1
|
Dai X, Xi M, Li J. Cancer metastasis: molecular mechanisms and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:20. [PMID: 40192949 PMCID: PMC11977077 DOI: 10.1186/s43556-025-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
The metastatic cascade is a complicated process where cancer cells travel across multiple organs distant from their primary site of onset. Despite the wide acceptance of the 'seed and soil' theory, mechanisms driving metastasis organotropism remain mystery. Using breast cancer of different subtypes as the disease model, we characterized the 'metastatic profile of cancer cells' and the 'redox status of the organ microenvironment' as the primary determinants of cancer metastasis organotropism. Mechanically, we identified a positive correlation between cancer metabolic plasticity and stemness, and proposed oxidative stress as the selection power of cancer cells succeeding the metastasis cascade. Therapeutically, we proposed the use of pro-oxidative therapeutics in ablating cancer cells taking advantages of this fragile moment during metastasis. We comprehensively reviewed current pro-oxidative strategies for treating cancers that cover the first line chemo- and radio-therapies, approaches relying on naturally existing power including magnetic field, electric field, light and sound, nanoparticle-based anti-cancer composites obtained through artificial design, as well as cold atmospheric plasma as an innovative pro-oxidative multi-modal modality. We discussed possible combinations of pro-oxidative approaches with existing therapeutics in oncology prior to the forecast of future research directions. This paper identified the fundamental mechanics driving metastasis organotropism and proposed intervention strategies accordingly. Insights provided here may offer clues for the design of innovative solutions that may open a new paradigm for cancer treatment.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Ming Xi
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jitian Li
- Molecular Biology Lab, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Henan Province, Zhengzhou, 450000, China
| |
Collapse
|
2
|
Almeida-Ferreira C, Rodrigues F, Marto CM, Botelho MF, Laranjo M. Cold atmospheric plasma for breast cancer treatment: what next? Med Gas Res 2025; 15:110-111. [PMID: 39436174 PMCID: PMC11515082 DOI: 10.4103/mgr.medgasres-d-24-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Catarina Almeida-Ferreira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Francisca Rodrigues
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-Based Sciences and Precision Dentistry, Coimbra, Portugal; Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Coimbra, Portugal
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), and Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
3
|
Nitsch A, Qarqash S, Schulze F, Nonnenmacher L, Bekeschus S, Tzvetkov MV, Wassilew GI, Haralambiev L. Combined Application of Cold Physical Plasma and Chemotherapeutics against Chondrosarcoma Cells. Int J Mol Sci 2024; 25:6955. [PMID: 39000064 PMCID: PMC11241706 DOI: 10.3390/ijms25136955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Chondrosarcoma (CS) is a rare malignant bone sarcoma that primarily affects cartilage cells in the femur and pelvis. While most subtypes exhibit slow growth with a very good prognosis, some aggressive subtypes have a poorer overall survival. CS is known for its resistance to chemotherapy and radiotherapy, leaving surgery as the sole effective therapeutic option. Cold physical plasma (CPP) has been explored in vitro as a potential therapy, demonstrating positive anti-tumor effects on CS cells. This study investigated the synergistic effects of combining CPP with cytostatics on CS cells. The chemotherapeutic agents cisplatin, doxorubicin, and vincristine were applied to two CS cell lines (CAL-78 and SW1353). After determining their IC20 and IC50, they were combined with CPP in both cell lines to assess their impact on the cell proliferation, viability, metabolism, and apoptosis. This combined approach significantly reduced the cell proliferation and viability while increasing the apoptosis signals compared to cytostatic therapy alone. The combination of CPP and chemotherapeutic drugs shows promise in targeting chemoresistant CS cells, potentially improving the prognosis for patients in clinical settings.
Collapse
Affiliation(s)
- Andreas Nitsch
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sara Qarqash
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Frank Schulze
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lars Nonnenmacher
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany
| | - Georgi I Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lyubomir Haralambiev
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| |
Collapse
|
4
|
Gkantaras A, Kotzamanidis C, Kyriakidis K, Farmaki E, Makedou K, Tzimagiorgis G, Bekeschus S, Malousi A. Multi-Cohort Transcriptomic Profiling of Medical Gas Plasma-Treated Cancers Reveals the Role of Immunogenic Cell Death. Cancers (Basel) 2024; 16:2186. [PMID: 38927892 PMCID: PMC11201794 DOI: 10.3390/cancers16122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The therapeutic potential of cold physical gas plasma operated at atmospheric pressure in oncology has been thoroughly demonstrated in numerous preclinical studies. The cytotoxic effect on malignant cells has been attributed mainly to biologically active plasma-generated compounds, namely, reactive oxygen and nitrogen species. The intracellular accumulation of reactive oxygen and nitrogen species interferes strongly with the antioxidant defense system of malignant cells, activating multiple signaling cascades and inevitably leading to oxidative stress-induced cell death. This study aims to determine whether plasma-induced cancer cell death operates through a universal molecular mechanism that is independent of the cancer cell type. Using whole transcriptome data, we sought to investigate the activation mechanism of plasma-treated samples in patient-derived prostate cell cultures, melanoma, breast, lymphoma, and lung cancer cells. The results from the standardized single-cohort gene expression analysis and parallel multi-cohort meta-analysis strongly indicate that plasma treatment globally induces cancer cell death through immune-mediated mechanisms, such as interleukin signaling, Toll-like receptor cascades, and MyD88 activation leading to pro-inflammatory cytokine release and tumor antigen presentation.
Collapse
Affiliation(s)
- Antonios Gkantaras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Aristotle University, 54124 Thessaloniki, Greece;
| | | | | | - Evangelia Farmaki
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Aristotle University, 54124 Thessaloniki, Greece;
| | - Kali Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany;
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (A.G.); (K.M.); (G.T.)
| |
Collapse
|
5
|
Abdo AI, Kopecki Z. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Curr Issues Mol Biol 2024; 46:4885-4923. [PMID: 38785562 PMCID: PMC11120013 DOI: 10.3390/cimb46050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.
Collapse
Affiliation(s)
- Adrian I. Abdo
- Richter Lab, Surgical Specialties, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Surgery, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, STEM Academic Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
6
|
Boeckmann L, Berner J, Kordt M, Lenz E, Schäfer M, Semmler ML, Frey A, Sagwal SK, Rebl H, Miebach L, Niessner F, Sawade M, Hein M, Ramer R, Grambow E, Seebauer C, von Woedtke T, Nebe B, Metelmann HR, Langer P, Hinz B, Vollmar B, Emmert S, Bekeschus S. Synergistic effect of cold gas plasma and experimental drug exposure exhibits skin cancer toxicity in vitro and in vivo. J Adv Res 2024; 57:181-196. [PMID: 37391038 PMCID: PMC10918357 DOI: 10.1016/j.jare.2023.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
INTRODUCTION Skin cancer is often fatal, which motivates new therapy avenues. Recent advances in cancer treatment are indicative of the importance of combination treatments in oncology. Previous studies have identified small molecule-based therapies and redox-based technologies, including photodynamic therapy or medical gas plasma, as promising candidates to target skin cancer. OBJECTIVE We aimed to identify effective combinations of experimental small molecules with cold gas plasma for therapy in dermato-oncology. METHODS Promising drug candidates were identified after screening an in-house 155-compound library using 3D skin cancer spheroids and high content imaging. Combination effects of selected drugs and cold gas plasma were investigated with respect to oxidative stress, invasion, and viability. Drugs that had combined well with cold gas plasma were further investigated in vascularized tumor organoids in ovo and a xenograft mouse melanoma model in vivo. RESULTS The two chromone derivatives Sm837 and IS112 enhanced cold gas plasma-induced oxidative stress, including histone 2A.X phosphorylation, and further reduced proliferation and skin cancer cell viability. Combination treatments of tumor organoids grown in ovo confirmed the principal anti-cancer effect of the selected drugs. While one of the two compounds exerted severe toxicity in vivo, the other (Sm837) resulted in a significant synergistic anti-tumor toxicity at good tolerability. Principal component analysis of protein phosphorylation profiles confirmed profound combination treatment effects in contrast to the monotherapies. CONCLUSION We identified a novel compound that, combined with topical cold gas plasma-induced oxidative stress, represents a novel and promising treatment approach to target skin cancer.
Collapse
Affiliation(s)
- Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Julia Berner
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Marcel Kordt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Elea Lenz
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marie-Luise Semmler
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anna Frey
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Felix Niessner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Marie Sawade
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Martin Hein
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Robert Ramer
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Eberhard Grambow
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Christian Seebauer
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Hans-Robert Metelmann
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, 17475 Greifswald, Germany
| | - Peter Langer
- Institute for Chemistry, Rostock University, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute for Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Sander Bekeschus
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Center, 18057 Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany.
| |
Collapse
|
7
|
Yahya SMM, Nabih HK, Elsayed GH, Mohamed SIA, Elfiky AM, Salem SM. Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene. Breast Cancer Res Treat 2024; 204:133-149. [PMID: 38057687 PMCID: PMC10806220 DOI: 10.1007/s10549-023-07170-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Breast cancer is one of the leading types of cancer diagnosed in women. Despite the improvements in chemotherapeutic cure strategies, drug resistance is still an obstacle leading to disease aggressiveness. The small non-coding RNA molecules, miRNAs, have been implicated recently to be involved as regulators of gene expression through the silencing of mRNA targets that contributed to several cellular processes related to cancer metastasis. Hence, the present study aimed to investigate the beneficial role and mechanism of miRNA-34a-based gene therapy as a novel approach for conquering drug resistance mediated by ATP-binding cassette (ABC) transporters in breast cancer cells, besides exploring the associated invasive behaviors. MATERIAL AND METHODS Bioinformatics tools were used to predict miRNA ABC transporter targets by tracking the ABC transporter pathway. After the establishment of drug-resistant breast cancer MCF-7 and MDA-MB-231 sublines, cells were transfected with the mimic or inhibitor of miRNA-34a-5p. The quantitative expression of genes involved in drug resistance was performed by QRT-PCR, and the exact ABC transporter target specification interaction was confirmed by dual-luciferase reporter assay. Furthermore, flow cytometric analysis was utilized to determine the ability of miRNA-34a-treated cells against doxorubicin uptake and accumulation in cell cycle phases. The spreading capability was examined by colony formation, migration, and wound healing assays. The apoptotic activity was estimated as well. RESULTS Our findings firstly discovered the mechanism of miRNA-34a-5p restoration as an anti-drug-resistant molecule that highly significantly attenuates the expression of ABCC1 via the direct targeting of its 3'- untranslated regions in resistant breast cancer cell lines, with a significant increase of doxorubicin influx by MDA-MB-231/Dox-resistant cells. Additionally, the current data validated a significant reduction of metastatic potentials upon miRNA-34a-5p upregulation in both types of breast cancer-resistant cells. CONCLUSION The ectopic expression of miRNA-34a ameliorates the acquired drug resistance and the migration properties that may eventually lead to improved clinical strategies and outcomes for breast cancer patients. Additionally, miRNA-34a could be monitored as a diagnostic/prognostic biomarker for resistant conditions.
Collapse
Affiliation(s)
- Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | | | - Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
8
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
9
|
Exploring the Use of Cold Atmospheric Plasma to Overcome Drug Resistance in Cancer. Biomedicines 2023; 11:biomedicines11010208. [PMID: 36672716 PMCID: PMC9855365 DOI: 10.3390/biomedicines11010208] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is a major problem in cancer treatment, as it limits the effectiveness of pharmacological agents and can lead to disease progression. Cold atmospheric plasma (CAP) is a technology that uses ionized gas (plasma) to generate reactive oxygen and nitrogen species (RONS) that can kill cancer cells. CAP is a novel approach for overcoming drug resistance in cancer. In recent years, there has been a growing interest in using CAP to enhance the effectiveness of chemotherapy drugs. In this review, we discuss the mechanisms behind this phenomenon and explore its potential applications in cancer treatment. Going through the existing literature on CAP and drug resistance in cancer, we highlight the challenges and opportunities for further research in this field. Our review suggests that CAP could be a promising option for overcoming drug resistance in cancer and warrants further investigation.
Collapse
|
10
|
Dai X, Shen L, Zhang J. Cold atmospheric plasma: redox homeostasis to treat cancers? Trends Biotechnol 2023; 41:15-18. [PMID: 35985891 DOI: 10.1016/j.tibtech.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022]
Abstract
Cold atmospheric plasma (CAP) is a promising therapeutic for highly aggressive malignancies given its unique safety and selectivity against redox imbalance and is characterized as a tumor microenvironment (TME) sensitizer, immunogenic cell death (ICD) inducer, and cancer stem cell (CSC) killer that functions through the regulation of cell redox homeostasis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000, China; Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Li Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jianying Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
11
|
Roles of TGF- β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24:e42. [PMID: 36345661 DOI: 10.1017/erm.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
12
|
Mateu-Sanz M, Ginebra MP, Tornín J, Canal C. Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer. Free Radic Biol Med 2022; 189:32-41. [PMID: 35843475 DOI: 10.1016/j.freeradbiomed.2022.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
High-dose systemic chemotherapy constitutes a main strategy in the management of bone metastases, employing drugs like doxorubicin (DOX), related with severe side effects. To solve this issue, Cold Atmospheric Plasmas (CAP) have been proposed as potential non-invasive anti-cancer agents capable of improving the efficacy of traditional drugs. Here, we investigate the cytotoxic effects of Plasma Conditioned Medium (PCM) in combination with DOX in prostate cancer cells from bone metastases (PC-3) as well as in non-malignant bone-cells. PCM was able to enhance the cytotoxic potential of DOX both in monolayer and in a 3D bioengineered model mimicking the bone matrix. The combined treatment of PCM + DOX resulted in a profound downregulation of the redox defenses (CAT1, SOD2, GPX1) and drug resistance genes (MRP1, MDR1, BCRP1), resulting in an enhanced uptake of DOX coupled to an overload of intracellular ROS. Besides, PCM improved the cytotoxic potential of DOX interfering on the migratory and clonogenic potential of PC-3 cells. Importantly, non-malignant bone cells were unaffected by the combination of PCM + DOX. Overall, these new findings may represent a new therapeutic approach for the management of bone metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - María-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain; Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.
| |
Collapse
|
13
|
Bekeschus S, Saadati F, Emmert S. The potential of gas plasma technology for targeting breast cancer. Clin Transl Med 2022; 12:e1022. [PMID: 35994412 PMCID: PMC9394754 DOI: 10.1002/ctm2.1022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Despite therapeutic improvements in recent years, breast cancer remains an often fatal disease. In addition, breast cancer ulceration may occur during late stages, further complicating therapeutic or palliative interventions. In the past decade, a novel technology received significant attention in the medical field: gas plasma. This topical treatment relies on the partial ionization of gases that simultaneously produce a plethora of reactive oxygen and nitrogen species (ROS/RNS). Such local ROS/RNS overload inactivates tumour cells in a non-necrotic manner and was recently identified to induce immunogenic cancer cell death (ICD). ICD promotes dendritic cell maturation and amplifies antitumour immunity capable of targeting breast cancer metastases. Gas plasma technology was also shown to provide additive toxicity in combination with radio and chemotherapy and re-sensitized drug-resistant breast cancer cells. This work outlines the assets of gas plasma technology as a novel tool for targeting breast cancer by summarizing the action of plasma devices, the roles of ROS, signalling pathways, modes of cell death, combination therapies and immunological consequences of gas plasma exposure in breast cancer cells in vitro, in vivo, and in patient-derived microtissues ex vivo.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
| | - Fariba Saadati
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)GreifswaldGermany
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and VenereologyRostock University Medical CenterRostockGermany
| |
Collapse
|
14
|
Mihai CT, Mihaila I, Pasare MA, Pintilie RM, Ciorpac M, Topala I. Cold Atmospheric Plasma-Activated Media Improve Paclitaxel Efficacy on Breast Cancer Cells in a Combined Treatment Model. Curr Issues Mol Biol 2022; 44:1995-2014. [PMID: 35678664 PMCID: PMC9164030 DOI: 10.3390/cimb44050135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
The use of plasma-activated media (PAM), an alternative to direct delivery of cold atmospheric plasma to cancer cells, has recently gained interest in the plasma medicine field. Paclitaxel (PTX) is used as a chemotherapy of choice for various types of breast cancers, which is the leading cause of mortality in females due to cancer. In this study, we evaluated an alternative way to improve anti-cancerous efficiency of PTX by association with PAM, the ultimate achievement being a better outcome in killing tumoral cells at smaller doses of PTX. MCF-7 and MDA-MB-231 cell lines were used, and the outcome was measured by cell viability (MTT assay), the survival rate (clonogenic assay), apoptosis occurrence, and genotoxicity (COMET assay). Treatment consisted of the use of PAM in combination with under IC50 doses of PTX in short- and long-term models. The experimental data showed that PAM had the capacity to improve PTX's cytotoxicity, as viability of the breast cancer cells dropped, an effect maintained in long-term experiments. A higher frequency of apoptotic, dead cells, and DNA fragmentation was registered in cells treated with the combined treatment as compared with those treated only with PT. Overall, PAM had the capacity to amplify the anti-cancerous effect of PTX.
Collapse
Affiliation(s)
- Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Ilarion Mihaila
- Integrated Centre of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania;
| | - Maria Antoanela Pasare
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Robert Mihai Pintilie
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Ionut Topala
- Iasi Plasma Advanced Research Centre (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I blvd., 700506 Iasi, Romania
| |
Collapse
|
15
|
Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9916796. [PMID: 35284036 PMCID: PMC8906949 DOI: 10.1155/2021/9916796] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
Collapse
|
16
|
Dai X, Lv X, Thompson EW, Ostrikov KK. Histone lactylation: epigenetic mark of glycolytic switch. Trends Genet 2021; 38:124-127. [PMID: 34627643 DOI: 10.1016/j.tig.2021.09.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
Histone lactylation and acetylation compete for epigenetic modification of lysines and mark the levels of lactates and acetyl-CoA. Whether pyruvate is committed to lactate or acetyl-CoA generation as the outlet of glycolysis determines cell fate towards malignancy or not. Taking control over the glycolytic switch as marked by lactylation suggests novel therapeutic opportunities against cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Xinyu Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Erik W Thompson
- Queensland University of Technology, School of Biomedical Sciences, Faculty of Health, Brisbane 4059, Australia; Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kostya Ken Ostrikov
- Queensland University of Technology, School of Chemistry and Physics, Faculty of Science, Brisbane, QLD 4059, Australia
| |
Collapse
|
17
|
Attri P, Kurita H, Koga K, Shiratani M. Impact of Reactive Oxygen and Nitrogen Species Produced by Plasma on Mdm2-p53 Complex. Int J Mol Sci 2021; 22:ijms22179585. [PMID: 34502494 PMCID: PMC8431430 DOI: 10.3390/ijms22179585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The study of protein–protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)–tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2–p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan;
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Center for Novel Science Initiatives, National Institute of Natural Science, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
18
|
Cheng X, Murthy SRK, Zhuang T, Ly L, Jones O, Basadonna G, Keidar M, Kanaan Y, Canady J. Canady Helios Cold Plasma Induces Breast Cancer Cell Death by Oxidation of Histone mRNA. Int J Mol Sci 2021; 22:ijms22179578. [PMID: 34502492 PMCID: PMC8430908 DOI: 10.3390/ijms22179578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Its molecular receptor marker status and mutational subtypes complicate clinical therapies. Cold atmospheric plasma is a promising adjuvant therapy to selectively combat many cancers, including breast cancer, but not normal tissue; however, the underlying mechanisms remain unexplored. Here, four breast cancer cell lines with different marker status were treated with Canady Helios Cold Plasma™ (CHCP) at various dosages and their differential progress of apoptosis was monitored. Inhibition of cell proliferation, induction of apoptosis, and disruption of the cell cycle were observed. At least 16 histone mRNA types were oxidized and degraded immediately after CHCP treatment by 8-oxoguanine (8-oxoG) modification. The expression of DNA damage response genes was up-regulated 12 h post-treatment, indicating that 8-oxoG modification and degradation of histone mRNA during the early S phase of the cell cycle, rather than DNA damage, is the primary cause of cancer cell death induced by CHCP. Our report demonstrates for the first time that CHCP effectively induces cell death in breast cancer regardless of subtyping, through histone mRNA oxidation and degradation during the early S phase of the cell cycle.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Saravana R. K. Murthy
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Taisen Zhuang
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Lawan Ly
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Olivia Jones
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
| | - Giacomo Basadonna
- School of Medicine, University of Massachusetts, Worcester, MA 01605, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA;
| | - Yasmine Kanaan
- Microbiology Department, Howard University, Washington, DC 20060, USA;
- Howard University Cancer Center, Howard University, Washington, DC 20060, USA
| | - Jerome Canady
- Jerome Canady Research Institute for Advanced Biological and Technological Sciences, Takoma Park, MD 20912, USA; (X.C.); (S.R.K.M.); (T.Z.); (L.L.); (O.J.)
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA;
- Department of Surgery, Holy Cross Hospital, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-(301)-270-0147
| |
Collapse
|
19
|
He Z, Charleton C, Devine RW, Kelada M, Walsh JMD, Conway GE, Gunes S, Mondala JRM, Tian F, Tiwari B, Kinsella GK, Malone R, O'Shea D, Devereux M, Wang W, Cullen PJ, Stephens JC, Curtin JF. Enhanced pyrazolopyrimidinones cytotoxicity against glioblastoma cells activated by ROS-Generating cold atmospheric plasma. Eur J Med Chem 2021; 224:113736. [PMID: 34384944 DOI: 10.1016/j.ejmech.2021.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
Pyrazolopyrimidinones are fused nitrogen-containing heterocyclic systems, which act as a core scaffold in many pharmaceutically relevant compounds. Pyrazolopyrimidinones have been demonstrated to be efficient in treating several diseases, including cystic fibrosis, obesity, viral infection and cancer. In this study using glioblastoma U-251MG cell line, we tested the cytotoxic effects of 15 pyrazolopyrimidinones, synthesised via a two-step process, in combination with cold atmospheric plasma (CAP). CAP is an adjustable source of reactive oxygen and nitrogen species as well as other unique chemical and physical effects which has been successfully tested as an innovative cancer therapy in clinical trials. Significantly variable cytotoxicity was observed with IC50 values ranging from around 11 μM to negligible toxicity among tested compounds. Interestingly, two pyrazolopyrimidinones were identified that act in a prodrug fashion and display around 5-15 times enhanced reactive-species dependent cytotoxicity when combined with cold atmospheric plasma. Activation was evident for direct CAP treatment on U-251MG cells loaded with the pyrazolopyrimidinone and indirect CAP treatment of the pyrazolopyrimidinone in media before adding to cells. Our results demonstrated the potential of CAP combined with pyrazolopyrimidinones as a programmable cytotoxic therapy and provide screened scaffolds that can be used for further development of pyrazolopyrimidinone prodrug derivatives.
Collapse
Affiliation(s)
- Zhonglei He
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland; Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Clara Charleton
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Robert W Devine
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mark Kelada
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John M D Walsh
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gillian E Conway
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland; In-Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, United Kingdom
| | - Sebnem Gunes
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Julie Rose Mae Mondala
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Furong Tian
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Brijesh Tiwari
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Gemma K Kinsella
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Renee Malone
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Denis O'Shea
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Michael Devereux
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Australia
| | - John C Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James F Curtin
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Antitumor Effects in Gas Plasma-Treated Patient-Derived Microtissues—An Adjuvant Therapy for Ulcerating Breast Cancer? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite global research and continuous improvement in therapy, cancer remains a challenging disease globally, substantiating the need for new treatment avenues. Medical gas plasma technology has emerged as a promising approach in oncology in the last years. Several investigations have provided evidence of an antitumor action in vitro and in vivo, including our recent work on plasma-mediated reduction of breast cancer in mice. However, studies of gas plasma exposure on patient-derived tumors with their distinct microenvironment (TME) are scarce. To this end, we here investigated patient-derived breast cancer tissue after gas plasma-treated ex vivo. The tissues were disjoint to pieces smaller than 100 µm, embedded in collagen, and incubated for several days. The viability of the breast cancer tissue clusters and their outgrowth into their gel microenvironment declined with plasma treatment. This was associated with caspase 3-dependent apoptotic cell death, paralleled by an increased expression of the anti-metastatic adhesion molecule epithelial (E)-cadherin. Multiplex chemokine/cytokine analysis revealed a marked decline in the release of the interleukins 6 and 8 (IL-6, IL-8) and monocyte-chemoattractant-protein 1 (MCP) known to promote a cancer-promoting milieu in the TME. In summary, we provide here, for the first time, evidence of a beneficial activity of gas plasma exposure on human patient-derived breast cancer tissue.
Collapse
|
21
|
Terefinko D, Dzimitrowicz A, Bielawska-Pohl A, Klimczak A, Pohl P, Jamroz P. The Influence of Cold Atmospheric Pressure Plasma-Treated Media on the Cell Viability, Motility, and Induction of Apoptosis in Human Non-Metastatic (MCF7) and Metastatic (MDA-MB-231) Breast Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms22083855. [PMID: 33917790 PMCID: PMC8068204 DOI: 10.3390/ijms22083855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer remains the most common type of cancer, occurring in middle-aged women, and often leads to patients’ death. In this work, we applied a cold atmospheric pressure plasma (CAPP)-based reaction-discharge system, one that is unique in its class, for the production of CAPP-activated media (DMEM and Opti-MEM); it is intended for further uses in breast cancer treatment. To reach this aim, different volumes of DMEM or Opti-MEM were treated by CAPP. Prepared media were exposed to the CAPP treatment at seven different time intervals and examined in respect of their impact on cell viability and motility, and the induction of the apoptosis in human non-metastatic (MCF7) and metastatic (MDA-MB-231) breast cancer cell lines. As a control, the influence of CAPP-activated media on the viability and motility, and the type of the cell death of the non-cancerous human normal MCF10A cell line, was estimated. Additionally, qualitative and quantitative analyses of the reactive oxygen and nitrogen species (RONS), generated during the CAPP operation in contact with analyzed media, were performed. Based on the conducted research, it was found that 180 s (media activation time by CAPP) should be considered as the minimal toxic dose, which significantly decreases the cell viability and the migration of MDA-MB-231 cells, and also disturbs life processes of MCF7 cells. Finally, CAPP-activated media led to the apoptosis of analyzed cell lines, especially of the metastatic MDA-MB-231 cell line. Therefore, the application of the CAPP system may be potentially applied as a therapeutic strategy for the management of highly metastatic human breast cancer.
Collapse
Affiliation(s)
- Dominik Terefinko
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.P.); (P.J.)
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
- Correspondence: (D.T.); (A.D.)
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.P.); (P.J.)
- Correspondence: (D.T.); (A.D.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.P.); (P.J.)
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland; (P.P.); (P.J.)
| |
Collapse
|
22
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
23
|
Zhang H, Zhang J, Guo B, Chen H, Xu D, Kong MG. The Antitumor Effects of Plasma-Activated Saline on Muscle-Invasive Bladder Cancer Cells In Vitro and In Vivo Demonstrate Its Feasibility as a Potential Therapeutic Approach. Cancers (Basel) 2021; 13:1042. [PMID: 33801297 PMCID: PMC7958317 DOI: 10.3390/cancers13051042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is a fast-growing and aggressive malignant tumor in urinary system. Since chemotherapy and immunotherapy are only useable with a few MIBC patients, the clinical treatment of MIBC still faces challenges. Here, we examined the feasibility of plasma-activated saline (PAS) as a fledgling therapeutic strategy for MIBC treatment. Our data showed that plasma irradiation could generate a variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in saline. In vivo tests revealed that pericarcinomatous tissue injection with PAS was effective at preventing subcutaneous bladder tumor growth, with no side effects to the visceral organs after long-term administration, as well as having no obvious influence on the various biochemistry indices of the blood in mice. The in vitro studies indicated that adding 30% PAS in cell culture media causes oxidative damage to the bladder transitional cells T24 and J82 through enhancing the intracellular ROS level, and eventually induces cancer cells' apoptosis by activating the ROS-mediated Fas/CD95 pathway. Therefore, for an intracavity tumor, these initial observations suggest that the soaking of the tumor tissue with PAS by intravesical perfusion may be a novel treatment option for bladder cancer.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (H.Z.); (J.Z.); (B.G.)
| | - Jishen Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (H.Z.); (J.Z.); (B.G.)
| | - Bo Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (H.Z.); (J.Z.); (B.G.)
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (H.Z.); (J.Z.); (B.G.)
| | - Michael G. Kong
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
24
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
25
|
Privat-Maldonado A, Bogaerts A. Plasma in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12092617. [PMID: 32937802 PMCID: PMC7564655 DOI: 10.3390/cancers12092617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
|
26
|
Lee J, Moon H, Ku B, Lee K, Hwang CY, Baek SJ. Anticancer Effects of Cold Atmospheric Plasma in Canine Osteosarcoma Cells. Int J Mol Sci 2020; 21:E4556. [PMID: 32604902 PMCID: PMC7349329 DOI: 10.3390/ijms21124556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is known to be one of the frequently occurring cancers in dogs. Its prognosis is usually very poor, with a high incidence of lung metastasis. Although radiation therapy has become a major therapeutic choice for canine osteosarcoma, the high costs and unexpected side effects prevent some patients from considering this treatment. Cold atmospheric plasma (CAP) is an ionized gas with high energy at low temperatures, and it produces reactive oxygen species that mediate many signaling pathways. Although many researchers have used CAP as an anticancer therapeutic approach in humans, its importance has been neglected in veterinary medicine. In this study, D-17 and DSN canine osteosarcoma cell lines were treated with CAP to observe its anticancer activity. By high-content screening and flow cytometry, CAP-treated cells showed growth arrest and apoptosis induction. Moreover, the osteosarcoma cells exhibited reduced migration and invasion activity when treated with CAP. Overall, CAP exerted an anticancer effect on canine osteosarcoma cell lines. CAP may have the potential to be used as a novel modality for treating cancer in veterinary medicine.
Collapse
Affiliation(s)
- Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Bonghye Ku
- R&D Center, PSM Inc. Jungwon-gu, Seongnam-si, Gyeonggi-do 13207, Korea; (B.K.); (K.L.)
| | - Keunho Lee
- R&D Center, PSM Inc. Jungwon-gu, Seongnam-si, Gyeonggi-do 13207, Korea; (B.K.); (K.L.)
| | - Cheol-Yong Hwang
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (J.L.); (H.M.); (C.-Y.H.)
| |
Collapse
|
27
|
Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol 2020; 177:113959. [PMID: 32272110 DOI: 10.1016/j.bcp.2020.113959] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most prevalent type of tumor and the second leading cause of death due to cancer among women. Although screening methods, diagnosis and therapeutic options have improved in the last decade, chemoresistance remains an important challenge. There is evidence relating breast cancer resistance with signaling pathways involving hormone and growth receptors, survival, apoptosis and the activation of efflux pumps. However, the resistance mechanisms linked to drug uptake are poorly understood, despite it often being observed that the drug content is lower in resistant cancer cells and that the entry of the drug into these cells is a limiting process for the subsequent therapeutic effect.In this review, we provide an overview of drug uptake-based resistance mechanisms developed by cancer cells in the four main types of chemotherapy used in breast cancer: anthracyclines, taxanes, oxazaphosphorines and platinum-based drugs. The contribution of tumor microenvironment to reduced drug-uptake and multidrug resistance is also analyzed. As a developing field, nanomedicine-based approaches provide promising opportunities to improve drug specific targeting, cell interaction and uptake into cancer cells. The endocytic-mediated pathways attributed to the different types of nanoformulations as well as the contribution of nanotherapeutics to overcoming chemoresistance affecting drug uptake in breast cancer will be described. New approaches focusing on drug uptake mechanisms could improve breast cancer chemotherapy, obtaining better dose-response outcomes and reducing toxic side effects.
Collapse
Affiliation(s)
- Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|