1
|
Paraskevas T, Papapanou M, Sergentanis TN, Kyriopoulos I, Athanasakis K. Comprehensive genomic profiling: a public health system perspective. Expert Rev Mol Diagn 2025; 25:101-109. [PMID: 40022463 DOI: 10.1080/14737159.2025.2471794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/02/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION Comprehensive genomic profiling (CGP) is gaining ground in modern precision oncology for its ability to potentially analyze multiple tumor alterations and identify actionable ones, guiding targeted anticancer treatments. However, integrating CGP into healthcare systems demands consideration of the available evidence and collaboration between shareholders. AREAS COVERED This review explores CGP's cost-effectiveness and feasibility across diverse healthcare settings, based on searches in PubMed, Google Scholar, gray literature, and extensive snowballing. We further aimed to elucidate barriers to routine CGP implementation and discuss potential solutions. EXPERT OPINION Patients generally express satisfaction with CGP, especially if publicly funded, yet face difficulties in understanding test results, and managing lack of actionable mutations and access to novel treatment avenues. Physicians exhibit confidence in recommending and interpreting CGP for patients with refractory disease and considerable life expectancy and performance status, albeit acknowledging potential treatment delays. Health economic studies support CGP's cost-effectiveness, highlighting increased survival, productivity, reduced medical service utilization, and cost diversion to trial sponsors. Nonetheless, challenges persist, including reimbursement policies, limited testing accessibility, and the imperative for physician training and infrastructure enhancement. Addressing these issues through collaborative efforts and policy adjustments is paramount for realizing the full potential of CGP in advancing precision oncology.
Collapse
Affiliation(s)
| | - Michail Papapanou
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros N Sergentanis
- 2nd Propaedeutic Department of Internal Medicine, School of Medicine, 'Attikon' University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kostas Athanasakis
- Laboratory for Health Technology Assessment, Department of Public Health Policy, University of West Attica, Athens, Greece
| |
Collapse
|
2
|
Volders PJ, Aftimos P, Dedeurwaerdere F, Martens G, Canon JL, Beniuga G, Froyen G, Van Huysse J, De Pauw R, Prenen H, Lambin S, Decoster L, Vaeyens F, Rottey S, Van Dam PJ, Decoster L, Rutten A, Schreuer M, Loontiens S, Van der Meulen J, Mebis J, Cuppens K, Tejpar S, Vanden Bempt I, De Grève J, Schröder D, van Marcke C, Van Den Bulcke M, de Azambuja E, Punie K, Maes B. A nationwide comprehensive genomic profiling and molecular tumor board platform for patients with advanced cancer. NPJ Precis Oncol 2025; 9:66. [PMID: 40065106 PMCID: PMC11893761 DOI: 10.1038/s41698-025-00858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
The Belgian Approach for Local Laboratory Extensive Tumor Testing (BALLETT) study assessed the feasibility of using comprehensive genomic profiling (CGP) in clinical decision-making for patients with advanced cancers. This multi-center study enrolled 872 patients from 12 Belgian hospitals. CGP was performed on tumor tissues using a standardized CGP panel (523 genes) across nine laboratories with success in 93% of patients and a median turnaround time of 29 days. Actionable genomic markers were identified in 81% of patients, substantially higher than the 21% using nationally reimbursed, small panels. A national molecular tumor board (nMTB) recommended treatments for 69% of patients, with 23% receiving matched therapies. Reasons for non-compliance were highly variable across clinical sites. Overall, BALLETT demonstrates the feasibility of implementing decentralized CGP and its potential to identify actionable targets in most patients with advanced cancers. BALLETT reinforces CGP's utility and emphasizes the importance of collaboration, standardization, and addressing implementation challenges.
Collapse
Affiliation(s)
- Pieter-Jan Volders
- Laboratory for Molecular Diagnostics, Jessa Hospital, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, LCRC, University of Hasselt, Hasselt, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
| | - Philippe Aftimos
- Clinical Trials Conduct Unit, Institut Jules Bordet-Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | | | - Geert Martens
- Department of Laboratory Medicine, AZ Delta Hospital, Roeselare, Belgium
| | - Jean-Luc Canon
- Department of Medical Oncology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | | | - Guy Froyen
- Laboratory for Molecular Diagnostics, Jessa Hospital, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, LCRC, University of Hasselt, Hasselt, Belgium
| | | | - Rebecca De Pauw
- Department of Pulmonology, AZ Sint-Jan Brugge, Bruges, Belgium
| | - Hans Prenen
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological research, University of Antwerp, Wilrijk, Belgium
| | - Suzan Lambin
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Lore Decoster
- Department of Medical Oncology, University Hospital Brussels, Brussels, Belgium
- Laboratory for Medical and Molecular Oncology, Vrije Universiteit, Brussels, Belgium
| | - Freya Vaeyens
- Centre for Medical Genetics, University Hospital Brussels, Brussels, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University, Ghent, Belgium
| | | | - Lynn Decoster
- Department of Pulmonology, AZ Turnhout, Turnhout, Belgium
| | - Annemie Rutten
- Department of Medical Oncology, ZAS hospitals, Antwerp, Belgium
| | - Max Schreuer
- Department of Medical Oncology, ASZ Aalst, Aalst, Belgium
| | - Siebe Loontiens
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
- Molecular Diagnostics, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Joni Van der Meulen
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
- Molecular Diagnostics, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jeroen Mebis
- Faculty of Medicine and Life Sciences, LCRC, University of Hasselt, Hasselt, Belgium
- Department of Medical Oncology, Jessa Hospital, Hasselt, Belgium
| | - Kristof Cuppens
- Faculty of Medicine and Life Sciences, LCRC, University of Hasselt, Hasselt, Belgium
- Department of Pulmonology and Thoracic Oncology, Jessa Hospital, Hasselt, Belgium
| | - Sabine Tejpar
- Digestive Oncology, University Hospitals KU Leuven, Leuven, Belgium
| | | | - Jacques De Grève
- Laboratory for Medical and Molecular Oncology, Vrije Universiteit, Brussels, Belgium
- Centre for Medical Genetics, University Hospital Brussels, Brussels, Belgium
| | - David Schröder
- Department of Medical Oncology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Cédric van Marcke
- Institute for Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Medical Oncology, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | | - Evandro de Azambuja
- Institut Jules Bordet, Hôpital Universitaire de Bruxelles and l'Université Libre de Bruxelles, Brussels, Belgium
| | - Kevin Punie
- Department of Medical Oncology, ZAS hospitals, Antwerp, Belgium
| | - Brigitte Maes
- Laboratory for Molecular Diagnostics, Jessa Hospital, Hasselt, Belgium.
- Faculty of Medicine and Life Sciences, LCRC, University of Hasselt, Hasselt, Belgium.
| |
Collapse
|
3
|
Froyen G, Volders PJ, Geerdens E, Berden S, Van der Meulen J, De Cock A, Vermeire S, Van Huysse J, de Barsy M, Beniuga G, de Leng WWJ, Jansen AML, Demers I, Ozgur Z, Dubbink HJ, Speel EJM, van IJcken WFJ, Maes B. Analysis of comprehensive genomic profiling of solid tumors with a novel assay for broad analysis in clinical diagnostics. Mol Oncol 2025. [PMID: 39887903 DOI: 10.1002/1878-0261.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Somatic multigene analysis by next-generation sequencing (NGS) is routinely integrated in medical oncology for clinical decision-making. However, with the fast-growing number of recommended and required genes as well as pan-cancer biomarkers, small panels have become vastly insufficient. Comprehensive genomic profiling (CGP) is, thus, required to screen for clinically relevant markers. In this multicentric study, we report on an extensive analysis across seven centers comparing the results of the novel OncoDEEP CGP assay with the diagnostically validated TruSight Oncology 500 (TSO500) kit on 250 samples. Overall concordance was 90% for clinically relevant gene variants and >96% for more complex biomarkers. Agreement for fusion detection was 94% for the 11 overlapping clinically actionable driver genes. The higher coverage uniformity of OncoDEEP compared to TSO500 allows users to pool more samples per sequencing run. Tertiary data analysis, including reporting, is integrated in the OncoDEEP solution, whereas this is an add-on for TSO500. Finally, we showed that, analytically, the OncoDEEP panel performs well, thereby advocating its use for CGP of solid tumors in diagnostic laboratories, providing an all-in-one solution for optimal patient management.
Collapse
Affiliation(s)
- Guy Froyen
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, University of Hasselt, Belgium
- Department Jessa & Science, LCRC (-MHU), Hasselt, Belgium
| | - Pieter-Jan Volders
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
- Department Jessa & Science, LCRC (-MHU), Hasselt, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ellen Geerdens
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
| | - Severine Berden
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
| | - Joni Van der Meulen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Molecular Diagnostics Ghent University Hospital (MDG), Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Aaron De Cock
- Molecular Diagnostics Ghent University Hospital (MDG), Ghent University Hospital, Ghent, Belgium
| | | | | | - Marie de Barsy
- Institute of Pathology and Genetics (IPG), Gosselies, Belgium
| | | | - Wendy W J de Leng
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Imke Demers
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Zeliha Ozgur
- Genomics Core Facility, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Ernst-Jan M Speel
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Brigitte Maes
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, University of Hasselt, Belgium
- Department Jessa & Science, LCRC (-MHU), Hasselt, Belgium
| |
Collapse
|
4
|
Vlachavas EI, Voutetakis K, Kosmidou V, Tsikalakis S, Roditis S, Pateas K, Kim R, Pagel K, Wolf S, Warsow G, Dimitrakopoulou-Strauss A, Zografos GN, Pintzas A, Betge J, Papadodima O, Wiemann S. Molecular and functional profiling unravels targetable vulnerabilities in colorectal cancer. Mol Oncol 2025. [PMID: 39876058 DOI: 10.1002/1878-0261.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies. We performed whole-exome sequencing and RNA-Sequencing of 28 tumors of the Athens Comprehensive Cancer Center CRC cohort, and molecularly characterized CRC patients based on their microsatellite instability (MSI) status, single-nucleotide variations (SNVs)/copy number alterations (CNAs), and pathway/transcription factor activities at the individual patient level. Variants were classified using a computational score for integrative cancer variant annotation and prioritization. Complementing this with public multi-omics datasets, we identified activation of transforming growth factor beta (TGFβ) signaling to be more strongly activated in MSS patients, whereas Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) molecular cascades were activated specifically in MSI tumors. We unraveled mechanisms consistently perturbed in the transcriptional and mutational circuits and identified Runt-related transcription factors (RUNX transcription factors) as putative biomarkers in CRC, given their role in the regulation of pathways involved in tumor progression and immune evasion. Assessing the immunogenicity of CRC tumors in the context of RAS/RAF mutations and MSI/MSS status revealed a critical impact that KRAS mutations have on immunogenicity, particularly in the MSS patient subgroup, with implications for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Vivian Kosmidou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Spyridon Tsikalakis
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Spyridon Roditis
- 3rd Surgical Department G.Gennimatas Hospital, Athens, Greece
- Surgical Department, University Hospital of North Midlands, Stoke-on-Trent, UK
| | | | | | | | - Stephan Wolf
- High-Throughput Sequencing Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management Core Facility, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Alexander Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Germany
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Azad AA, Gurney H, Campbell A, Goh JC, Rathi V. BRCA Mutation Testing in Men with Metastatic Castration-Resistant Prostate Cancer: Practical Guidance for Australian Clinical Practice. Asia Pac J Clin Oncol 2025. [PMID: 39825869 DOI: 10.1111/ajco.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Some patients with metastatic castration-resistant prostate cancer (mCRPC) possess germline or acquired defects in the DNA damage repair (DDR) genes BRCA1 and BRCA2. Tumors with BRCA mutations exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) such as olaparib and rucaparib. As a result, molecular diagnostic testing to identify patients with BRCA mutations eligible for the PARPi therapy has become an integral component of managing patients with mCRPC. There are practical challenges in the current molecular testing pathway in Australia that can compromise testing success. Testing success is often contingent on quality of tissue handling and laboratory processing techniques to minimize DNA degradation and suboptimal sequencing data quality. Greater adoption of best testing practices in Australia can be facilitated with education and greater awareness of expert recommendations. Here, we provide expert recommendations on how to optimize BRCA molecular diagnostic testing in patients with mCRPC. Optimization and standardization of molecular diagnostic testing will support health care providers and institutes in establishing more efficient testing pathways, enabling access to targeted therapies such as PARPi, and improving patient outcomes.
Collapse
Affiliation(s)
- Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Westmead Hospital, Westmead, Australia
| | - Ainsley Campbell
- Austin Health, Clinical Genetics Department, Heidelberg, Victoria, Australia
| | - Jeffrey C Goh
- Department of Medical Oncology, Cancer Care Services, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia
- Department of Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vivek Rathi
- LifeStrands Genomics Australia, Mount Waverley, Victoria, Australia
| |
Collapse
|
6
|
Batra U, Nathany S. Biomarker testing in lung cancer: from bench to bedside. Oncol Rev 2025; 18:1445826. [PMID: 39834530 PMCID: PMC11743711 DOI: 10.3389/or.2024.1445826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the poster child of personalized medicine. With increased knowledge about biomarkers and the consequent improvement in survival rates, NSCLC has changed from being a therapeutic nihilistic disease to that characterized by therapeutic enthusiasm. The routine biomarkers tested in NSCLC are EGFR, ALK, and ROS1. However, several additional biomarkers have been added to the diagnostic landscape. Current guidelines recommend testing at least seven biomarkers upfront at the time of NSCLC diagnosis-emphasizing the wide range of targets and corresponding therapies that can be leveraged for disease management. Sequential single-gene testing is not only time-consuming but also leads to tissue exhaustion. Multigene panel testing using next-generation sequencing (NGS) offers an attractive diagnostic substitute that aligns with the evolving dynamics of precision medicine. NGS enables the identification of point mutations, insertions, deletions, copy number alterations, fusion genes, and microsatellite instability information needed to guide the potential use of targeted therapy. This article reviews the existing guidelines, proposed recommendations for NGS in non-squamous NSCLC, real-world data on its use, and the advantages of adopting broader panel-based NGS testing over single-gene testing.
Collapse
Affiliation(s)
- Ullas Batra
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Shrinidhi Nathany
- Hematology and Bone Marrow Transplant, Fortis Memorial Research Institute, Gurgaon, Haryana, India
| |
Collapse
|
7
|
Van Bockstal MR, Depelsemaeker MC, Daoud L, Fontanges Q, Francois A, Guiot Y, Dekairelle AF, Dubois D, Van Marcke C, Longton E, Duhoux FP, Vernaeve H, Berlière M, Floris G, Galant C. Evaluation of trophoblast cell surface antigen-2 (TROP2) protein expression in chemotherapy-resistant and metastatic breast carcinomas. Pathol Res Pract 2024; 264:155724. [PMID: 39571340 DOI: 10.1016/j.prp.2024.155724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
Trophoblast cell-surface antigen 2 (TROP2), a transmembrane receptor expressed in many carcinomas, is a target for novel antibody-drug conjugates such as sacituzumab govitecan. TROP2-targeted therapy is used for unresectable locally advanced or metastatic triple-negative and hormone receptor-positive, HER2-negative breast cancers. The role of TROP2 as a predictive marker is yet unclear. Standardized interpretation criteria for TROP2 immunohistochemistry (IHC) are lacking. Here, we compared three antibody clones and two methods for semi-quantitative assessment, aiming to establish reproducible evaluation criteria. First, TROP2 IHC was performed on normal tissues and nine breast cancers, using the BSB-148, EPR20043 and SP293 clones. EPR20043 was selected for subsequent evaluation in 69 breast cancers without pathological complete response to neoadjuvant chemotherapy (NAC). Four pathologists applied the ASCO/CAP guidelines for HER2 IHC testing (designated as the 'membrane score') and the H-score. All H-scores were categorized as low (0-100), intermediate (101-200) and high (201-300). Although the membrane scores strongly correlated with the categorized H-scores, the latter showed higher interobserver variability. Next, TROP2 IHC was performed on 94 breast cancer metastases and evaluated by six pathologists, confirming the strong correlation between the membrane scores and H-scores. In metastases, the interobserver variability was similar for both methods. Our observations support the application of the HER2 ASCO/CAP guidelines for semi-quantitative evaluation of membranous TROP2 protein expression, as this method strongly correlates with the H-score and is less prone to interobserver variability in post-NAC breast resections. Future studies should investigate the association between the TROP2 membrane score and response to TROP2-targeted therapy.
Collapse
Affiliation(s)
- Mieke R Van Bockstal
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium; Pôle de Morphologie (MORF), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium.
| | | | - Lina Daoud
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Quitterie Fontanges
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Aline Francois
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Yves Guiot
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Anne-France Dekairelle
- Department of Molecular Biology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Dominique Dubois
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Cédric Van Marcke
- Pôle d'imagerie moléculaire, radiothérapie et oncologie (MIRO), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium; Department of Medical Oncology, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Eléonore Longton
- Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium; Department of Radiation Oncology, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Francois P Duhoux
- Pôle d'imagerie moléculaire, radiothérapie et oncologie (MIRO), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium; Department of Medical Oncology, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Hilde Vernaeve
- Breast Clinic, Clinique Saint-Jean, Boulevard du Jardin Botanique 32, Brussels 1000, Belgium
| | - Martine Berlière
- Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium; Pôle de Gynécologie (GYNE), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| | - Giuseppe Floris
- Department of Oncology, KU Leuven, Herestraat 49, Box 7003-06, Leuven 3000, Belgium; Department of Imaging & Pathology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Christine Galant
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, Brussels 1200, Belgium; Pôle de Morphologie (MORF), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, Brussels 1200, Belgium
| |
Collapse
|
8
|
Brahimllari O, Eloranta S, Georgii-Hemming P, Haider Z, Koch S, Krstic A, Skarp FP, Rosenquist R, Smedby KE, Taylan F, Thorvaldsdottir B, Wirta V, Wästerlid T, Boman M. Smart variant filtering - A blueprint solution for massively parallel sequencing-based variant analysis. Health Informatics J 2024; 30:14604582241290725. [PMID: 39394057 DOI: 10.1177/14604582241290725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Massively parallel sequencing helps create new knowledge on genes, variants and their association with disease phenotype. This important technological advancement simultaneously makes clinical decision making, using genomic information for cancer patients, more complex. Currently, identifying actionable pathogenic variants with diagnostic, prognostic, or predictive impact requires substantial manual effort. Objective: The purpose is to design a solution for clinical diagnostics of lymphoma, specifically for systematic variant filtering and interpretation. Methods: A scoping review and demonstrations from specialists serve as a basis for a blueprint of a solution for massively parallel sequencing-based genetic diagnostics. Results: The solution uses machine learning methods to facilitate decision making in the diagnostic process. A validation round of interviews with specialists consolidated the blueprint and anchored it across all relevant expert disciplines. The scoping review identified four components of variant filtering solutions: algorithms and Artificial Intelligence (AI) applications, software, bioinformatics pipelines and variant filtering strategies. The blueprint describes the input, the AI model and the interface for dynamic browsing. Conclusion: An AI-augmented system is designed for predicting pathogenic variants. While such a system can be used to classify identified variants, diagnosticians should still evaluate the classification's accuracy, make corrections when necessary, and ultimately decide which variants are truly pathogenic.
Collapse
Affiliation(s)
- Orlinda Brahimllari
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Eloranta
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Zahra Haider
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Koch
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Division of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tove Wästerlid
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Boman
- MedTechLabs, BioClinicum, Karolinska University Hospital, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Tavano F, Latiano A, Palmieri O, Gioffreda D, Latiano T, Gentile A, Tardio M, Latiano TP, Gentile M, Terracciano F, Perri F. Duodenal Fluid Analysis as a Rewarding Approach to Detect Low-Abundance Mutations in Biliopancreatic Cancers. Int J Mol Sci 2024; 25:8436. [PMID: 39126005 PMCID: PMC11312909 DOI: 10.3390/ijms25158436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Diagnosis of biliopancreatic cancers by the available serum tumor markers, imaging, and histopathological tissue specimen examination remains a challenge. Circulating cell-free DNA derived from matched pairs of secretin-stimulated duodenal fluid (DF) and plasma from 10 patients with biliopancreatic diseases and 8 control subjects was analyzed using AmpliSeq™ HD technology for Ion Torrent Next-Generation Sequencing to evaluate the potential of liquid biopsy with DF in biliopancreatic cancers. The median cfDNA concentration was greater in DF-derived than in plasma-derived samples. A total of 13 variants were detected: 11 vs. 1 were exclusive for DF relative to the plasma source, and 1 was shared between the two body fluids. According to the four-tier systems, 10 clinical tier-I-II (76.9%), 1 tier-III (7.7%), and 2 tier-IV (15.4%) variants were identified. Notably, the 11 tier-I-III variants were exclusively found in DF-derived cfDNA from five patients with biliopancreatic cancers, and were detected in seven genes (KRAS, TP53, BRAF, CDKN2A, RNF43, GNAS, and PIK3CA); 82% of the tier-I-III variants had a low abundance, with a VAF < 6%. The mutational profiling of DF seems to be a reliable and promising tool for identifying cancer-associated alterations in malignant cancers of the biliopancreatic tract.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annamaria Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Matteo Tardio
- Department of Surgery, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Pia Latiano
- Department of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Marco Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Fulvia Terracciano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
10
|
Szpechcinski A, Moes-Sosnowska J, Skronska P, Lechowicz U, Pelc M, Szolkowska M, Rudzinski P, Wojda E, Maszkowska-Kopij K, Langfort R, Orlowski T, Sliwinski P, Polaczek M, Chorostowska-Wynimko J. The Advantage of Targeted Next-Generation Sequencing over qPCR in Testing for Druggable EGFR Variants in Non-Small-Cell Lung Cancer. Int J Mol Sci 2024; 25:7908. [PMID: 39063150 PMCID: PMC11277480 DOI: 10.3390/ijms25147908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of targeted therapies in non-small-cell lung cancer (NSCLC), including inhibitors of epidermal growth factor receptor (EGFR) tyrosine kinase, has increased the need for robust companion diagnostic tests. Nowadays, detection of actionable variants in exons 18-21 of the EGFR gene by qPCR and direct DNA sequencing is often replaced by next-generation sequencing (NGS). In this study, we evaluated the diagnostic usefulness of targeted NGS for druggable EGFR variants testing in clinical NSCLC material previously analyzed by the IVD-certified qPCR test with respect to DNA reference material. We tested 59 NSCLC tissue and cytology specimens for EGFR variants using the NGS 'TruSight Tumor 15' assay (Illumina) and the qPCR 'cobas EGFR mutation test v2' (Roche Diagnostics). The sensitivity and specificity of targeted NGS assay were evaluated using the biosynthetic and biological DNA reference material with known allelic frequencies (VAF) of EGFR variants. NGS demonstrated a sufficient lower detection limit for diagnostic applications (VAF < 5%) in DNA reference material; all EGFR variants were correctly identified. NGS showed high repeatability of VAF assessment between runs (CV% from 0.02 to 3.98). In clinical material, the overall concordance between NGS and qPCR was 76.14% (Cohen's Kappa = 0.5933). The majority of discordant results concerned false-positive detection of EGFR exon 20 insertions by qPCR. A total of 9 out of 59 (15%) clinical samples showed discordant results for one or more EGFR variants in both assays. Additionally, we observed TP53 to be a frequently co-mutated gene in EGFR-positive NSCLC patients. In conclusion, targeted NGS showed a number of superior features over qPCR in EGFR variant detection (exact identification of variants, calculation of allelic frequency, high analytical sensitivity), which might enhance the basic diagnostic report.
Collapse
Affiliation(s)
- Adam Szpechcinski
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Paulina Skronska
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| | - Malgorzata Szolkowska
- Department of Pathology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (M.S.); (R.L.)
| | - Piotr Rudzinski
- Clinics of Thoracic Surgery, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (P.R.); (T.O.)
| | - Emil Wojda
- III Department of Lung Diseases and Oncology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.W.); (M.P.)
- II Department of Lung Diseases, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | | | - Renata Langfort
- Department of Pathology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (M.S.); (R.L.)
| | - Tadeusz Orlowski
- Clinics of Thoracic Surgery, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (P.R.); (T.O.)
| | - Pawel Sliwinski
- II Department of Lung Diseases, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| | - Mateusz Polaczek
- III Department of Lung Diseases and Oncology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (E.W.); (M.P.)
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (J.M.-S.); (P.S.); (U.L.); (M.P.); (J.C.-W.)
| |
Collapse
|
11
|
De Schepper M, Koorman T, Richard F, Christgen M, Vincent-Salomon A, Schnitt SJ, van Diest PJ, Zels G, Mertens F, Maetens M, Vanden Bempt I, Harbeck N, Nitz U, Gräser M, Kümmel S, Gluz O, Weynand B, Floris G, Derksen PWB, Desmedt C. Integration of Pathological Criteria and Immunohistochemical Evaluation for Invasive Lobular Carcinoma Diagnosis: Recommendations From the European Lobular Breast Cancer Consortium. Mod Pathol 2024; 37:100497. [PMID: 38641322 DOI: 10.1016/j.modpat.2024.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Invasive lobular carcinoma (ILC) is the second most frequent type of breast cancer (BC) and its peculiar morphology is mainly driven by inactivation of CDH1, the gene coding for E-cadherin cell adhesion protein. ILC-specific therapeutic and disease-monitoring approaches are gaining momentum in the clinic, increasing the importance of accurate ILC diagnosis. Several essential and desirable morphologic diagnostic criteria are currently defined by the World Health Organization, the routine use of immunohistochemistry (IHC) for E-cadherin is not recommended. Disagreement in the diagnosis of ILC has been repeatedly reported, but interpathologist agreement increases with the use of E-cadherin IHC. In this study, we aimed to harmonize the pathological diagnosis of ILC by comparing 5 commonly used E-cadherin antibody clones (NCH-38, EP700Y, Clone 36, NCL-L-E-cad [Clone 36B5], and ECH-6). We determined their biochemical specificity for the E-cadherin protein and IHC staining performance according to type and location of mutation on the CDH1 gene. Western blot analysis on mouse cell lines with conditional E-cadherin expression revealed a reduced specificity of EP700Y and NCL-L-E-cad for E-cadherin, with cross-reactivity of Clone 36 to P-cadherin. The use of IHC improved interpathologist agreement for ILC, lobular carcinoma in situ, and atypical lobular hyperplasia. The E-cadherin IHC staining pattern was associated with variant allele frequency and likelihood of nonsense-mediated RNA decay but not with the type or position of CDH1 mutations. Based on these results, we recommend the indication for E-cadherin staining, choice of antibodies, and their interpretation to standardize ILC diagnosis in current pathology practice.
Collapse
Affiliation(s)
- Maxim De Schepper
- Department of Oncology, Laboratory for Translational Breast Cancer Research, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, UH Leuven, Leuven, Belgium
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - François Richard
- Department of Oncology, Laboratory for Translational Breast Cancer Research, KU Leuven, Leuven, Belgium
| | | | - Anne Vincent-Salomon
- Department of Pathology-Genetics_Immunology, Institut Curie, PSL Research University, Diagnostic and Theranostic Medicine Division, Paris, France
| | - Stuart J Schnitt
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gitte Zels
- Department of Oncology, Laboratory for Translational Breast Cancer Research, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, UH Leuven, Leuven, Belgium
| | - Freya Mertens
- Department of Pathology, University Hospitals Leuven, UH Leuven, Leuven, Belgium
| | - Marion Maetens
- Department of Oncology, Laboratory for Translational Breast Cancer Research, KU Leuven, Leuven, Belgium
| | | | - Nadia Harbeck
- West German Study Group, Mönchengladbach, Germany; Department of Gynecology and Obstetrics, Breast Center, University of Munich (LMU) and CCCLMU, Munich, Germany
| | - Ulrike Nitz
- West German Study Group, Mönchengladbach, Germany; Ev. Hospital Bethesda, Breast Center Niederrhein, Mönchengladbach, Germany
| | - Monika Gräser
- West German Study Group, Mönchengladbach, Germany; Ev. Hospital Bethesda, Breast Center Niederrhein, Mönchengladbach, Germany; Department of Gynecology, University Medical Center Hamburg, Germany
| | - Sherko Kümmel
- West German Study Group, Mönchengladbach, Germany; Charité - Universitätsmedizin Berlin, Department of Gynecology with Breast Center, Berlin, Germany; Clinics Essen-Mitte, Breast Unit, Essen, Germany
| | - Oleg Gluz
- West German Study Group, Mönchengladbach, Germany; Ev. Hospital Bethesda, Breast Center Niederrhein, Mönchengladbach, Germany; University Clinics Cologne, Women's Clinic and Breast Center, Cologne, Germany
| | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven, UH Leuven, Leuven, Belgium
| | - Giuseppe Floris
- Department of Pathology, University Hospitals Leuven, UH Leuven, Leuven, Belgium.
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Christine Desmedt
- Department of Oncology, Laboratory for Translational Breast Cancer Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Malcikova J, Pavlova S, Baliakas P, Chatzikonstantinou T, Tausch E, Catherwood M, Rossi D, Soussi T, Tichy B, Kater AP, Niemann CU, Davi F, Gaidano G, Stilgenbauer S, Rosenquist R, Stamatopoulos K, Ghia P, Pospisilova S. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-2024 update. Leukemia 2024; 38:1455-1468. [PMID: 38755420 PMCID: PMC11217004 DOI: 10.1038/s41375-024-02267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
In chronic lymphocytic leukemia (CLL), analysis of TP53 aberrations (deletion and/or mutation) is a crucial part of treatment decision-making algorithms. Technological and treatment advances have resulted in the need for an update of the last recommendations for TP53 analysis in CLL, published by ERIC, the European Research Initiative on CLL, in 2018. Based on the current knowledge of the relevance of low-burden TP53-mutated clones, a specific variant allele frequency (VAF) cut-off for reporting TP53 mutations is no longer recommended, but instead, the need for thorough method validation by the reporting laboratory is emphasized. The result of TP53 analyses should always be interpreted within the context of available laboratory and clinical information, treatment indication, and therapeutic options. Methodological aspects of introducing next-generation sequencing (NGS) in routine practice are discussed with a focus on reliable detection of low-burden clones. Furthermore, potential interpretation challenges are presented, and a simplified algorithm for the classification of TP53 variants in CLL is provided, representing a consensus based on previously published guidelines. Finally, the reporting requirements are highlighted, including a template for clinical reports of TP53 aberrations. These recommendations are intended to assist diagnosticians in the correct assessment of TP53 mutation status, but also physicians in the appropriate understanding of the lab reports, thus decreasing the risk of misinterpretation and incorrect management of patients in routine practice whilst also leading to improved stratification of patients with CLL in clinical trials.
Collapse
Affiliation(s)
- Jitka Malcikova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Mark Catherwood
- Haematology Department, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Hematopoietic and Leukemic Development, UMRS_938, Sorbonne University, Paris, France
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Frederic Davi
- Sorbonne Université, Paris, France
- Department of Hematology, Hôpital Pitié-Salpêtière, AP-HP, Paris, France
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milan, Italy.
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
13
|
Revencu N, Eijkelenboom A, Bracquemart C, Alhopuro P, Armstrong J, Baselga E, Cesario C, Dentici ML, Eyries M, Frisk S, Karstensen HG, Gene-Olaciregui N, Kivirikko S, Lavarino C, Mero IL, Michiels R, Pisaneschi E, Schönewolf-Greulich B, Wieland I, Zenker M, Vikkula M. Assessment of gene-disease associations and recommendations for genetic testing for somatic variants in vascular anomalies by VASCERN-VASCA. Orphanet J Rare Dis 2024; 19:213. [PMID: 38778413 PMCID: PMC11110196 DOI: 10.1186/s13023-024-03196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Vascular anomalies caused by somatic (postzygotic) variants are clinically and genetically heterogeneous diseases with overlapping or distinct entities. The genetic knowledge in this field is rapidly growing, and genetic testing is now part of the diagnostic workup alongside the clinical, radiological and histopathological data. Nonetheless, access to genetic testing is still limited, and there is significant heterogeneity across the approaches used by the diagnostic laboratories, with direct consequences on test sensitivity and accuracy. The clinical utility of genetic testing is expected to increase progressively with improved theragnostics, which will be based on information about the efficacy and safety of the emerging drugs and future molecules. The aim of this study was to make recommendations for optimising and guiding the diagnostic genetic testing for somatic variants in patients with vascular malformations. RESULTS Physicians and lab specialists from 11 multidisciplinary European centres for vascular anomalies reviewed the genes identified to date as being involved in non-hereditary vascular malformations, evaluated gene-disease associations, and made recommendations about the technical aspects for identification of low-level mosaicism and variant interpretation. A core list of 24 genes were selected based on the current practices in the participating laboratories, the ISSVA classification and the literature. In total 45 gene-phenotype associations were evaluated: 16 were considered definitive, 16 strong, 3 moderate, 7 limited and 3 with no evidence. CONCLUSIONS This work provides a detailed evidence-based view of the gene-disease associations in the field of vascular malformations caused by somatic variants. Knowing both the gene-phenotype relationships and the strength of the associations greatly help laboratories in data interpretation and eventually in the clinical diagnosis. This study reflects the state of knowledge as of mid-2023 and will be regularly updated on the VASCERN-VASCA website (VASCERN-VASCA, https://vascern.eu/groupe/vascular-anomalies/ ).
Collapse
Affiliation(s)
- Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud University Medical Center, VASCERN VASCA European Reference Centre, PO Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, Service de Génétique, CHU Caen Normandie, BIOTARGEN EA 7450, VASCERN VASCA European Reference Centre, Caen, 14000, France
| | - Pia Alhopuro
- HUS Diagnostic Center, Laboratory of Genetics, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland
| | - Judith Armstrong
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III (ISCIII), Madrid, and Genomic Unit, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Eulalia Baselga
- Department of Dermatology, Hospital Sant Joan de Deu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Claudia Cesario
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, VASCERN VASCA European Reference Centre, 00165, Rome, Italy
| | - Melanie Eyries
- Sorbonne Université, Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, VASCERN VASCA European Reference Centre, Paris, France
| | - Sofia Frisk
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, VASCERN VASCA European Reference Centre, Stockholm, Sweden
| | - Helena Gásdal Karstensen
- Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark
| | - Nagore Gene-Olaciregui
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Sirpa Kivirikko
- Department of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, VASCERN VASCA European Reference Centre, Helsinki, Finland
| | - Cinzia Lavarino
- Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, VASCERN VASCA European Reference Centre, Barcelona, Spain
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, VASCERN VASCA European Reference Centre, Oslo, Norway
| | - Rodolphe Michiels
- Center for Human Genetics, Cliniques universitaires Saint-Luc, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium
| | - Elisa Pisaneschi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, VASCERN VASCA European Reference Centre, Rome, Italy
| | - Bitten Schönewolf-Greulich
- Department of Genetics, Center of Diagnostics, Copenhagen University Hospital - Rigshospitalet, VASCERN VASCA European Reference Centre, Copenhagen, Denmark
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Otto-Von-Guericke-University, Magdeburg, Germany
| | - Miikka Vikkula
- Center for Vascular Anomalies, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
- Human Molecular Genetics , de Duve Institute, University of Louvain, VASCERN VASCA European Reference Centre, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
14
|
Casolino R, Beer PA, Chakravarty D, Davis MB, Malapelle U, Mazzarella L, Normanno N, Pauli C, Subbiah V, Turnbull C, Westphalen CB, Biankin AV. Interpreting and integrating genomic tests results in clinical cancer care: Overview and practical guidance. CA Cancer J Clin 2024; 74:264-285. [PMID: 38174605 DOI: 10.3322/caac.21825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The last decade has seen rapid progress in the use of genomic tests, including gene panels, whole-exome sequencing, and whole-genome sequencing, in research and clinical cancer care. These advances have created expansive opportunities to characterize the molecular attributes of cancer, revealing a subset of cancer-associated aberrations called driver mutations. The identification of these driver mutations can unearth vulnerabilities of cancer cells to targeted therapeutics, which has led to the development and approval of novel diagnostics and personalized interventions in various malignancies. The applications of this modern approach, often referred to as precision oncology or precision cancer medicine, are already becoming a staple in cancer care and will expand exponentially over the coming years. Although genomic tests can lead to better outcomes by informing cancer risk, prognosis, and therapeutic selection, they remain underutilized in routine cancer care. A contributing factor is a lack of understanding of their clinical utility and the difficulty of results interpretation by the broad oncology community. Practical guidelines on how to interpret and integrate genomic information in the clinical setting, addressed to clinicians without expertise in cancer genomics, are currently limited. Building upon the genomic foundations of cancer and the concept of precision oncology, the authors have developed practical guidance to aid the interpretation of genomic test results that help inform clinical decision making for patients with cancer. They also discuss the challenges that prevent the wider implementation of precision oncology.
Collapse
Affiliation(s)
- Raffaella Casolino
- Wolfson Wohl Cancer Research Center, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Philip A Beer
- Wolfson Wohl Cancer Research Center, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Hull York Medical School, York, UK
| | | | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine, New York City, New York, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luca Mazzarella
- Laboratory of Translational Oncology and Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- National Cancer Registration and Analysis Service, National Health Service (NHS) England, London, UK
- Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - C Benedikt Westphalen
- Department of Medicine III, Ludwig Maximilians University (LMU) Hospital Munich, Munich, Germany
- Comprehensive Cancer Center, LMU Hospital Munich, Munich, Germany
- German Cancer Consortium, LMU Hospital Munich, Munich, Germany
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Center, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
- South Western Sydney Clinical School, Liverpool, New South Wales, Australia
| |
Collapse
|
15
|
Rausch C, Rothenberg-Thurley M, Dufour A, Schneider S, Gittinger H, Sauerland C, Görlich D, Krug U, Berdel WE, Woermann BJ, Hiddemann W, Braess J, von Bergwelt-Baildon M, Spiekermann K, Herold T, Metzeler KH. Validation and refinement of the 2022 European LeukemiaNet genetic risk stratification of acute myeloid leukemia. Leukemia 2023:10.1038/s41375-023-01884-2. [PMID: 37041198 DOI: 10.1038/s41375-023-01884-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The revised 2022 European LeukemiaNet (ELN) AML risk stratification system requires validation in large, homogeneously treated cohorts. We studied 1118 newly diagnosed AML patients (median age, 58 years; range, 18-86 years) who received cytarabine-based induction chemotherapy between 1999 and 2012 and compared ELN-2022 to the previous ELN-2017 risk classification. Key findings were validated in a cohort of 1160 mostly younger patients. ELN-2022 reclassified 15% of patients, 3% into more favorable, and 12% into more adverse risk groups. This was mainly driven by patients reclassified from intermediate- to adverse-risk based on additional myelodysplasia-related mutations being included as adverse-risk markers. These patients (n = 79) had significantly better outcomes than patients with other adverse-risk genotypes (5-year OS, 26% vs. 12%) and resembled the remaining intermediate-risk group. Overall, time-dependent ROC curves and Harrel's C-index controlling for age, sex, and AML type (de novo vs. sAML/tAML) show slightly worse prognostic discrimination of ELN-2022 compared to ELN-2017 for OS. Further refinement of ELN-2022 without including additional genetic markers is possible, in particular by recognizing TP53-mutated patients with complex karyotypes as "very adverse". In summary, the ELN-2022 risk classification identifies a larger group of adverse-risk patients at the cost of slightly reduced prognostic accuracy compared to ELN-2017.
Collapse
Affiliation(s)
- Christian Rausch
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Maja Rothenberg-Thurley
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Annika Dufour
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Stephanie Schneider
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Gittinger
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Cristina Sauerland
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | | | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Michael von Bergwelt-Baildon
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Karsten Spiekermann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Klaus H Metzeler
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
16
|
Dutta N, Rohlin A, Eklund EA, Magnusson MK, Nilsson F, Akyürek LM, Torstensson P, Sayin VI, Lundgren A, Hallqvist A, Raghavan S. Combinatory analysis of immune cell subsets and tumor-specific genetic variants predict clinical response to PD-1 blockade in patients with non-small cell lung cancer. Front Oncol 2023; 12:1073457. [PMID: 36844924 PMCID: PMC9948027 DOI: 10.3389/fonc.2022.1073457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Objectives Immunotherapy by blocking programmed death protein-1 (PD-1) or programmed death protein-ligand1 (PD-L1) with antibodies (PD-1 blockade) has revolutionized treatment options for patients with non-small cell lung cancer (NSCLC). However, the benefit of immunotherapy is limited to a subset of patients. This study aimed to investigate the value of combining immune and genetic variables analyzed within 3-4 weeks after the start of PD-1 blockade therapy to predict long-term clinical response. Materials and methodology Blood collected from patients with NSCLC were analyzed for changes in the frequency and concentration of immune cells using a clinical flow cytometry assay. Next-generation sequencing (NGS) was performed on DNA extracted from archival tumor biopsies of the same patients. Patients were categorized as clinical responders or non-responders based on the 9 months' assessment after the start of therapy. Results We report a significant increase in the post-treatment frequency of activated effector memory CD4+ and CD8+ T-cells compared with pre-treatment levels in the blood. Baseline frequencies of B cells but not NK cells, T cells, or regulatory T cells were associated with the clinical response to PD-1 blockade. NGS of tumor tissues identified pathogenic or likely pathogenic mutations in tumor protein P53, Kirsten rat sarcoma virus, Kelch-like ECH-associated protein 1, neurogenic locus notch homolog protein 1, and serine/threonine kinase 11, primarily in the responder group. Finally, multivariate analysis of combined immune and genetic factors but neither alone, could discriminate between responders and non-responders. Conclusion Combined analyses of select immune cell subsets and genetic mutations could predict early clinical responses to immunotherapy in patients with NSCLC and after validation, can guide clinical precision medicine efforts.
Collapse
Affiliation(s)
- Nikita Dutta
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ella A. Eklund
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Nilsson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Levent M. Akyürek
- Department of Clinical Pathology, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Torstensson
- Department of Pulmonary Medicine, Skaraborg hospital, Skövde, Sweden
| | - Volkan I. Sayin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lundgren
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andreas Hallqvist
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden,*Correspondence: Sukanya Raghavan,
| |
Collapse
|
17
|
Li MM, Cottrell CE, Pullambhatla M, Roy S, Temple-Smolkin RL, Turner SA, Wang K, Zhou Y, Vnencak-Jones CL. Assessments of Somatic Variant Classification Using the Association for Molecular Pathology/American Society of Clinical Oncology/College of American Pathologists Guidelines: A Report from the Association for Molecular Pathology. J Mol Diagn 2023; 25:69-86. [PMID: 36503149 DOI: 10.1016/j.jmoldx.2022.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
To assess the clinical implementation of the 2017 Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists, identify content that may result in classification inconsistencies, and evaluate implementation barriers, an Association for Molecular Pathology Working Group conducted variant interpretation challenges and a guideline implementation survey. A total of 134 participants participated in the variant interpretation challenges, consisting of 11 variants in four cancer cases. Results demonstrate 86% (range, 54% to 94%) of the respondents correctly classified clinically significant variants, variants of uncertain significance, and benign/likely benign variants; however, only 59% (range, 39% to 84%) of responses agreed with the working group's consensus intended responses regarding both tiers and categories of clinical significance. In the implementation survey, 71% (157/220) of respondents have implemented the 2017 guidelines for variant classification and reporting either with or without modifications. Collectively, this study demonstrates that, although they may not yet be optimized, the 2017 guideline recommendations are being adopted for standardized somatic variant classification. The working group identified significant areas for future guideline improvement, including the need for a more granular and comprehensive classification system and education resources to meet the growing needs of both laboratory professionals and medical oncologists.
Collapse
Affiliation(s)
- Marilyn M Li
- The Variant Interpretation Testing Across Laboratories (VITAL) Somatic Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| | - Catherine E Cottrell
- The Variant Interpretation Testing Across Laboratories (VITAL) Somatic Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | | | - Somak Roy
- The Variant Interpretation Testing Across Laboratories (VITAL) Somatic Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Scott A Turner
- The Variant Interpretation Testing Across Laboratories (VITAL) Somatic Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Kai Wang
- The Variant Interpretation Testing Across Laboratories (VITAL) Somatic Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunyun Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cindy L Vnencak-Jones
- The Variant Interpretation Testing Across Laboratories (VITAL) Somatic Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
18
|
Abstract
Knowledge of an underlying genetic predisposition to cancer allows the use of personalised prognostic, preventive and therapeutic strategies for the patient and carries clinical implications for family members. Despite great progress, we identified six challenging areas in the management of patients with hereditary cancer predisposition syndromes and suggest recommendations to aid in their resolution. These include the potential for finding unexpected germline variants through somatic tumour testing, optimal risk management of patients with hereditary conditions involving moderate-penetrance genes, role of polygenic risk score in an under-represented Asian population, management of variants of uncertain significance, clinical trials in patients with germline pathogenic variants and technology in genetic counselling. Addressing these barriers will aid the next step forward in precision medicine in Singapore. All stakeholders in healthcare should be empowered with genetic knowledge to fully leverage the potential of novel genomic insights and implement them to provide better care for our patients.
Collapse
Affiliation(s)
- Jianbang Chiang
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore,Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Tarryn Shaw
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore,Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,Correspondence: A/Prof. Joanne Ngeow, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Drive, 308232, Singapore. E-mail:
| |
Collapse
|
19
|
De Becker A, Heestermans R, De Brouwer W, Bockstaele K, Maes K, Van Riet I. Genetic profiling of human bone marrow mesenchymal stromal cells after in vitro expansion in clinical grade human platelet lysate. Front Bioeng Biotechnol 2022; 10:1008271. [DOI: 10.3389/fbioe.2022.1008271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are non-hematopoietic cells that have a broad therapeutic potential. To obtain sufficient cells for clinical application, they must be expanded ex vivo. In the initial expansion protocols described, fetal calf serum (FCS) was used as the reference growth supplement, but more recently different groups started to replace FCS with platelet lysate (PL). We investigated in this study the impact of the culture supplement on gene expression of MSCs. Human bone marrow derived MSCs were expanded in vitro in FCS and PL supplemented medium. We found that MSCs expanded in PL-containing medium (PL-MSCs) express typical MSC immunomorphological features and can migrate, as their counterparts expanded in FCS-containing medium, through a layer of endothelial cells in vitro. Additionally, they show an increased proliferation rate compared to MSCs expanded in FCS medium (FCS-MSCs). RNA sequencing performed for MSCs cultured in both types of expansion medium revealed a large impact of the choice of growth supplement on gene expression: 1974 genes were at least twofold up- or downregulated. We focused on impact of genes involved in apoptosis and senescence. Our data showed that PL-MSCs express more anti-apoptotic genes and FCS-MSCs more pro-apoptotic genes. FCS-MSCs showed upregulation of senescence-related genes after four passages whereas this was rarer in PL-MSCs at the same timepoint. Since PL-MSCs show higher proliferation rates and anti-apoptotic gene expression, they might acquire features that predispose them to malignant transformation. We screened 10 MSC samples expanded in PL-based medium for the presence of tumor-associated genetic variants using a 165 gene panel and detected only 21 different genetic variants. According to our analysis, none of these were established pathogenic mutations. Our data show that differences in culture conditions such as growth supplement have a significant impact on the gene expression profile of MSCs and favor the use of PL over FCS for expansion of MSCs.
Collapse
|
20
|
Heestermans R, De Brouwer W, Maes K, Vande Broek I, Vaeyens F, Olsen C, Caljon B, De Becker A, Bakkus M, Schots R, Van Riet I. Liquid Biopsy-Derived DNA Sources as Tools for Comprehensive Mutation Profiling in Multiple Myeloma: A Comparative Study. Cancers (Basel) 2022; 14:cancers14194901. [PMID: 36230824 PMCID: PMC9563447 DOI: 10.3390/cancers14194901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is characterized by an expansion of plasma cells in the bone marrow (BM). The genetics of MM are highly complex with multiple mutations and genetic subpopulations of tumor cells that arise during the disease evolution, affecting prognosis and treatment response. Standard bone marrow DNA analysis requires an invasive sample collection and does not always reflect the complete mutation profile. Therefore, we examined the possibility to use peripheral blood-based liquid biopsies as an alternative DNA source for mutation profiling. By comparing DNA from circulating tumor cells with circulating tumor-derived vesicles and cell-free DNA (cfDNA), we found that the latter provided the best concordance with bone marrow DNA and also showed mutations derived from myeloma cell populations that were undetectable in bone marrow. Our comparative study indicates that cfDNA is the preferable circulating biomarker for genetic characterization in MM and can provide additional information compared to standard BM analysis. Abstract The analysis of bone marrow (BM) samples in multiple myeloma (MM) patients can lead to the underestimation of the genetic heterogeneity within the tumor. Blood-derived liquid biopsies may provide a more comprehensive approach to genetic characterization. However, no thorough comparison between the currently available circulating biomarkers as tools for mutation profiling in MM has been published yet and the use of extracellular vesicle-derived DNA for this purpose in MM has not yet been investigated. Therefore, we collected BM aspirates and blood samples in 30 patients with active MM to isolate five different DNA types, i.e., cfDNA, EV-DNA, BM-DNA and DNA isolated from peripheral blood mononucleated cells (PBMNCs-DNA) and circulating tumor cells (CTC-DNA). DNA was analyzed for genetic variants with targeted gene sequencing using a 165-gene panel. After data filtering, 87 somatic and 39 germline variants were detected among the 149 DNA samples used for sequencing. cfDNA showed the highest concordance with the mutation profile observed in BM-DNA and outperformed EV-DNA, CTC-DNA and PBMNCs-DNA. Of note, 16% of all the somatic variants were only detectable in circulating biomarkers. Based on our analysis, cfDNA is the preferable circulating biomarker for genetic characterization in MM and its combined use with BM-DNA allows for comprehensive mutation profiling in MM.
Collapse
Affiliation(s)
- Robbe Heestermans
- Department of Clinical Biology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Wouter De Brouwer
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ken Maes
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Isabelle Vande Broek
- Department of Oncology and Hematology, VITAZ, Moerlandstraat 1, 9100 Sint-Niklaas, Belgium
| | - Freya Vaeyens
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Catharina Olsen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Université Libre de Bruxelles (ULB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Université Libre de Bruxelles (ULB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marleen Bakkus
- Department of Clinical Biology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Rik Schots
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
- Correspondence:
| |
Collapse
|
21
|
Salvati A, Carnevali I, Alexandrova E, Facchi S, Ronchi S, Libera L, Sahnane N, Memoli D, Lamberti J, Amabile S, Pepe S, Tarallo R, Sessa F, Weisz A, Tibiletti MG, Rizzo F. Targeted molecular profiling of epithelial ovarian cancer from Italian BRCA wild-type patients with a BRCA and PARP pathways gene panel. Exp Mol Pathol 2022; 128:104833. [PMID: 36165864 DOI: 10.1016/j.yexmp.2022.104833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/01/2022] [Accepted: 09/15/2022] [Indexed: 12/15/2022]
Abstract
Ovarian cancer (OC) is the fifth most common type of cancer in women and the fourth most common cause of cancer death in women. Identification of pathogenic variants in OC tissues has an important clinical significance for therapeutic and prevention purposes. This study aims to evaluate the mutational profile of a patient cohort, negative for BRCA1/2 germinal variants and Mismatch Repair defects, using next-generation sequencing (NGS) approach on DNA from formalin-fixed paraffin-embedded samples. We used a custom NGS panel, targeting 34 cancer-related genes, mainly of the BRCA and PARP pathways, and analyzed NGS data to identify somatic and germline variants in Italian patients affected by primary epithelial ovarian cancer. We analyzed 75 epithelial ovarian cancer tissues and identified 54 pathogenic variants and 56 variants of unknown significance. TP53 was characterized by the highest mutational rate, occurring in 55% of tested epithelial ovarian cancers (EOCs). Interestingly, a subset of 8 EOCs showed pathogenic variants of homologous recombination pathway, which could be sensitive to PARP-inhibitor therapies. Germline analysis of actionable genes revealed 4 patients carrier of pathogenic germline variants respectively of RAD51C (2 patients), RAD51D, and PALB2. Molecular profiling of EOCs using our custom NGS panel has enabled the detection of both somatic and germline variants, allowing the selection of patients suitable for targeted therapies, and the identification of high-risk OC families that can benefit from genetic counseling and testing.
Collapse
Affiliation(s)
- Annamaria Salvati
- Medical Genomics Program and Division of Oncology, AOU'S. Giovanni di Dio e Ruggi d'Aragona' Università di Salerno, 84131 Salerno, Rete Oncologica Campana, Italy; Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy
| | - Ileana Carnevali
- Department of Pathology, Ospedale di Circolo - ASST Settelaghi and Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery of the University of Insubria, 21100 Varese, Italy
| | - Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy
| | - Sofia Facchi
- Department of Pathology, Ospedale di Circolo - ASST Settelaghi and Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery of the University of Insubria, 21100 Varese, Italy
| | - Susanna Ronchi
- Department of Pathology, Ospedale di Circolo - ASST Settelaghi and Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery of the University of Insubria, 21100 Varese, Italy
| | - Laura Libera
- Department of Pathology, Ospedale di Circolo - ASST Settelaghi and Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery of the University of Insubria, 21100 Varese, Italy
| | - Nora Sahnane
- Department of Pathology, Ospedale di Circolo - ASST Settelaghi and Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery of the University of Insubria, 21100 Varese, Italy
| | - Domenico Memoli
- Medical Genomics Program and Division of Oncology, AOU'S. Giovanni di Dio e Ruggi d'Aragona' Università di Salerno, 84131 Salerno, Rete Oncologica Campana, Italy; Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy
| | - Jessica Lamberti
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy
| | - Sonia Amabile
- Medical Genomics Program and Division of Oncology, AOU'S. Giovanni di Dio e Ruggi d'Aragona' Università di Salerno, 84131 Salerno, Rete Oncologica Campana, Italy
| | - Stefano Pepe
- Medical Genomics Program and Division of Oncology, AOU'S. Giovanni di Dio e Ruggi d'Aragona' Università di Salerno, 84131 Salerno, Rete Oncologica Campana, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy; Genome Research Center for Health - CRGS, Campus of Medicine of the University of Salerno, 84081 Baronissi, SA, Italy
| | - Fausto Sessa
- Department of Pathology, Ospedale di Circolo - ASST Settelaghi and Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery of the University of Insubria, 21100 Varese, Italy
| | - Alessandro Weisz
- Medical Genomics Program and Division of Oncology, AOU'S. Giovanni di Dio e Ruggi d'Aragona' Università di Salerno, 84131 Salerno, Rete Oncologica Campana, Italy; Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy; Genome Research Center for Health - CRGS, Campus of Medicine of the University of Salerno, 84081 Baronissi, SA, Italy.
| | - Maria Grazia Tibiletti
- Department of Pathology, Ospedale di Circolo - ASST Settelaghi and Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery of the University of Insubria, 21100 Varese, Italy.
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081 Baronissi, Italy; Genome Research Center for Health - CRGS, Campus of Medicine of the University of Salerno, 84081 Baronissi, SA, Italy.
| |
Collapse
|
22
|
Claerhout H, Vranckx H, Lierman E, Michaux L, Boeckx N. Next generation sequencing in therapy-related myeloid neoplasms compared to de novo myeloid neoplasms. Acta Clin Belg 2022; 77:658-663. [PMID: 34197279 DOI: 10.1080/17843286.2021.1943232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Therapy-related myeloid neoplasms (t-MN) are frequently categorized according to previous therapy or pattern of cytogenetic abnormalities. Our objective was to evaluate and compare the mutational profile of de novo and t-MN by next generation sequencing. METHODS Sixty-four samples from patients with t-MN, previously treated for a solid tumor (mainly breast), or de novo AML, MDS, MDS/MPN were selected for our study. The library was prepared using diagnostic samples and the TruSight Myeloid sequencing panel targeting 54 genes. Samples were sequenced on a MiSeq. The classification system of the Belgian ComPerMed Expert Panel was used for the biological variant classification. RESULTS Taking only pathogenic, probably pathogenic variants and variants of unknown significance into account 141 variants in 33 genes were found in 52 of 64 samples (81%; mean number of variants per patient = 2; range = [1-11]; 67 variants in 25 genes in t-MN and 74 variants in 25 genes in de novo MN). Overall, the most frequently detected variants included TET2 (n = 22), TP53 (n = 12), DNMT3A (n = 10) and FLT3, NPM1, RUNX1 (n = 8 each). CONCLUSION Our study revealed a high variety of variants both in t-MN and de novo MN patients. There was a higher incidence of FLT3 and TP53 variants in t-MN compared to de novo MN.
Collapse
Affiliation(s)
- Helena Claerhout
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Vranckx
- Center for Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Els Lierman
- Center for Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Diagnostic Validation of a Comprehensive Targeted Panel for Broad Mutational and Biomarker Analysis in Solid Tumors. Cancers (Basel) 2022; 14:cancers14102457. [PMID: 35626061 PMCID: PMC9139650 DOI: 10.3390/cancers14102457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The use of targeted Next Generation Sequencing (NGS) for the diagnostic screening of somatic variants in solid tumor samples has proven its high clinical value. Because of the large number of ongoing clinical trials for a multitude of variants in a growing number of genes, as well as the detection of proven and emerging pan-cancer biomarkers including microsatellite instability (MSI) and tumor mutation burden (TMB), the currently employed diagnostic gene panels will become vastly insufficient in the near future. Here, we describe the validation and implementation of the hybrid capture-based comprehensive TruSight Oncology (TSO500) assay that is able to detect single-nucleotide variants (SNVs) and subtle deletions and insertions (indels) in 523 tumor-associated genes, copy-number variants (CNVs) of 69 genes, fusions with 55 cancer driver genes, and MSI and TMB. Extensive validation of the TSO500 assay was performed on DNA or RNA from 170 clinical samples with neoplastic content down to 10%, using multiple tissue and specimen types. Starting with 80 ng DNA and 40 ng RNA extracted from formalin-fixed and paraffine-embedded (FFPE) samples revealed a precision and accuracy >99% for all variant types. The analytical sensitivity and specificity were at least 99% for SNVs, indels, CNVs, MSI, and gene rearrangements. For TMB, only values around the threshold could yield a deviating outcome. The limit-of-detection for SNVs and indels was well below the set threshold of 5% variant allele frequency (VAF). This validated comprehensive genomic profiling assay was then used to screen 624 diagnostic samples, and its success rate for adoption in a clinical diagnostic setting of broad solid tumor screening was assessed on this cohort.
Collapse
|
24
|
Doig KD, Love CG, Conway T, Seleznev A, Ma D, Fellowes A, Blombery P, Fox SB. Findings from precision oncology in the clinic: rare, novel variants are a significant contributor to scaling molecular diagnostics. BMC Med Genomics 2022; 15:70. [PMID: 35346197 PMCID: PMC8962530 DOI: 10.1186/s12920-022-01214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Next generation sequencing for oncology patient management is now routine in clinical pathology laboratories. Although wet lab, sequencing and pipeline tasks are largely automated, the analysis of variants for clinical reporting remains largely a manual task. The increasing volume of sequencing data and the limited availability of genetic experts to analyse and report on variants in the data is a key scalability limit for molecular diagnostics. Method To determine the impact and size of the issue, we examined the longitudinally compiled genetic variants from 48,036 cancer patients over a six year period in a large cancer hospital from ten targeted cancer panel tests in germline, solid tumour and haematology contexts using hybridization capture and amplicon assays. This testing generated 24,168,398 sequenced variants of which 23,255 (8214 unique) were clinically reported. Results Of the reported variants, 17,240 (74.1%) were identified in more than one assay which allowed curated variant data to be reused in later reports. The remainder, 6015 (25.9%) were not subsequently seen in later assays and did not provide any reuse benefit. The number of new variants requiring curation has significantly increased over time from 1.72 to 3.73 variants per sample (292 curated variants per month). Analysis of the 23,255 variants reported, showed 28.6% (n = 2356) were not present in common public variant resources and therefore required de novo curation. These in-house only variants were enriched for indels, tumour suppressor genes and from solid tumour assays. Conclusion This analysis highlights the significant percentage of variants not present within common public variant resources and the level of non-recurrent variants that consequently require greater curation effort. Many of these variants are unique to a single patient and unlikely to appear in other patients reflecting the personalised nature of cancer genomics. This study depicts the real-world situation for pathology laboratories faced with curating increasing numbers of low-recurrence variants while needing to expedite the process of manual variant curation. In the absence of suitably accurate automated methods, new approaches are needed to scale oncology diagnostics for future genetic testing volumes. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01214-y.
Collapse
|
25
|
Ruether C, Wuensch C, Randau G, Michgehl U, Trautmann M, Hartmann W, Sandmann S, Dugas M, Khanam T, Burkhardt B. Design of a targeted next-generation DNA sequencing panel for pediatric T-cell lymphoblastic lymphoma to unravel biology and optimize treatment. Genes Chromosomes Cancer 2022; 61:459-470. [PMID: 35278000 DOI: 10.1002/gcc.23037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 11/09/2022] Open
Abstract
Low incidence and molecular heterogeneity of pediatric T-cell lymphoblastic lymphoma (T-LBL) require an international, large-scale effort to identify novel clinical biomarkers. The ongoing international clinical trial LBL2018 (NCT04043494) represents an ideal opportunity to implement a common analytic approach. Targeted next-generation sequencing is well-suited for this purpose; however, selection of relevant target genes for T-LBL remains subject of ongoing debates. Our group has recently designed and evaluated a first target panel of 80 candidate genes for T-LBL. The present study aimed at developing a novel optimized gene panel for large-scale application and to promote an international agreement on a common core panel. Small sequence variants obtained from our former study were systematically analyzed and classified with regards to pathogenic relevance, to prioritize candidate genes. Additional genes were curated from literature and online databases for a more comprehensive analysis of relevant functions and signaling pathways. The new target panel TGP-T-LBL entails 84 candidate genes which are key actors in NOTCH, PI3K-AKT, JAK-STAT, RAS signaling, epigenetic regulation, transcription, DNA repair, cell cycle regulation and ribosomal function. From our former gene panel, 35 out of 80 candidate genes were selected for the novel panel. Forty-six out of 84 genes are currently being analyzed in the ongoing international trial LBL2018. Exploratory analysis of prognostic relevance on mutation-level suggested a potential association of PIK3CA variants c.1624G > A(p.Glu542Lys) and c.1633G > A(p.Glu545Lys) to occurrence of relapse, emphasizing particular relevance of mutation analysis in PI3K-AKT signaling. Our approach promotes comprehensive and clinically relevant mutational profiling of pediatric T-LBL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Charlotte Ruether
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | | | - Gerrit Randau
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Ulf Michgehl
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, Muenster University, Germany
| | - Martin Dugas
- Institute of Medical Informatics, Muenster University, Germany
| | - Tasneem Khanam
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| | - Birgit Burkhardt
- Paediatric Hematology and Oncology, University Hospital Muenster, Germany
| |
Collapse
|
26
|
Oben B, Cosemans C, Geerdens E, Linsen L, Vanhees K, Maes B, Theunissen K, Cruys B, Lionetti M, Arijs I, Bolli N, Froyen G, Rummens JL. The Dynamics of Nucleotide Variants in the Progression from Low-Intermediate Myeloma Precursor Conditions to Multiple Myeloma: Studying Serial Samples with a Targeted Sequencing Approach. Cancers (Basel) 2022; 14:cancers14041035. [PMID: 35205782 PMCID: PMC8870380 DOI: 10.3390/cancers14041035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Multiple myeloma (MM), characterized by the expansion of plasma cells in the bone marrow, is the second most common hematological malignancy. This incurable cancer is consistently preceded by non-malignant asymptomatic precursor conditions known as monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). These pre-stages are relatively frequent, but only a select percentage of them will progress to MM. However, it is still not possible to individually predict when and which patients will develop MM. Therefore, this study aimed to investigate the mutational profile in the progression in serial bone marrow samples with a custom targeted sequencing panel, designed to detect variants in myeloma-related genes. Remarkably, almost all variants identified in the MM samples were also already present in the pre-stages, sometimes even many years before the progression. These results provide new important insights into the molecular mechanisms of the precursor conditions and progression to MM. Abstract Multiple myeloma (MM), or Kahler’s disease, is an incurable plasma cell (PC) cancer in the bone marrow (BM). This malignancy is preceded by one or more asymptomatic precursor conditions, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). The molecular mechanisms and exact cause of this progression are still not completely understood. In this study, the mutational profile underlying the progression from low–intermediate risk myeloma precursor conditions to MM was studied in serial BM smears. A custom capture-based sequencing platform was developed, including 81 myeloma-related genes. The clonal evolution of single nucleotide variants and short insertions and deletions was studied in serial BM smears from 21 progressed precursor patients with a median time of progression of six years. From the 21 patients, four patients had no variation in one of the 81 studied genes. Interestingly, in 16 of the 17 other patients, at least one variant present in MM was also detected in its precursor BM, even years before progression. Here, the variants were present in the pre-stage at a median of 62 months before progression to MM. Studying these paired BM samples contributes to the knowledge of the evolutionary genetic landscape and provides additional insight into the mutational behavior of mutant clones over time throughout progression.
Collapse
Affiliation(s)
- Bénedith Oben
- Laboratory Experimental Hematology, Department Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium; (C.C.); (L.L.); (J.-L.R.)
- Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (K.V.); (I.A.); (G.F.)
- Correspondence:
| | - Charlotte Cosemans
- Laboratory Experimental Hematology, Department Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium; (C.C.); (L.L.); (J.-L.R.)
- Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (K.V.); (I.A.); (G.F.)
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Ellen Geerdens
- Laboratory Molecular Diagnostics, Department Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium; (E.G.); (B.M.); (B.C.)
| | - Loes Linsen
- Laboratory Experimental Hematology, Department Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium; (C.C.); (L.L.); (J.-L.R.)
- Activity Center Biobanking, University Hospitals Leuven, 3000 Leuven, Belgium
- University Biobank Limburg (UBiLim), Clinical Biobank, Jessa Hospital, 3500 Hasselt, Belgium
| | - Kimberly Vanhees
- Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (K.V.); (I.A.); (G.F.)
- University Biobank Limburg (UBiLim), Clinical Biobank, Jessa Hospital, 3500 Hasselt, Belgium
| | - Brigitte Maes
- Laboratory Molecular Diagnostics, Department Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium; (E.G.); (B.M.); (B.C.)
| | - Koen Theunissen
- Department Hematology, Jessa Hospital, 3500 Hasselt, Belgium;
| | - Bert Cruys
- Laboratory Molecular Diagnostics, Department Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium; (E.G.); (B.M.); (B.C.)
| | - Marta Lionetti
- Department Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (M.L.); (N.B.)
| | - Ingrid Arijs
- Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (K.V.); (I.A.); (G.F.)
- Laboratory for Translational Genetics, Department Human Genetics, University of Leuven, 3000 Leuven, Belgium
- Belgian Inflammatory Bowel Disease Research and Development (BIRD), 1930 Zaventem, Belgium
| | - Niccolò Bolli
- Department Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (M.L.); (N.B.)
- Unità Operativa Complessa di Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Guy Froyen
- Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (K.V.); (I.A.); (G.F.)
- Laboratory Molecular Diagnostics, Department Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium; (E.G.); (B.M.); (B.C.)
| | - Jean-Luc Rummens
- Laboratory Experimental Hematology, Department Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium; (C.C.); (L.L.); (J.-L.R.)
- Faculty of Medicine and Life Sciences, Hasselt University, 3500 Hasselt, Belgium; (K.V.); (I.A.); (G.F.)
- University Biobank Limburg (UBiLim), Clinical Biobank, Jessa Hospital, 3500 Hasselt, Belgium
| |
Collapse
|
27
|
Bruehl FK, Kim AS, Li MM, Lindeman NI, Moncur JT, Souers RJ, Vasalos P, Voelkerding KV, Xian RR, Surrey LF. Tiered Somatic Variant Classification Adoption Has Increased Worldwide With Some Practice Differences Based on Location and Institutional Setting. Arch Pathol Lab Med 2022; 146:822-832. [PMID: 34979564 DOI: 10.5858/arpa.2021-0179-cp] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The 2017 Association for Molecular Pathology/American Society of Clinical Oncology/College of American Pathologists (CAP) tier classification guideline provides a framework to standardize interpretation and reporting of somatic variants. OBJECTIVE.— To evaluate the adoption and performance of the 2017 guideline among laboratories performing somatic next-generation sequencing (NGS). DESIGN.— A survey was distributed to laboratories participating in NGS CAP proficiency testing for solid tumors (NGSST) and hematologic malignancies (NGSHM). RESULTS.— Worldwide, 64.4% (152 of 236) of NGSST and 66.4% (87 of 131) of NGSHM participants used tier classification systems, of which the 2017 guideline was used by 84.9% (129 of 152) of NGSST and 73.6% (64 of 87) of NGSHM participants. The 2017 guideline was modified by 24.4% (30 of 123) of NGSST and 21.7% (13 of 60) of NGSHM laboratories. Laboratories implementing the 2017 guideline were satisfied or very satisfied (74.2% [89 of 120] NGSST and 69.5% [41 of 59] NGSHM), and the impression of tier classification reproducibility was high (mean of 3.9 [NGSST] and 3.6 [NGSHM] on a 5-point scale). Of nonusers, 35.2% (38 of 108) of NGSST and 39.4% (26 of 66) of NGSHM laboratories were planning implementation. For future guideline revisions, respondents favored including variants to monitor disease (63.9% [78 of 122] NGSST, 80.0% [48 of 60] NGSHM) and germline variants (55.3% [63 of 114] NGSST, 75.0% [45 of 60] NGSHM). Additional subtiers were not favored by academic laboratories compared to nonacademic laboratories (P < .001 NGSST and P = .02 NGSHM). CONCLUSIONS.— The 2017 guideline has been implemented by more than 50.0% of CAP laboratories. While most laboratories using the 2017 guideline report satisfaction, thoughtful guideline modifications may further enhance the quality, reproducibility, and clinical utility of the 2017 guideline for tiered somatic variant classification.
Collapse
Affiliation(s)
- Frido K Bruehl
- From Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio (Bruehl)
| | - Annette S Kim
- The Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Kim, Lindeman)
| | - Marilyn M Li
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (Li, Surrey)
| | - Neal I Lindeman
- The Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts (Kim, Lindeman)
| | - Joel T Moncur
- The Joint Pathology Center, Office of the Director, Silver Spring, Maryland (Moncur), College of American Pathologists, Northfield, Illinois
| | - Rhona J Souers
- Biostatistics Department (Souers), College of American Pathologists, Northfield, Illinois
| | - Patricia Vasalos
- Proficiency Testing (Vasalos), College of American Pathologists, Northfield, Illinois
| | | | - Rena R Xian
- The Department of Pathology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland (Xian)
| | - Lea F Surrey
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania (Li, Surrey)
| |
Collapse
|
28
|
From Information Overload to Actionable Insights: Digital Solutions for Interpreting Cancer Variants from Genomic Testing. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2040027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Given the increase in genomic testing in routine clinical use, there is a growing need for digital technology solutions to assist pathologists, oncologists, and researchers in translating variant calls into actionable knowledge to personalize patient management plans. In this article, we discuss the challenges facing molecular geneticists and medical oncologists in working with test results from next-generation sequencing for somatic oncology, and propose key considerations for implementing a decision support software to aid the interpretation of clinically important variants. In addition, we review results from an example decision support software, NAVIFY Mutation Profiler. NAVIFY Mutation Profiler is a cloud-based software that provides curation, annotation, interpretation, and reporting of somatic variants identified by next-generation sequencing. The software reports a tiered classification based on consensus recommendations from AMP, ASCO, CAP, and ACMG. Studies with NAVIFY Mutation Profiler demonstrated that the software provided timely updates and accurate curation, as well as interpretation of variant combinations, demonstrating that decision support tools can help advance implementation of precision oncology.
Collapse
|
29
|
Koeppel F, Muller E, Harlé A, Guien C, Sujobert P, Trabelsi Grati O, Kosmider O, Miguet L, Mauvieux L, Cayre A, Salgado D, Preudhomme C, Karayan-Tapon L, Tachon G, Coulet F, Lespagnol A, Beroud C, Leroy K, Rouleau E, Soubeyran I. Standardisation of pathogenicity classification for somatic alterations in solid tumours and haematologic malignancies. Eur J Cancer 2021; 159:1-15. [PMID: 34700215 DOI: 10.1016/j.ejca.2021.08.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The difficulty in interpreting somatic alterations is correlated with the increase in sequencing panel size. To correctly guide the clinical management of patients with cancer, there needs to be accurate classification of pathogenicity followed by actionability assessment. Here, we describe a specific detailed workflow for the classification of the pathogenicity of somatic variants in cancer into five categories: benign, likely benign, unknown significance, likely pathogenic and pathogenic. METHODS Classification is obtained by combining a set of eight relevant criteria in favour of either a pathogenic or a benign effect (pathogenic stand-alone, pathogenic very strong, pathogenic strong, pathogenic moderate, pathogenic supporting, benign supporting, benign strong and benign stand-alone). RESULTS Our guide is concordant with the ACMG/AMP 2015 guidelines for germline variants. Interpretation of somatic variants requires considering specific criteria, such as the disease and therapeutic context, co-occurring genomic events in the tumour when available and the use of cancer-specific variant databases. In addition, the gene role in tumorigenesis (oncogene or tumour suppressor gene) also needs to be taken into consideration. CONCLUSION Our classification could contribute to homogenize best practices on somatic variant pathogenicity interpretation and improve interpretation consistency both within and between laboratories.
Collapse
Affiliation(s)
- Florence Koeppel
- Gustave Roussy, Direction de la Recherche, Villejuif, F-94805, France
| | - Etienne Muller
- Laboratoire de Biologie et Génétique du Cancer, Centre François Baclesse, Caen, 14000, France; Inserm U1245, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, Rouen, 76031, France
| | - Alexandre Harlé
- Université de Lorraine CNRS UMR 7039 CRAN, Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, F-54519, France
| | - Céline Guien
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'hématologie biologique, Pierre-Bénite, France; Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Equipe labellisée Ligue Contre le Cancer, Université de Lyon, Lyon, France
| | - Olfa Trabelsi Grati
- Unité de pharmacogénomique, Service de Génétique, Institut Curie, 26 rue d'Ulm, Paris, 75005, France
| | - Olivier Kosmider
- AP-HP Centre, Hôpital Cochin, Service d'hématologie Biologique et Université de Paris, Paris-Descartes, France
| | - Laurent Miguet
- Laboratoire d'hématologie, CHRU Strasbourg, INSERM U1113, Avenue Molière, Strasbourg, 67100, France
| | - Laurent Mauvieux
- Laboratoire d'hématologie, CHRU Strasbourg, INSERM U1113, Avenue Molière, Strasbourg, 67100, France
| | - Anne Cayre
- LBM OncoGenAuvergne, UF de Pathologie, Centre Jean Perrin, 58 Rue Montalembert, BP392, Clermont-Ferrand, 63011, France
| | - David Salgado
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Claude Preudhomme
- Center of Pathology, Laboratory of Hematology, University Hospital of Lille, Lille, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, INSERMU1084 et CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, France
| | - Gaëlle Tachon
- Université de Poitiers, INSERMU1084 et CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, France
| | - Florence Coulet
- Genetics Department, Assistance publique - Hôpitaux de Paris, Pitié Salpêtrière Hôpital, Paris, France
| | - Alexandra Lespagnol
- CHU Pontchaillou - Laboratoire de Génétique Somatique des Cancers, Rennes, France
| | - Christophe Beroud
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France; AP-HM, Hôpital d'Enfants de la Timone, Département de Génétique Médicale et de Biologie Cellulaire, Marseille, France
| | - Karen Leroy
- AP-HP Centre, Hôpital Européen Georges Pompidou, Service de Biochimie et Université de Paris, France
| | - Etienne Rouleau
- Gustave Roussy, Département de biologie et pathologie médicales, Villejuif, F-94805, France.
| | - Isabelle Soubeyran
- Unité de Pathologie Moléculaire et Inserm U1218, Institut Bergonié, 229 cours de l'Argonne, Bordeaux, 33076, France
| |
Collapse
|
30
|
Evaluation of a Targeted Next-Generation Sequencing Panel for the Non-Invasive Detection of Variants in Circulating DNA of Colorectal Cancer. J Clin Med 2021; 10:jcm10194487. [PMID: 34640513 PMCID: PMC8509146 DOI: 10.3390/jcm10194487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular profiling of circulating cell-free DNA (cfDNA) has shown utility for the management of colorectal cancer (CRC). TruSight Tumor 170 (TST170) is a next-generation sequencing (NGS) panel that covers 170 cancer-related genes, including KRAS, which is a key driver gene in CRC. We evaluated the capacity of TST170 to detect gene variants in cfDNA from a retrospective cohort of 20 metastatic CRC patients with known KRAS variants in tumor tissue and in cfDNA previously analyzed by pyrosequencing and BEAMing, respectively. The cfDNA of most of the patients (95%) was successfully sequenced. We frequently detected variants with clinical significance in KRAS (79%, 15/19) and PIK3CA (26%, 5/19) genes. Variants with potential clinical significance were also identified in another 27 cancer genes, such as APC. The type of KRAS variant detected in cfDNA by TST170 showed high concordance with those detected in tumor tissue (77%), and very high concordance with cfDNA analyzed by BEAMing (94%). The variant allele fractions for KRAS obtained in cfDNA by TST170 and BEAMing correlated strongly. This proof-of-principle study indicates that targeted NGS analysis of cfDNA with TST170 could be useful for non-invasive detection of gene variants in metastatic CRC patients, providing an assay that could be easily implemented for detecting somatic alterations in the clinic.
Collapse
|
31
|
FDG positron emission tomography imaging and ctDNA detection as an early dynamic biomarker of everolimus efficacy in advanced luminal breast cancer. NPJ Breast Cancer 2021; 7:125. [PMID: 34548493 PMCID: PMC8455671 DOI: 10.1038/s41523-021-00331-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Biomarkers to identify patients without benefit from adding everolimus to endocrine treatment in metastatic breast cancer (MBC) are needed. We report the results of the Pearl trial conducted in five Belgian centers assessing 18F-FDG-PET/CT non-response (n = 45) and ctDNA detection (n = 46) after 14 days of exemestane-everolimus (EXE-EVE) to identify MBC patients who will not benefit. The metabolic non-response rate was 66.6%. Median PFS in non-responding patients (using as cut-off 25% for SUVmax decrease) was 3.1 months compared to 6.0 months in those showing response (HR: 0.77, 95% CI: 0.40–1.50, p = 0.44). The difference was significant when using a “post-hoc” cut-off of 15% (PFS 2.2 months vs 6.4 months). ctDNA detection at D14 was associated with PFS: 2.1 months vs 5.0 months (HR-2.5, 95% CI: 1.3–5.0, p = 0.012). Detection of ctDNA and/or the absence of 18F-FDG-PET/CT response after 14 days of EXE-EVE identifies patients with a low probability of benefiting from treatment. Independent validation is needed.
Collapse
|
32
|
Marin-Bejar O, Rogiers A, Dewaele M, Femel J, Karras P, Pozniak J, Bervoets G, Van Raemdonck N, Pedri D, Swings T, Demeulemeester J, Borght SV, Lehnert S, Bosisio F, van den Oord JJ, Bempt IV, Lambrechts D, Voet T, Bechter O, Rizos H, Levesque MP, Leucci E, Lund AW, Rambow F, Marine JC. Evolutionary predictability of genetic versus nongenetic resistance to anticancer drugs in melanoma. Cancer Cell 2021; 39:1135-1149.e8. [PMID: 34143978 DOI: 10.1016/j.ccell.2021.05.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Therapy resistance arises from heterogeneous drug-tolerant persister cells or minimal residual disease (MRD) through genetic and nongenetic mechanisms. A key question is whether specific molecular features of the MRD ecosystem determine which of these two distinct trajectories will eventually prevail. We show that, in melanoma exposed to mitogen-activated protein kinase therapeutics, emergence of a transient neural crest stem cell (NCSC) population in MRD concurs with the development of nongenetic resistance. This increase relies on a glial cell line-derived neurotrophic factor-dependent signaling cascade, which activates the AKT survival pathway in a focal adhesion kinase (FAK)-dependent manner. Ablation of the NCSC population through FAK inhibition delays relapse in patient-derived tumor xenografts. Strikingly, all tumors that ultimately escape this treatment exhibit resistance-conferring genetic alterations and increased sensitivity to extracellular signal-regulated kinase inhibition. These findings identify an approach that abrogates the nongenetic resistance trajectory in melanoma and demonstrate that the cellular composition of MRD deterministically imposes distinct drug resistance evolutionary paths.
Collapse
Affiliation(s)
- Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aljosja Rogiers
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Michael Dewaele
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Julia Femel
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Nina Van Raemdonck
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Toon Swings
- VIB Technology Watch, Technology Innovation Lab, VIB, Leuven, Belgium
| | - Jonas Demeulemeester
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; Cancer Genomic Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | | | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Translational Genetics, Center for Human Genetics, KU Leuven, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics, LISCO, KU Leuven, Leuven, Belgium
| | - Oliver Bechter
- Department of General Medical Oncology UZ Leuven, Belgium
| | - Helen Rizos
- Macquarie University, Sydney, NSW, Australia; Melanoma Institute Australia, Sydney, NSW, Australia
| | - Mitchell P Levesque
- Department of Dermatology, University of Zürich Hospital, University of Zürich, Zürich, Switzerland
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, Leuven, Belgium; Trace PDX Platform, Department of Oncology, LKI, KU Leuven, Leuven, Belgium
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
33
|
Victoor J, Borght SV, Spans L, Lehnert S, Brems H, Laenen A, Vergote I, Van Gorp T, Van Nieuwenhuysen E, Han S, Timmerman S, Van Rompuy AS, Vanden Bempt I. Comprehensive immunomolecular profiling of endometrial carcinoma: A tertiary retrospective study. Gynecol Oncol 2021; 162:694-701. [PMID: 34253388 DOI: 10.1016/j.ygyno.2021.06.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Combined immunohistochemical and molecular classification using the Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) independently predicts prognosis in endometrial carcinoma (EC). As next-generation sequencing (NGS) is entering clinical practice, we evaluated whether more comprehensive immunomolecular profiling (CIMP), including NGS and extended immunohistochemical analysis, could further refine the current ProMisE classification. METHODS A series of 120 consecutive ECs, classified according to ProMisE, was stained immunohistochemically for CD3, CD8, PD-L1, beta-catenin and L1CAM. An in-house 96 gene NGS panel was performed on a subset of 44 ECs, representing the 4 ProMisE subgroups (DNA polymerase epsilon catalytic subunit exonuclease domain mutated (POLEmut), mismatch repair deficient (MMRd), p53 abnormal (p53 abn) and no specific molecular profile (NSMP) ECs). Cases harboring non-hotspot POLE variants were analyzed with Illumina TruSight Oncology 500 NGS panel (TSO500) as a surrogate for whole-exome sequencing. RESULTS Eight cases harbored POLE variants, half of which were hotspots. Using TSO500, non-hotspot POLE variants were classified as pathogenic (3) or variant of unknown significance (1). POLEmut and MMRd ECs typically showed higher numbers of CD3+/CD8+ tumor-infiltrating lymphocytes and higher PD-L1 expression in tumor-infiltrating immune cells. p53 abn ECs showed significantly higher L1CAM immunoreactivity and frequently harbored gene amplifications including HER2 (25%), but typically lacked ARID1A or PTEN variants. Beta-catenin-positivity and FGFR2 variants were predominantly found in NSMP ECs. CONCLUSIONS Our data show that CIMP adds significant value to EC characterization and may help to determine pathogenicity of non-hotspot POLE variants, encountered more frequently than expected in our series. In addition, CIMP may reveal ECs benefitting from immune checkpoint inhibition and allows upfront identification of targetable alterations, such as HER2 amplification in p53 abn ECs.
Collapse
Affiliation(s)
- Jasper Victoor
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Sara Vander Borght
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Lien Spans
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Stefan Lehnert
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Brems
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Annouschka Laenen
- KU Leuven, Biostatistics and Statistical Bioinformatics Centre, Leuven, Belgium
| | - Ignace Vergote
- Department of Gynecology and Obstetrics, Division of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Toon Van Gorp
- Department of Gynecology and Obstetrics, Division of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Department of Gynecology and Obstetrics, Division of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Sileny Han
- Department of Gynecology and Obstetrics, Division of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Stefan Timmerman
- Department of Gynecology and Obstetrics, Division of Gynecological Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Anne-Sophie Van Rompuy
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Translational Cell & Tissue Research, Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
34
|
Duerinck J, Schwarze JK, Awada G, Tijtgat J, Vaeyens F, Bertels C, Geens W, Klein S, Seynaeve L, Cras L, D'Haene N, Michotte A, Caljon B, Salmon I, Bruneau M, Kockx M, Van Dooren S, Vanbinst AM, Everaert H, Forsyth R, Neyns B. Intracerebral administration of CTLA-4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: a phase I clinical trial. J Immunother Cancer 2021; 9:jitc-2020-002296. [PMID: 34168003 PMCID: PMC8231061 DOI: 10.1136/jitc-2020-002296] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background Patients with recurrent glioblastoma (rGB) have a poor prognosis with a median overall survival (OS) of 30–39 weeks in prospective clinical trials. Intravenous administration of programmed cell death protein 1 and cytotoxic T-lymphocyte-associated antigen 4 inhibitors has low activity in patients with rGB. In this phase I clinical trial, intracerebral (IC) administration of ipilimumab (IPI) and nivolumab (NIVO) in combination with intravenous administration of NIVO was investigated. Methods Within 24 hours following the intravenous administration of a fixed dose (10 mg) of NIVO, patients underwent a maximal safe resection, followed by injection of IPI (10 mg; cohort-1), or IPI (5 mg) plus NIVO (10 mg; cohort-2) in the brain tissue lining the resection cavity. Intravenous administration of NIVO (10 mg) was repeated every 2 weeks (max. five administrations). Next generation sequencing and RNA gene expression profiling was performed on resected tumor tissue. Results Twenty-seven patients were enrolled (cohort-1: n=3; cohort-2: n=24). All patients underwent maximal safe resection and planned IC administrations and preoperative NIVO. Thirteen patients (cohort-1: n=3; cohort-2: n=10) received all five postoperative intravenous doses of NIVO. In cohort-2, 14 patients received a median of 3 (range 1–4) intravenous doses. Subacute postoperative neurological deterioration (n=2) was reversible on steroid treatment; no other central nervous system toxicity was observed. Immune-related adverse events were infrequent and mild. GB recurrence was diagnosed in 26 patients (median progression-free survival (PFS) is 11.7 weeks (range 2–152)); 21 patients have died due to progression. Median OS is 38 weeks (95% CI: 27 to 49) with a 6-month, 1-year, and 2-year OS-rate of, respectively, 74.1% (95% CI: 57 to 90), 40.7% (95% CI: 22 to 59), and 27% (95% CI: 9 to 44). OS compares favorable against a historical cohort (descriptive Log-Rank p>0.003). No significant difference was found with respect to PFS (descriptive Log-Rank test p>0.05). A higher tumor mRNA expression level of B7-H3 was associated with a significantly worse survival (multivariate Cox logistic regression, p>0.029). Conclusion IC administration of NIVO and IPI following maximal safe resection of rGB was feasible, safe, and associated with encouraging OS. Trial registration NCT03233152.
Collapse
Affiliation(s)
- Johnny Duerinck
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Julia Katharina Schwarze
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Gil Awada
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jens Tijtgat
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Freya Vaeyens
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Cleo Bertels
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Wietse Geens
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Samuel Klein
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Laura Seynaeve
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Louise Cras
- Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Nicky D'Haene
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alex Michotte
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ben Caljon
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Michaël Bruneau
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | - Sonia Van Dooren
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ramses Forsyth
- Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
35
|
Delnord M, Van Valckenborgh E, Hebrant A, Antoniou A, Van Hoof W, Waeytens A, Van den Bulcke M. Precision cancer medicine: What has translated into clinical use in Belgium? Semin Cancer Biol 2021; 84:255-262. [PMID: 34129914 DOI: 10.1016/j.semcancer.2021.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/15/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
RATIONALE In 2016, Belgium launched the Next Generation Sequencing (NGS) Roadbook, consisting in 10 Actions, across the health care system, to facilitate the uptake of NGS in routine clinical practice. We compiled feedback on deployment of the NGS Roadbook from governmental stakeholders and beneficiaries: health policy makers, insurance providers, pathologists, geneticists, and oncologists. MAIN FINDINGS The Roadbook ensured the establishment of a Commission on Personalized Medicine and NGS testing guidelines. A national benchmarking trial ensued, and 10 networks of hospitals and laboratories adopted a reimbursement convention with the Belgian Health Insurance Agency. The Healthdata.be platform centralizes the collection of NGS metrics, and citizens were consulted on their views about NGS and genomics. CONCLUSION The Roadbook facilitated the implementation of NGS in routine (hemato-)oncology care in Belgium. Some challenges remain linked to data sharing and access by a wider range of stakeholders. Next steps include continuous monitoring of health outcomes and the budgetary impact.
Collapse
Affiliation(s)
- M Delnord
- Cancer Center, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.
| | - Els Van Valckenborgh
- Cancer Center, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Aline Hebrant
- Cancer Center, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | - Wannes Van Hoof
- Cancer Center, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - Anouk Waeytens
- Health Care Department, National Institute for Health and Disability Insurance, Brussels, Belgium
| | - M Van den Bulcke
- Cancer Center, Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
| |
Collapse
|
36
|
Bregni G, Sticca T, Camera S, Akin Telli T, Craciun L, Trevisi E, Pretta A, Kehagias P, Leduc S, Senti C, Deleporte A, Vandeputte C, Saad ED, Kerger J, Gil T, Piccart-Gebhart M, Awada A, Demetter P, Larsimont D, Hendlisz A, Aftimos P, Sclafani F. Feasibility and clinical impact of routine molecular testing of gastrointestinal cancers at a tertiary centre with a multi-gene, tumor-agnostic, next generation sequencing panel. Acta Oncol 2020; 59:1438-1446. [PMID: 32820683 DOI: 10.1080/0284186x.2020.1809704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND High-throughput sequencing technologies are increasingly used in research but limited data are available on the feasibility and value of these when routinely adopted in clinical practice. MATERIAL AND METHODS We analyzed all consecutive cancer patients for whom genomic testing by a 48-gene next-generation sequencing (NGS) panel (Truseq Amplicon Cancer Panel, Illumina) was requested as part of standard care in one of the largest Belgian cancer networks between 2014 and 2019. Feasibility of NGS was assessed in all study patients, while the impact of NGS on the decision making was analyzed in the group of gastrointestinal cancer patients. RESULTS Tumor samples from 1064 patients with varying tumor types were tested, the number of NGS requests increasing over time (p < .0001). Success rate and median turnaround time were 91.4% and 12.5 days, respectively, both significantly decreasing over time (p ≤ .0002). Non-surgical sampling procedure (OR 7.97, p < .0001), tissue from metastatic site (OR 2.35, p = .0006) and more recent year of testing (OR 1.79, p = .0258) were independently associated with NGS failure. Excluding well-known actionable or clinically relevant mutations which are recommended by international guidelines and commonly tested by targeted sequencing, 57/279 (20.4%) assessable gastrointestinal cancer patients were found to have tumors harboring at least one actionable altered gene according to the OncoKB database. NGS results, however, had a direct impact on management decisions by the treating physician in only 3 cases (1.1%). CONCLUSIONS Our findings confirm that NGS is feasible in the clinical setting with acceptably low failure rates and rapid turnaround time. In gastrointestinal cancers, however, NGS-based multiple-gene testing adds very little to standard targeted sequencing, and in routine practice the clinical impact of NGS panels including genes which are not routinely recommended by international guidelines remains limited.
Collapse
Affiliation(s)
- Giacomo Bregni
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tiberio Sticca
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Silvia Camera
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tugba Akin Telli
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elena Trevisi
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Andrea Pretta
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pashalina Kehagias
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophia Leduc
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Chiara Senti
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Amélie Deleporte
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caroline Vandeputte
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Everardo Delforge Saad
- Dendrix Research, Sao Paulo, Brazil
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | - Joseph Kerger
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Thierry Gil
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martine Piccart-Gebhart
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ahmad Awada
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pieter Demetter
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alain Hendlisz
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Aftimos
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Francesco Sclafani
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
37
|
Delcourt T, Vanneste K, Soumali MR, Coucke W, Ghislain V, Hebrant A, Van Valckenborgh E, De Keersmaecker SCJ, Roosens NH, Van De Walle P, Van Den Bulcke M, Antoniou A. NGS for (Hemato-) Oncology in Belgium: Evaluation of Laboratory Performance and Feasibility of a National External Quality Assessment Program. Cancers (Basel) 2020; 12:E3180. [PMID: 33138022 PMCID: PMC7692129 DOI: 10.3390/cancers12113180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Next-generation sequencing (NGS) is being integrated into routine clinical practice in the field of (hemato-) oncology to search for variants with diagnostic, prognostic, or therapeutic value at potentially low allelic frequencies. The complex sequencing workflows used require careful validation and continuous quality control. Participation in external quality assessments (EQA) helps laboratories evaluate their performance and guarantee the validity of tests results with the ultimate goal of ensuring high-quality patient care. Here, we describe three benchmarking trials performed during the period 2017-2018 aiming firstly at establishing the state-of-the-art and secondly setting up a NGS-specific EQA program at the national level in the field of clinical (hemato-) oncology in Belgium. DNA samples derived from cell line mixes and artificially mutated cell lines, designed to carry variants of clinical relevance occurring in solid tumors, hematological malignancies, and BRCA1/BRCA2 genes, were sent to Belgian human genetics, anatomic pathology, and clinical biology laboratories, to be processed following routine practices, together with surveys covering technical aspects of the NGS workflows. Despite the wide variety of platforms and workflows currently applied in routine clinical practice, performance was satisfactory, since participating laboratories identified the targeted variants with success rates ranging between 93.06% and 97.63% depending on the benchmark, and few false negative or repeatability issues were identified. However, variant reporting and interpretation varied, underlining the need for further standardization. Our approach showcases the feasibility of developing and implementing EQA for routine clinical practice in the field of (hemato-) oncology, while highlighting the challenges faced.
Collapse
Affiliation(s)
- Thomas Delcourt
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (T.D.); (K.V.); (S.C.J.D.K.); (N.H.R.)
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (T.D.); (K.V.); (S.C.J.D.K.); (N.H.R.)
| | - Mohamed Rida Soumali
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| | - Wim Coucke
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| | - Vanessa Ghislain
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| | - Aline Hebrant
- Cancer Centre, Sciensano, 1050 Brussels, Belgium; (A.H.); (E.V.V.); (M.V.D.B.)
| | | | - Sigrid C. J. De Keersmaecker
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (T.D.); (K.V.); (S.C.J.D.K.); (N.H.R.)
| | - Nancy H. Roosens
- Transversal activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium; (T.D.); (K.V.); (S.C.J.D.K.); (N.H.R.)
| | - Philippe Van De Walle
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| | - Marc Van Den Bulcke
- Cancer Centre, Sciensano, 1050 Brussels, Belgium; (A.H.); (E.V.V.); (M.V.D.B.)
| | - Aline Antoniou
- Quality of Laboratories, Sciensano, 1050 Brussels, Belgium; (M.R.S.); (W.C.); (V.G.); (P.V.D.W.)
| |
Collapse
|