1
|
Pantazi V, Miklós V, Smith P, Oláh-Németh O, Pankotai-Bodó G, Teja Dondapati D, Ayaydin F, D'Angiolella V, Pankotai T. Prognostic potential of CUL3 ligase with differential roles in luminal A and basal type breast cancer tumors. Sci Rep 2024; 14:14912. [PMID: 38942922 PMCID: PMC11213933 DOI: 10.1038/s41598-024-65692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Breast cancer is a prevalent and significant cause of mortality in women, and manifests as six molecular subtypes. Its further histologic classification into non-invasive ductal or lobular carcinoma (DCIS) and invasive carcinoma (ILC or IDC) underscores its heterogeneity. The ubiquitin-proteasome system plays a crucial role in breast cancer, with inhibitors targeting the 26S proteasome showing promise in clinical treatment. The Cullin-RING ubiquitin ligases, including CUL3, have direct links to breast cancer. This study focuses on CUL3 as a potential biomarker, leveraging high-throughput sequencing, gene expression profiling, experimental and data analysis tools. Through comprehensive analysis using databases like GEPIA2 and UALCAN, as well as TCGA datasets, CUL3's expression and its association with prognostic values were assessed. Additionally, the impact of CUL3 overexpression was explored in MCF-7 and MDA-MB-231 breast cancer cell lines, revealing distinct differences in molecular and phenotypic characteristics. We further profiled its expression and localization in breast cancer tissues identifying prominent differences between luminal A and TNBC tumors. Conclusively, CUL3 was found to be associated with cell cycle progression, and DNA damage response, exhibiting diverse roles depending on the tumor's molecular type. It exhibits a tendency to act as an oncogene in triple-negative tumors and as a tumor suppressor in luminal A types, suggesting a potential significance in breast cancer progression and therapeutic directions.
Collapse
Affiliation(s)
- Vasiliki Pantazi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Vanda Miklós
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Paul Smith
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Orsolya Oláh-Németh
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Divya Teja Dondapati
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | | | - Tibor Pankotai
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary.
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
| |
Collapse
|
2
|
Wang R, Khatpe AS, Kumar B, Mang HE, Batic K, Adebayo AK, Nakshatri H. Mutant RAS-driven Secretome Causes Skeletal Muscle Defects in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1282-1295. [PMID: 38651826 PMCID: PMC11094532 DOI: 10.1158/2767-9764.crc-24-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Cancer-induced skeletal muscle defects differ in severity between individuals with the same cancer type. Cancer subtype-specific genomic aberrations are suggested to mediate these differences, but experimental validation studies are very limited. We utilized three different breast cancer patient-derived xenograft (PDX) models to correlate cancer subtype with skeletal muscle defects. PDXs were derived from brain metastasis of triple-negative breast cancer (TNBC), estrogen receptor-positive/progesterone receptor-positive (ER+/PR+) primary breast cancer from a BRCA2-mutation carrier, and pleural effusion from an ER+/PR- breast cancer. While impaired skeletal muscle function as measured through rotarod performance and reduced levels of circulating and/or skeletal muscle miR-486 were common across all three PDXs, only TNBC-derived PDX activated phospho-p38 in skeletal muscle. To further extend these results, we generated transformed variants of human primary breast epithelial cells from healthy donors using HRASG12V or PIK3CAH1047R mutant oncogenes. Mutations in RAS oncogene or its modulators are found in approximately 37% of metastatic breast cancers, which is often associated with skeletal muscle defects. Although cells transformed with both oncogenes generated adenocarcinomas in NSG mice, only HRASG12V-derived tumors caused skeletal muscle defects affecting rotarod performance, skeletal muscle contraction force, and miR-486, Pax7, pAKT, and p53 levels in skeletal muscle. Circulating levels of the chemokine CXCL1 were elevated only in animals with tumors containing HRASG12V mutation. Because RAS pathway aberrations are found in 19% of cancers, evaluating skeletal muscle defects in the context of genomic aberrations in cancers, particularly RAS pathway mutations, may accelerate development of therapeutic modalities to overcome cancer-induced systemic effects. SIGNIFICANCE Mutant RAS- and PIK3CA-driven breast cancers distinctly affect the function of skeletal muscle. Therefore, research and therapeutic targeting of cancer-induced systemic effects need to take aberrant cancer genome into consideration.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry Elmer Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
3
|
Aslebagh R, Whitham D, Channaveerappa D, Lowe J, Pentecost BT, Arcaro KF, Darie CC. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis 2023; 44:1097-1113. [PMID: 36971330 PMCID: PMC10522790 DOI: 10.1002/elps.202300040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Breast cancer (BC) is one of the most common cancers and one of the most common causes for cancer-related mortality. Discovery of protein biomarkers associated with cancer is considered important for early diagnosis and prediction of the cancer risk. Protein biomarkers could be investigated by large-scale protein investigation or proteomics, using mass spectrometry (MS)-based techniques. Our group applies MS-based proteomics to study the protein pattern in human breast milk from women with BC and controls and investigates the alterations and dysregulations of breast milk proteins in comparison pairs of BC versus control. These dysregulated proteins might be considered potential future biomarkers of BC. Identification of potential biomarkers in breast milk may benefit young women without BC, but who could collect the milk for future assessment of BC risk. Previously we identified several dysregulated proteins in different sets of human breast milk samples from BC patients and controls using gel-based protein separation coupled with MS. Here, we performed 2D-PAGE coupled with nano-liquid chromatography-tandem MS (nanoLC-MS/MS) in a small-scale study on a set of six human breast milk pairs (three BC samples vs. three controls) and we identified several dysregulated proteins that have potential roles in cancer progression and might be considered potential BC biomarkers in the future.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - James Lowe
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| |
Collapse
|
4
|
Zhou Z, Li J, Wang H, Luan Z, Du S, Wu N, Chen Y, Peng X. Experience of using a virtual reality rehabilitation management platform for breast cancer patients: a qualitative study. Support Care Cancer 2023; 31:307. [PMID: 37115320 DOI: 10.1007/s00520-023-07765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
PURPOSES Postoperative rehabilitation of upper limb function is crucial for breast cancer. Therefore, we developed a rehabilitation management platform using virtual reality to improve rehabilitation compliance and effect. The purpose of this research was to understand the user usability experience of breast cancer patients about the postoperative rehabilitation management of upper limb function using virtual reality. METHODS A qualitative descriptive research was designed. We used a maximum difference purpose sampling method. According to the inclusion and exclusion criteria, a 3-armor hospital in Changchun was selected for the recruitment. A one-on-one semi-structured interviews were conducted with patients after breast cancer operation. The Colaizzi seven-step analysis method was used to classify data under summarized themes. RESULTS Twenty patients participated in this semi-structured interview. User experience could be summarized into four themes as follows: 1) experience and feeling after using the virtual reality rehabilitation management platform; 2) factors influencing the use of the virtual reality rehabilitation management platform; 3) willingness to recommend the virtual reality rehabilitation management platform to peers; and 4) suggestions to improve the virtual reality rehabilitation management platform. CONCLUSIONS Breast cancer patients who used the rehabilitation management platform had a good experience, and their recognition and satisfaction were high. The use of the platform is influenced by many factors, and most patients are willing to recommend this platform to their peers. Future studies should be conducted according to patients' feedback and suggestions on how to further optimize and improve the platform.
Collapse
Affiliation(s)
- Zijun Zhou
- Breast Surgery, Jilin Province Tumor Hospital, Jilin, China
| | - Jiaxin Li
- School of Nursing, Jilin University, Jilin, China
| | - He Wang
- Breast Surgery, Jilin Province Tumor Hospital, Jilin, China
| | - Ze Luan
- School of Nursing, Jilin University, Jilin, China
| | - Shiyuan Du
- School of Nursing, Jilin University, Jilin, China
| | - Nan Wu
- School of Nursing, Jilin University, Jilin, China
| | - Yulu Chen
- School of Nursing, Jilin University, Jilin, China
| | - Xin Peng
- School of Nursing, Jilin University, Jilin, China.
| |
Collapse
|
5
|
Ouyang H, Xie X, Xie Y, Wu D, Luo X, Wu J, Wang Y, Zhao L. Compliant, Tough, Anti-Fatigue, Self-Recovery, and Biocompatible PHEMA-Based Hydrogels for Breast Tissue Replacement Enabled by Hydrogen Bonding Enhancement and Suppressed Phase Separation. Gels 2022; 8:gels8090532. [PMID: 36135244 PMCID: PMC9498755 DOI: 10.3390/gels8090532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Although hydrogel is a promising prosthesis implantation material for breast reconstruction, there is no suitable hydrogel with proper mechanical properties and good biocompatibility. Here, we report a series of compliant and tough poly (hydroxyethyl methacrylate) (PHEMA)-based hydrogels based on hydrogen bond-reinforcing interactions and phase separation inhibition by introducing maleic acid (MA) units. As a result, the tensile strength, fracture strain, tensile modulus, and toughness are up to 420 kPa, 293.4%, 770 kPa, and 0.86 MJ/m3, respectively. Moreover, the hydrogels possess good compliance, where the compression modulus is comparable to that of the silicone breast prosthesis (~23 kPa). Meanwhile, the hydrogels have an excellent self-recovery ability and fatigue resistance: the dissipative energy and elastic modulus recover almost completely after waiting for 2 min under cyclic compression, and the maximum strength remains essentially unchanged after 1000 cyclic compressions. More importantly, in vitro cellular experiments and in vivo animal experiments demonstrate that the hydrogels have good biocompatibility and stability. The biocompatible hydrogels with breast tissue-like mechanical properties hold great potential as an alternative implant material for reconstructing breasts.
Collapse
Affiliation(s)
- Hongyan Ouyang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiangyan Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yuanjie Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Di Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xingqi Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- Correspondence: (Y.W.); (L.Z.)
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- Correspondence: (Y.W.); (L.Z.)
| |
Collapse
|
6
|
Zhou Z, Li J, Wang H, Luan Z, Li Y, Peng X. Upper limb rehabilitation system based on virtual reality for breast cancer patients: Development and usability study. PLoS One 2021; 16:e0261220. [PMID: 34910786 PMCID: PMC8673600 DOI: 10.1371/journal.pone.0261220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/27/2021] [Indexed: 01/13/2023] Open
Abstract
Background Functional exercise is crucial for breast cancer patients after surgery, and the use of virtual reality technology to assist patients with postoperative upper limb functional rehabilitation has gradually attracted the attention of researchers. However, the usability of the developed rehabilitation system is still unknown to a large extent. The purpose of this study was to develop a virtual reality upper limb rehabilitation system for patients after breast cancer surgery and to explore its usability. Methods We built a multidisciplinary team based on virtual reality and human-computer interaction technology and designed and developed an upper limb function rehabilitation system for breast cancer patients after surgery. Breast cancer patients were recruited from a grade III-a general hospital in Changchun city for the experiment. We used the System Usability Scale to evaluate the system availability, the Presence Questionnaire scale to measure the immersive virtual reality scene, and the Simulator Sickness Questionnaire subjective measurement scale for simulator sickness symptoms. Results This upper limb rehabilitation system hardware consisted of Head-mounted Display, a control handle and notebook computers. The software consisted of rehabilitation exercises and game modules. A total of 15 patients were tested on this system, all of whom were female. The mean age was 54.73±7.78 years, and no patients were excluded from the experiment because of adverse reactions such as dizziness and vomiting. The System Usability Scale score was 90.50±5.69, the Presence Questionnaire score was 113.40±9.58, the Simulator Sickness Questionnaire-nausea score was 0.93±1.16, the Simulator Sickness Questionnaire-oculomotor score was 0.80±1.27, the Simulator Sickness Questionnaire-disorientation score was 0.80±1.27, and the Simulator Sickness Questionnaire total score was 2.53±3.40. Conclusions This study fills in the blanks regarding the upper limb rehabilitation of breast cancer patients based on virtual reality technology system usability research. As the starting point of research in the future, we will improve the system’s function and design strictly randomized controlled trials, using larger samples in the promotion, to evaluate its application in breast cancer patients with upper limbs and other physiological functions and the feasibility and effects of rehabilitation.
Collapse
Affiliation(s)
- Zijun Zhou
- Breast Surgery, Jilin Province Tumor Hospital, Jilin, China
| | - Jiaxin Li
- School of Nursing, Jilin University, Jilin, China
| | - He Wang
- Breast Surgery, Jilin Province Tumor Hospital, Jilin, China
| | - Ze Luan
- School of Nursing, Jilin University, Jilin, China
| | - Yuan Li
- School of Nursing, Jilin University, Jilin, China
| | - Xin Peng
- School of Nursing, Jilin University, Jilin, China
- * E-mail:
| |
Collapse
|
7
|
Wang R, Bhat-Nakshatri P, Zhong X, Zimmers T, Nakshatri H. Hormonally Regulated Myogenic miR-486 Influences Sex-specific Differences in Cancer-induced Skeletal Muscle Defects. Endocrinology 2021; 162:6321973. [PMID: 34265069 PMCID: PMC8335968 DOI: 10.1210/endocr/bqab142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/20/2022]
Abstract
Cancer-induced skeletal muscle defects show sex-specific differences in severity with men performing poorly compared to women. Hormones and sex chromosomal differences are suggested to mediate these differences, but the functional skeletal muscle markers to document these differences are unknown. We show that the myogenic microRNA miR-486 is a marker of sex-specific differences in cancer-induced skeletal muscle defects. Cancer-induced loss of circulating miR-486 was more severe in men with bladder, lung, and pancreatic cancers compared to women with the same cancer types. In a syngeneic model of pancreatic cancer, circulating and skeletal muscle loss of miR-486 was more severe in male mice compared to female mice. Estradiol (E2) and the clinically used selective estrogen receptor modulator toremifene increased miR-486 in undifferentiated and differentiated myoblast cell line C2C12 and E2-inducible expression correlated with direct binding of estrogen receptor alpha (ERα) to the regulatory region of the miR-486 gene. E2 and toremifene reduced the actions of cytokines such as myostatin, transforming growth factor β, and tumor necrosis factor α, which mediate cancer-induced skeletal muscle wasting. E2- and toremifene-treated C2C12 myoblast/myotube cells contained elevated levels of active protein kinase B (AKT) with a corresponding decrease in the levels of its negative regulator PTEN, which is a target of miR-486. We propose an ERα:E2-miR-486-AKT signaling axis, which reduces the deleterious effects of cancer-induced cytokines/chemokines on skeletal muscle mass and/or function.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Corresponding Author: Harikrishna Nakshatri, BVSc., PhD, C218C, 980 West Walnut St., Indianapolis, IN 46202, USA, 317 278 2238,
| |
Collapse
|
8
|
Invernizzi M, de Sire A, Venetis K, Cigna E, Carda S, Borg M, Cisari C, Fusco N. Quality of Life Interventions in Breast Cancer Survivors: State of the Art in Targeted Rehabilitation Strategies. Anticancer Agents Med Chem 2021; 22:801-810. [PMID: 34151769 DOI: 10.2174/1871520621666210609095602] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common malignant tumor and the most prevalent cause of mortality in women. Advances in early diagnosis and more effective adjuvant therapies have improved the long-term survival of these patients. Pharmacotherapies and intrinsic tumor-related factors may lead to a wide spectrum of treatment-related disabling complications, such as breast cancer-related lymphedema, axillary web syndrome, persistent pain, bone loss, arthralgia, and fatigue. These conditions have a detrimental impact on the health-related quality of life of survivors. Here, we sought to provide a portrait of the role that rehabilitation plays in breast cancer survivors. Particular emphasis has been placed on recovering function, improving independence in activities of daily living, and reducing disability. This complex scenario requires a precision medicine approach to provide more effective decision-making and adequate treatment compliance.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | | | - Emanuele Cigna
- Plastic Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Stefano Carda
- Neuropsychology and Neurorehabilitation Service, Department of Clinical Neuroscience, Lausanne University Hospital, Lausanne. Switzerland
| | - Margherita Borg
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Carlo Cisari
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Nicola Fusco
- Plastic Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Wang R, Kumar B, Bhat-Nakshatri P, Prasad MS, Jacobsen MH, Ovalle G, Maguire C, Sandusky G, Trivedi T, Mohammad KS, Guise T, Penthala NR, Crooks PA, Liu J, Zimmers T, Nakshatri H. Aging-associated skeletal muscle defects in HER2/Neu transgenic mammary tumor model. JCSM RAPID COMMUNICATIONS 2021; 4:24-39. [PMID: 33842876 PMCID: PMC8028024 DOI: 10.1002/rco2.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Loss of skeletal muscle volume and resulting in functional limitations are poor prognostic markers in breast cancer patients. Several molecular defects in skeletal muscle including reduced MyoD levels and increased protein turn over due to enhanced proteosomal activity have been suggested as causes of skeletal muscle loss in cancer patients. However, it is unknown whether molecular defects in skeletal muscle are dependent on tumor etiology. METHODS We characterized functional and molecular defects of skeletal muscle in MMTV-Neu (Neu+) mice (n= 6-12), an animal model that represents HER2+ human breast cancer, and compared the results with well-characterized luminal B breast cancer model MMTV-PyMT (PyMT+). Functional studies such as grip strength, rotarod performance, and ex vivo muscle contraction were performed to measure the effects of cancer on skeletal muscle. Expression of muscle-enriched genes and microRNAs as well as circulating cytokines/chemokines were measured. Since NF-κB pathway plays a significant role in skeletal muscle defects, the ability of NF-κB inhibitor dimethylaminoparthenolide (DMAPT) to reverse skeletal muscle defects was examined. RESULTS Neu+ mice showed skeletal muscle defects similar to accelerated aging. Compared to age and sex-matched wild type mice, Neu+ tumor-bearing mice had lower grip strength (202±6.9 vs. 179±6.8 g grip force, p=0.0069) and impaired rotarod performance (108±12.1 vs. 30±3.9 seconds, P<0.0001), which was consistent with reduced muscle contractibility (p<0.0001). Skeletal muscle of Neu+ mice (n=6) contained lower levels of CD82+ (16.2±2.9 vs 9.0±1.6) and CD54+ (3.8±0.5 vs 2.4±0.4) muscle stem and progenitor cells (p<0.05), suggesting impaired capacity of muscle regeneration, which was accompanied by decreased MyoD, p53 and miR-486 expression in muscles (p<0.05). Unlike PyMT+ mice, which showed skeletal muscle mitochondrial defects including reduced mitochondria levels and Pgc1β, Neu+ mice displayed accelerated aging-associated changes including muscle fiber shrinkage and increased extracellular matrix deposition. Circulating "aging factor" and cachexia and fibromyalgia-associated chemokine Ccl11 was elevated in Neu+ mice (1439.56±514 vs. 1950±345 pg/ml, p<0.05). Treatment of Neu+ mice with DMAPT significantly restored grip strength (205±6 g force), rotarod performance (74±8.5 seconds), reversed molecular alterations associated with skeletal muscle aging, reduced circulating Ccl11 (1083.26 ±478 pg/ml), and improved animal survival. CONCLUSIONS These results suggest that breast cancer subtype has a specific impact on the type of molecular and structure changes in skeletal muscle, which needs to be taken into consideration while designing therapies to reduce breast cancer-induced skeletal muscle loss and functional limitations.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Max H. Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriela Ovalle
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Calli Maguire
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Trupti Trivedi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khalid S Mohammad
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Theresa Guise
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jianguo Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Corresponding Author: Harikrishna Nakshatri, BVSc., PhD, C218C, 980 West Walnut St., Indianapolis, IN 46202, USA, 317 278 2238,
| |
Collapse
|
10
|
Invernizzi M, de Sire A, Lippi L, Venetis K, Sajjadi E, Gimigliano F, Gennari A, Criscitiello C, Cisari C, Fusco N. Impact of Rehabilitation on Breast Cancer Related Fatigue: A Pilot Study. Front Oncol 2020; 10:556718. [PMID: 33194622 PMCID: PMC7609789 DOI: 10.3389/fonc.2020.556718] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer fatigue (BCF) is a complex and multidimensional condition characterized by a persistent sense of physical and/or mental stiffness, resulting in a substantial impairment of health-related quality of life in breast cancer survivors. Aim of this prospective cohort study was to evaluate the feasibility and the effectiveness of a 4-week rehabilitation protocol on BCF, muscle mass, strength, physical performance, and quality of life in breast cancer (BC) survivors. We recruited adult BC women with a diagnosis of BCF, according to the International Classification of Diseases 10 criteria, referred to the Outpatient Service for Oncological Rehabilitation of a University Hospital. All participants performed a specific physical exercise rehabilitative protocol consisting of 60-min sessions repeated 2 times/week for 4 weeks. All outcomes were evaluated at the baseline (T0), at the end of the 4-week rehabilitation treatment (T1), and at 2 months follow up (T2). The primary outcome measure was the Brief Fatigue Inventory (BFI); secondary outcomes included: Fat-Free Mass and Fat Mass, assessed by Bioelectrical Impedance Analysis (BIA); Hand Grip Strength Test (HGS); Short Physical Performance Battery (SPPB); 10-meter walking test (10 MWT); 6-min walking test (6 MWT); European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30). Thirty-six women (mean age: 55.17 ± 7.76 years) were enrolled in the study. Significant reduction of BCF was observed both after the 4-week rehabilitation treatment (T1) (BFI: 5.4 ± 1.6 vs. 4.2 ± 1.7; p = 0.004) and at the follow-up visit (T2) (BFI: 5.4 ± 1.6 vs. 4.4 ± 1.6; p = 0.004). Moreover, significant differences (p < 0.001) HGS, SPPB, 10 MWT, 6 MWT, and EORTC QLQ-C30 were found at T1, while at T2 all the outcome measures were significantly different (p < 0.05) from the baseline. The rehabilitation protocol seemed to be feasible, safe, and effective in reducing BCF, improving muscle mass and function, and improving HRQoL in a cohort of BC survivors. The results of this study could improve awareness of this underestimated disease, suggesting the definition of a specific therapeutic exercise protocol to reduce BCF.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Rehabilitation Unit, “Mons. L. Novarese” Hospital, Vercelli, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Ph.D. Program in Translational Medicine, University of Milan, Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘Luigi Vanvitelli', Napoli, Italy
| | - Alessandra Gennari
- Division of Medical Oncology, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Carmen Criscitiello
- New Drugs and Early Drug Development for Innovative Therapies Division, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carlo Cisari
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
- Physical Medicine and Rehabilitation Unit, University Hospital “Maggiore della Carità”, Novara, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|