlight Slug functions in mammary epithelial cells and breast cancer as a “non-EMT factor” in basal epithelial cells and stem cells with focus reports that demonstrate co-expression of Slug and E-cadherin. We speculate that Slug and E-cadherin may cooperate in normal mammary gland and breast cancer/stem cells and advocate for functional assessment of such Slug+/E-cadherinlow/+ (SNAI2+/CDH1low/+) “basal-like epithelial” cells. Thus, Slug may be regarded as less of an EMT factor than driver of the basal epithelial cell phenotype.
Collapse
Affiliation(s)
- Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Dipak K Poria
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
48
|
Morein D, Erlichman N, Ben-Baruch A. Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Front Immunol 2020; 11:952. [PMID: 32582148 PMCID: PMC7287041 DOI: 10.3389/fimmu.2020.00952] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/10/2023] Open
Abstract
The anti-tumor activities of some members of the chemokine family are often overcome by the functions of many chemokines that are strongly and causatively linked with increased tumor progression. Being key leukocyte attractants, chemokines promote the presence of inflammatory pro-tumor myeloid cells and immune-suppressive cells in tumors and metastases. In parallel, chemokines elevate additional pro-cancerous processes that depend on cell motility: endothelial cell migration (angiogenesis), recruitment of mesenchymal stem cells (MSCs) and site-specific metastasis. However, the array of chemokine activities in cancer expands beyond such “typical” migration-related processes and includes chemokine-induced/mediated atypical functions that do not activate directly motility processes; these non-conventional chemokine functions provide the tumor cells with new sets of detrimental tools. Within this scope, this review article addresses the roles of chemokines and their receptors at atypical levels that are exerted on the cancer cell themselves: promoting tumor cell proliferation and survival; controlling tumor cell senescence; enriching tumors with cancer stem cells; inducing metastasis-related functions such as epithelial-to-mesenchymal transition (EMT) and elevated expression of matrix metalloproteinases (MMPs); and promoting resistance to chemotherapy and to endocrine therapy. The review also describes atypical effects of chemokines at the tumor microenvironment: their ability to up-regulate/stabilize the expression of inhibitory immune checkpoints and to reduce the efficacy of their blockade; to induce bone remodeling and elevate osteoclastogenesis/bone resorption; and to mediate tumor-stromal interactions that promote cancer progression. To illustrate this expanding array of atypical chemokine activities at the cancer setting, the review focuses on major metastasis-promoting inflammatory chemokines—including CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES)—and their receptors. In addition, non-conventional activities of CXCL12 which is a key regulator of tumor progression, and its CXCR4 receptor are described, alongside with the other CXCL12-binding receptor CXCR7 (RDC1). CXCR7, a member of the subgroup of atypical chemokine receptors (ACKRs) known also as ACKR3, opens the gate for discussion of atypical activities of additional ACKRs in cancer: ACKR1 (DARC, Duffy), ACKR2 (D6), and ACKR4 (CCRL1). The mechanisms involved in chemokine activities and the signals delivered by their receptors are described, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Dina Morein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Erlichman
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Zhou J, Xu M, Le K, Ming J, Guo H, Ruan S, Huang T. SRC Promotes Tamoxifen Resistance in Breast Cancer via Up-Regulating SIRT1. Onco Targets Ther 2020; 13:4635-4647. [PMID: 32547094 PMCID: PMC7259490 DOI: 10.2147/ott.s245749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background Endocrine therapy plays a key role in estrogen receptor-positive breast cancer patients; but, tamoxifen resistance could be a real difficulty for these patients. Several attempts have been made to explore the mechanism and new therapies for these patients. We intend to clarify the expression change of SRC and SIRT1 in tamoxifen-resistant breast cancer cells and explore their functions on tamoxifen resistance. Methods SRC and SIRT1 expressions were analyzed by RNA sequencing, qPCR and Western blotting. Loss and gain of function of SRC and SIRT1 were utilized to indicate their oncogenic roles in tamoxifen resistance in vitro and in vivo. Kaplan–Meier analysis and receiver operating characteristic curve were used to evaluate the survival and the predicted effects of SRC and SIRT1 on patients’ prognosis. Results High expressions of SRC and/or SIRT1 were found in tamoxifen-resistant cells and related to poor overall survival (p<0.05 for SRC, p<0.001 for SIRT1, p<0.001 for SRC and SIRT1) and cancer-specific survival (p<0.05 for SRC, p<0.01 for SIRT1, p<0.01 for SRC and SIRT1) of tamoxifen-treated breast cancer patients. Down-regulation of SRC (p<0.01) or SIRT1 (p<0.05) separately reversed the resistance to tamoxifen and the minimal concentration of SRC inhibitor KX-01 (p<0.05) or SIRT1 inhibitor EX527 (p<0.001) could also suppress cell proliferation. The expression level of SIRT1 was positively correlated with that of SRC. Overexpression of SRC significantly promotes the cell resistance to tamoxifen inhibited by SIRT1 (p<0.01). In vivo experiments confirmed the effects of SRC on tumor growth by over- or down-regulating SRC expression (p<0.001 and p<0.001, respectively). Conclusion SRC and SIRT1 are both up-regulated in tamoxifen-resistant breast cancer cells and related to a poor prognosis in tamoxifen-treated breast cancer. Moreover, SRC could promote tamoxifen resistance by up-regulating SIRT1. SRC and SIRT1 might be novel therapeutic targets in tamoxifen-resistant breast cancer and the interaction between SRC and SIRT1 needs to be further explored.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Kehao Le
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Shengnan Ruan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
50
|
Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Adv 2020; 10:19089-19105. [PMID: 35518295 PMCID: PMC9054075 DOI: 10.1039/d0ra02801k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer stem(-like) cells (BCSCs) have been found to be responsible for therapeutic resistance and disease relapse. BCSCs are difficult to eradicate due to their high resistance to conventional treatments and high plasticity. Functionalised nanoparticles have been investigated as smart vehicles to transport across various barriers and increase the interaction of therapeutic agents with cancer cells, as well as BCSCs. In this review, we discuss the different characteristics of BCSCs, and challenges to tackle BCSCs at cellular and molecular levels. The mechanisms of action and physicochemical properties of the current BCSC targeting agents are also covered. We will focus on the rational design and recent advances of "Nano + Nano" or single tumour targeting nanoparticle systems loaded with dual or multiple agents to kill all cancer cells including BCSCs. These cocktail therapies include the combination of a chemotherapy agent with a BCSC-specific inhibitor, a phytochemical agent or RNA based therapy. Given the heterogeneity of breast tumour tissue, targeting both BCSCs and bulk breast cancer cells simultaneously with multiple agents holds great promise in eliminating breast cancer. The future research needs to focus on overcoming various barriers in the 'clinical translation' of BCSC-targeting nanomedicines to cure breast cancer, which requires a significant multidisciplinary effort.
Collapse
Affiliation(s)
- Yu Gao
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Mingtan Tang
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland Auckland 1023 New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| | - Andrew Shelling
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland Auckland 1142 New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland Auckland 1142 New Zealand +64-9-9231709
| |
Collapse
|