1
|
Alenezi SK. CAR T cells in lung cancer: Targeting tumor-associated antigens to revolutionize immunotherapy. Pathol Res Pract 2025; 269:155947. [PMID: 40168775 DOI: 10.1016/j.prp.2025.155947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Tumor-targeted T cells engineered for targeting and killing tumor cells have revolutionized cancer treatment, specifically in hematologic malignancies, through chimeric antigen receptor (CAR) T cell therapy. However, the migration of this success to lung cancer is challenging due to the tumor microenvironment (TME), antigen heterogeneity, and limitations of T cell infiltration. This review aims to evaluate current strategies addressing these barriers, focusing on the optimization of tumor-associated antigen (TAA) targeting, such as epidermal growth factor receptor (EGFR), mucin-1 (MUC1), and mesothelin (MSLN), which are frequently overexpressed in lung cancer and offer promising targets for CAR T-cell therapy. In this review, we discuss recent progress in CAR T cell engineering, applying enhanced costimulatory molecules, cytokine-secreting CAR T cells, and engineered modifications to improve T cell resilience in immunosuppressive environments. Additionally, this review also evaluates combination therapies of immune checkpoint inhibitors and recently published clinical trials on lung cancer with CAR T cells. We offer insights into the way to optimize CAR T cell therapy for lung cancer by analyzing antigen selection, immune evasion, and the strategies to enhance T cell persistence and tumor infiltration.
Collapse
Affiliation(s)
- Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia.
| |
Collapse
|
2
|
Eissa MM, Allam SRA, Ismail CA, Ghazala RA, El Skhawy N, Zaki IIA, Ibrahim EIES. Unveiling the anti-neoplastic potential of Schistosoma mansoni-derived antigen against breast cancer: a pre-clinical study. Eur J Med Res 2025; 30:304. [PMID: 40247360 PMCID: PMC12007238 DOI: 10.1186/s40001-025-02531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Cancer is a global health concern, with millions of new cases and deaths annually. Recently, immunotherapy has strengthened cancer treatment by harnessing the body's immune system to fight cancer. The search for advanced cancer immunotherapies has expanded to explore pathogens like parasites for their potential anti-neoplastic effects. While some parasites have shown promising results, the role of Schistosoma mansoni in breast cancer remains unexplored. METHODS This pre-clinical study investigated the anti-neoplastic potential of autoclaved Schistosoma mansoni antigen against breast cancer. In vitro, autoclaved Schistosoma mansoni antigen was evaluated on the MCF-7 human breast cancer cell line, while in vivo experiments used a chemically induced breast cancer rat model to evaluate tumour growth, liver enzyme levels, and immune response. Histopathological and immunohistochemical analyses assessed changes in tumour tissue, cell proliferation (Ki-67), angiogenesis (CD31), immune cell infiltration (CD8+ T cells), regulatory T cells (FoxP3+), and programmed death ligand 1 (PD-L1) expression. RESULTS In vitro, autoclaved Schistosoma mansoni antigen significantly reduced MCF-7 cell viability in a dose- and time-dependent manner. In vivo, autoclaved Schistosoma mansoni antigen treatment significantly reduced tumour weight and volume, improved liver enzyme levels, increased tumour necrosis, and decreased fibrosis. Immunohistochemical analysis revealed decreased Ki-67 and CD31 expression, indicating reduced cell proliferation and angiogenesis, respectively. Autoclaved Schistosoma mansoni antigen also enhanced immune responses by increasing CD8+ T cells infiltration and decreasing FoxP3+ expression, resulting in a higher CD8+ T cells/FoxP3+ ratio within the tumour microenvironment. Notably, PD-L1 expression was also downregulated, suggesting potential immune checkpoint inhibition. CONCLUSIONS Autoclaved Schistosoma mansoni antigen demonstrated potent anti-neoplastic activity, significantly reducing tumour growth and modulating the immune response within the tumour microenvironment. These results highlight autoclaved Schistosoma mansoni antigen's potential as a novel immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Maha Mohamed Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt.
| | - Sonia Rifaat Ahmed Allam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| | - Cherine Adel Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Abdelmawla Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| | | | - Eman Ibrahim El-Said Ibrahim
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| |
Collapse
|
3
|
Tiwade PB, Fung V, VanKeulen-Miller R, Narasipura EA, Ma Y, Fenton OS. Non-Viral RNA Therapies for Non-Small Cell Lung Cancer and Their Corresponding Clinical Trials. Mol Pharm 2025; 22:1752-1774. [PMID: 40131145 DOI: 10.1021/acs.molpharmaceut.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ribonucleic acid (RNA)-based therapies represent a promising class of drugs for the treatment of non-small cell lung cancer (NSCLC) due to their ability to modulate gene expression. Therapies leveraging small interfering RNA (siRNA), messenger RNA (mRNA), microRNA (miRNA), and antisense oligonucleotides (ASOs) offer various advantages over conventional treatments, including the ability to target specific genetic mutations and the potential for personalized medicine approaches. However, the clinical translation of these therapeutics for the treatment of NSCLC faces challenges in delivery due to their immunogenicity, negative charge, and large size, which can be mitigated with delivery platforms. In this review, we provide a description of the pathophysiology of NSCLC and an overview of RNA-based therapeutics, specifically highlighting their potential application in the treatment of NSCLC. We discuss relevant classes of RNA and their therapeutic potential for NSCLC. We then discuss challenges in delivery and non-viral delivery strategies such as lipid- and polymer-based nanoparticles that have been developed to address these issues in preclinical models. Furthermore, we provide a summary table of clinical trials that leverage RNA therapies for NSCLC [which includes their National Clinical Trial (NCT) numbers] to highlight the current progress in NSCLC. We also discuss how these NSCLC therapies can be integrated with existing treatment modalities to enhance their efficacy and improve patient outcomes. Overall, we aim to highlight non-viral strategies that tackle RNA delivery challenges while showcasing RNA's potential as a next-generation therapy for NSCLC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/therapy
- Lung Neoplasms/drug therapy
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- RNA, Small Interfering/administration & dosage
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/administration & dosage
- Clinical Trials as Topic
- Animals
- Nanoparticles/chemistry
- MicroRNAs/genetics
- MicroRNAs/therapeutic use
- RNA, Messenger/genetics
- Genetic Therapy/methods
- Drug Delivery Systems/methods
Collapse
Affiliation(s)
- Palas Balakdas Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Vincent Fung
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel VanKeulen-Miller
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eshan Amruth Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Peter J, Toppeta F, Trubert A, Danhof S, Hudecek M, Däullary T. Multi-Targeting CAR-T Cell Strategies to Overcome Immune Evasion in Lymphoid and Myeloid Malignancies. Oncol Res Treat 2025:1-15. [PMID: 40090318 DOI: 10.1159/000543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has become a groundbreaking treatment for hematological malignancies, particularly lymphomas and multiple myeloma, with high remission rates in refractory and relapsed patients. However, most CAR-T therapies target a single antigen, such as CD19, which can result in immune evasion through antigen escape. This mechanism describes the downregulation or complete loss of the targeted antigen by the tumor cells, eventually leading to relapse. To address this issue, multi-targeting strategies like logic-gated CARs, adapter CARs, or combination therapies can increase the potency of CAR-T cells. These approaches aim to minimize immune evasion by targeting multiple antigens simultaneously, thereby increasing treatment durability. Additionally, advanced tools such as next-generation sequencing (NGS), direct stochastic optical reconstruction microscopy (dSTORM), or multiparametric flow cytometry are helping to identify novel tumor-specific targets and improve therapy designs. SUMMARY This review explores the current landscape of CAR-T cell therapies in lymphoid and myeloid malignancies, highlights ongoing clinical trials, and discusses the future of these innovative multi-targeting approaches to improve patient outcome. KEY MESSAGES Antigen escape limits CAR-T cell therapy success, but multi-targeting strategies like logic gates and adapter CARs offer solutions. Optimizing antigen selection and CAR design, along with larger clinical trials, is essential for improving patient outcomes. Personalization using advanced technologies like CRISPR screening and single-cell RNA sequencing can enhance durability and effectiveness of treatments for heavily pretreated patients.
Collapse
Affiliation(s)
- Jessica Peter
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Fabio Toppeta
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Alexandre Trubert
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Sophia Danhof
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Michael Hudecek
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Thomas Däullary
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| |
Collapse
|
5
|
Fuchs KJ, Thomaidou S, van der Slik AR, van de Meent M, ‘t Hoen PA, Falkenburg JF, Zaldumbide A, Griffioen M. Ribosome profiling shows variable sensitivity to detect open reading frames for conventional and different types of cryptic T cell antigens. Mol Ther Methods Clin Dev 2025; 33:101391. [PMID: 39811688 PMCID: PMC11731205 DOI: 10.1016/j.omtm.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
T cell-based immunotherapies targeting antigens on tumor cells have shown efficacy as anti-cancer treatments. While neoantigens are created by somatic mutations acquired during tumorigenesis, allogeneic stem cell transplantation as treatment for hematological malignancies exploits minor histocompatibility antigens encoded by genetic differences between patients and donors. Screening methods to predict neoantigens and minor histocompatibility antigens typically consider only conventional antigens created by nonsynonymous mutations or polymorphisms coding for amino acid changes in canonical open reading frames (ORFs). However, unconventional ORFs encoding peptides outside the known human proteome also provide an important source of cryptic antigens targeted in anti-tumor responses. Here, we used the recently expanded repertoire of human leukocyte antigen (HLA) class I-restricted minor histocompatibility antigens identified in patients treated with allogeneic stem cell transplantation by a method unbiased regarding the type of antigen to explore the sensitivity of ribosome profiling to detect ORFs for different types of T cell antigens. Ribosome profiling showed high sensitivity to detect upstream ORFs for cryptic antigens similar to canonical ORFs for conventional antigens, while cryptic antigens in out-of-frame ORFs and ORFs in long non-coding RNAs were largely missed. In conclusion, ribosome profiling shows variable sensitivity to detect ORFs for canonical and different types of cryptic T cell antigens.
Collapse
Affiliation(s)
- Kyra J. Fuchs
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno R. van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marian van de Meent
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A.C. ‘t Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Jiramonai L, Liang XJ, Zhu M. Extracellular Vesicle-Based Strategies for Tumor Immunotherapy. Pharmaceutics 2025; 17:257. [PMID: 40006624 PMCID: PMC11859549 DOI: 10.3390/pharmaceutics17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Immunotherapy is one of the most promising approaches for cancer management, as it utilizes the intrinsic immune response to target cancer cells. Normally, the human body uses its immune system as a defense mechanism to detect and eliminate foreign objects, including cancer cells. However, cancers develop a 'switch off' mechanism, known as immune checkpoint proteins, to evade immune surveillance and suppress immune activation. Therefore, significant efforts have been made to develop the strategies for stimulating immune responses against cancers. Among these, the use of extracellular vesicles (EVs) to enhance the anti-tumor immune response has emerged as a particularly promising approach in cancer management. EVs possess several unique properties that elevate the potency in modulating immune responses. This review article provides a comprehensive overview of recent advances in this field, focusing on the strategic usage of EVs to overcome tumor-induced immune tolerance. We discuss the biogenesis and characteristics of EVs, as well as their potential applications in medical contexts. The immune mechanisms within the tumor microenvironment and the strategies employed by cancers to evade immune detection are explored. The roles of EVs in regulating the tumor microenvironment and enhancing immune responses for immunotherapy are also highlighted. Additionally, this article addresses the challenges and future directions for the development of EV-based nanomedicine approaches, aiming to improve cancer immunotherapy outcomes with greater precision and efficacy while minimizing off-target effects.
Collapse
Affiliation(s)
- Luksika Jiramonai
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Chekaoui A, Garofalo M, Gad B, Staniszewska M, Chiaro J, Pancer K, Gryciuk A, Cerullo V, Salmaso S, Caliceti P, Masny A, Wieczorek M, Pesonen S, Kuryk L. Cancer vaccines: an update on recent achievements and prospects for cancer therapy. Clin Exp Med 2024; 25:24. [PMID: 39720956 DOI: 10.1007/s10238-024-01541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines. Using the latest research technologies has also enabled scientists to interpret complex and multiomics data of the tumour mutanome, thus identifying new tumour-specific antigens to design new generations of cancer vaccines with high specificity and long-term efficacy. Furthermore, combinatorial regimens of cancer vaccines with immune checkpoint inhibitors have offered new therapeutic approaches and demonstrated impressive efficacy in cancer patients over the last few years. In the present review, we summarize the current state of cancer vaccines, including their potential therapeutic effects and the limitations that hinder their effectiveness. We highlight the current efforts to mitigate these limitations and highlight ongoing clinical trials. Finally, a special focus will be given to the latest milestones expected to transform the landscape of cancer therapy and nurture hope among cancer patients.
Collapse
Affiliation(s)
- Arezki Chekaoui
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| | - Beata Gad
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
| | - Katarzyna Pancer
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Aleksander Gryciuk
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki, Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, University Federico II of Naples, Naples, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Aleksander Masny
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | - Magdalena Wieczorek
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland
| | | | - Lukasz Kuryk
- Department of Virology, National Institute of Public Health NIH-National Research Institute, Warsaw, Poland.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Warsaw, Poland.
- Valo Therapeutics Oy, Helsinki, Finland.
| |
Collapse
|
9
|
Zhang J, Guan X, Zhong X. Immunosenescence in digestive system cancers: Mechanisms, research advances, and therapeutic strategies. Semin Cancer Biol 2024; 106-107:234-250. [PMID: 39510149 DOI: 10.1016/j.semcancer.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Increasing lifespans and external environmental factors have contributed to the increase of age-related diseases, particularly cancer. A decrease in immune surveillance and clearance of cancer cells is the result of immunosenescence, which involves the remodeling of immune organs, the changes and functional decline of immune cell subsets, in association with systemic low-grade chronic inflammation. Stem cells aging in bone marrow and thymic involution are the most important causes of immunosenescence. Senescent cancer cells promote the differentiation, recruitment, and functional upregulation of immune-suppressive cell subsets e.g. regulatory T cells (Tregs), myeloid-derived suppressor cell (MDSC), tumor-associated macrophages (TAMS) through senescence-associated secretory phenotype (SASP) further exacerbating the immunosuppressive microenvironment. For digestive system cancers, age-related damage to the intestinal mucosal barrier, the aging of gut-associated lymphoid tissue (GALT), exposure to xenobiotic stimuli throughout life, and dysbiosis make the local immune microenvironment more vulnerable. This article systematically reviews the research progress of immunosenescence and immune microenvironment in digestive system cancers, as well as the exploration of related therapy strategies, hoping to point out new directions for research in the digestive system cancers.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Wiggins R, Woo J, Mito S. Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology. Cancers (Basel) 2024; 16:3548. [PMID: 39456642 PMCID: PMC11506536 DOI: 10.3390/cancers16203548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Inhibition of multiple cancer-related pathways has made niclosamide a promising candidate for the treatment of various cancers. However, its clinical application has been significantly limited by poor bioavailability. This review will discuss current findings on improving niclosamide bioavailability through modification of its chemical structure and utilization of novel nanotechnologies, like electrospraying and supercritical fluids, to improve drug delivery. For example, niclosamide derivatives, such as o-alkylamino-tethered niclosamide derivates, niclosamide ethanolamine salt, and niclosamide piperazine salt, have demonstrated increased water solubility without compromising anticancer activity in vitro. Additionally, this review briefly discusses recent findings on the first pass metabolism of niclosamide in vivo, the role of cytochrome P450-mediated hydroxylation, UDP-glucuronosyltransferase mediated glucuronidation, and how enzymatic inhibition could enhance niclosamide bioavailability. Ultimately, there is a need for researchers to synthesize, evaluate, and improve upon niclosamide derivatives while experimenting with the employment of nanotechnologies, such as targeted delivery and nanoparticle modification, as a way to improve drug administration. Researchers should strive to improve drug-target accuracy, its therapeutic index, and increase the drug's efficacy as an anti-neoplastic agent.
Collapse
Affiliation(s)
| | | | - Shizue Mito
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA; (R.W.); (J.W.)
| |
Collapse
|
11
|
Zhu S. CAR-T in cancer therapeutics and updates. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:189-194. [PMID: 39281717 PMCID: PMC11402450 DOI: 10.1016/j.jncc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 09/18/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a groundbreaking approach in cancer treatment, utilizing the immune system's capabilities to combat malignancies. This innovative therapy involves extracting T-cells from a patient's blood, genetically modifying them to target specific cancer cells, and reinfusing them back into the patient's body. The genetically modified T-cells then seek out and eliminate cancer cells, offering a promising therapeutic strategy. Since its initial approval in 2017, CAR-T therapy has witnessed remarkable advancements and updates. Notably, CAR-T therapy, which was initially developed for hematological malignancies, has expanded its scope to target solid tumors. Currently, clinical trials are underway to explore the efficacy of CAR-T therapy in treating various solid tumors, such as lung cancer, breast cancer, and ovarian cancer. These trials hold great potential to revolutionize cancer treatment and provide new hope to patients with challenging-to-treat solid tumors. In this mini-review, we present an overview of CAR-T therapy's mechanisms, emphasizing its role in targeting cancer cells and the potential therapeutic benefits. Additionally, we discuss the recent progress and updates in CAR-T therapy, particularly its application in treating solid tumors, and highlight the ongoing clinical trials aimed at broadening its therapeutic horizon. The evolving landscape of CAR-T therapy signifies a promising direction in cancer therapeutics, with the potential to revolutionize the treatment of both hematological and solid tumor malignancies.
Collapse
Affiliation(s)
- Shigui Zhu
- Cellular Biomedical Group, Inc., Shanghai, China
| |
Collapse
|
12
|
Oslund RC, Holland PM, Lesley SA, Fadeyi OO. Therapeutic potential of cis-targeting bispecific antibodies. Cell Chem Biol 2024; 31:1473-1489. [PMID: 39111317 DOI: 10.1016/j.chembiol.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/18/2024]
Abstract
The growing clinical success of bispecific antibodies (bsAbs) has led to rapid interest in leveraging dual targeting in order to generate novel modes of therapeutic action beyond mono-targeting approaches. While bsAbs that bind targets on two different cells (trans-targeting) are showing promise in the clinic, the co-targeting of two proteins on the same cell surface through cis-targeting bsAbs (cis-bsAbs) is an emerging strategy to elicit new functionalities. This includes the ability to induce proximity, enhance binding to a target, increase target/cell selectivity, and/or co-modulate function on the cell surface with the goal of altering, reversing, or eradicating abnormal cellular activity that contributes to disease. In this review, we focus on the impact of cis-bsAbs in the clinic, their emerging applications, and untangle the intricacies of improving bsAb discovery and development.
Collapse
|
13
|
Chamorro DF, Somes LK, Hoyos V. Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers (Basel) 2023; 16:124. [PMID: 38201551 PMCID: PMC10778447 DOI: 10.3390/cancers16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer remains a significant health challenge, and novel treatment approaches are critically needed. This review presents an in-depth analysis of engineered adoptive T-cell therapies (E-ACTs), an innovative frontier in cancer immunotherapy, focusing on their application in breast cancer. We explore the evolving landscape of chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies, highlighting their potential and challenges in targeting breast cancer. The review addresses key obstacles such as target antigen selection, the complex breast cancer tumor microenvironment, and the persistence of engineered T-cells. We discuss the advances in overcoming these barriers, including strategies to enhance T-cell efficacy. Finally, our comprehensive analysis of the current clinical trials in this area provides insights into the future possibilities and directions of E-ACTs in breast cancer treatment.
Collapse
Affiliation(s)
- Diego F. Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Lauren K. Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Zeng X, Nong WX, Zou XQ, Li F, Ge YY, Zhang QM, Luo B, Huang W, Zou JX, Fan R, Xie XX. Prediction and identification of HLA-A*0201-restricted epitopes from cancer testis antigen CT23. Hum Vaccin Immunother 2023; 19:2293299. [PMID: 38100550 PMCID: PMC10730135 DOI: 10.1080/21645515.2023.2293299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Cancer-testis antigen CT23 is a class of tumor-associated antigens (TAA) characterized by restricted expression in male germ cells and a variety of tumor tissues. Numerous studies have shown that CT23 is closely related to tumor cell viability, proliferation, metastasis and invasion. CT23 is immunogenic and can cause specific immune response in tumor patients. Therefore, it is considered to be one of the best target antigens for designing therapeutic tumor vaccines and T-cell-mediated tumor immunotherapy. In this study, we initially obtained seven HLA-A*0201-restricted CT23 epitope candidate peptides through the T cell epitope prediction program. Subsequently, a T2 cell binding assay revealed the potential binding of all candidate peptides with HLA-A2 molecules. Notably, peptide P7 (ALLVLCYSI) exhibited the highest affinity, as evidenced by a fluorescence index (FI) of 2.19. Dendritic cells (DCs) loaded with CT23 candidate peptide can stimulate CD8+T cell activation and proliferation, and compared with other candidate peptides, candidate peptide P7 is superior. The cytotoxic T lymphocytes (CTLs) stimulated by the peptide P7 had killing effect on tumor cells (HLA-A*0201+, CT23+), but no killing effect on tumor cells (HLA-A*0201-, CT23+). The CTLs induced by the peptide P7 also had a specific killing effect on T2 cells bearing the peptide P7. In summary, our findings suggest that the CT23 peptide P7 (ALLVLCYSI) can induce immune responses and holds potential for tumor-specific CTL therapy.
Collapse
Affiliation(s)
- Xia Zeng
- Department of Immunology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Wei-Xia Nong
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Qiong Zou
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Feng Li
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Ying-Ying Ge
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
| | - Wei Huang
- Department of Gynecology, First Affiliated Hospital, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jian-Xia Zou
- Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong Fan
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi University of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Basic Medicine Science, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, P. R. China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Nanning, P. R. China
- Ministry of Education, Key Laboratory of Early Prevention and Treatment of Regional High Frequency Tumor (Guangxi Medical University), Nanning, P. R. China
| |
Collapse
|
15
|
Hoenisch Gravel N, Nelde A, Bauer J, Mühlenbruch L, Schroeder SM, Neidert MC, Scheid J, Lemke S, Dubbelaar ML, Wacker M, Dengler A, Klein R, Mauz PS, Löwenheim H, Hauri-Hohl M, Martin R, Hennenlotter J, Stenzl A, Heitmann JS, Salih HR, Rammensee HG, Walz JS. TOF IMS mass spectrometry-based immunopeptidomics refines tumor antigen identification. Nat Commun 2023; 14:7472. [PMID: 37978195 PMCID: PMC10656517 DOI: 10.1038/s41467-023-42692-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
T cell recognition of human leukocyte antigen (HLA)-presented tumor-associated peptides is central for cancer immune surveillance. Mass spectrometry (MS)-based immunopeptidomics represents the only unbiased method for the direct identification and characterization of naturally presented tumor-associated peptides, a key prerequisite for the development of T cell-based immunotherapies. This study reports on the implementation of ion mobility separation-based time-of-flight (TOFIMS) MS for next-generation immunopeptidomics, enabling high-speed and sensitive detection of HLA-presented peptides. Applying TOFIMS-based immunopeptidomics, a novel extensive benignTOFIMS dataset was generated from 94 primary benign samples of solid tissue and hematological origin, which enabled the expansion of benign reference immunopeptidome databases with > 150,000 HLA-presented peptides, the refinement of previously described tumor antigens, as well as the identification of frequently presented self antigens and not yet described tumor antigens comprising low abundant mutation-derived neoepitopes that might serve as targets for future cancer immunotherapy development.
Collapse
Affiliation(s)
- Naomi Hoenisch Gravel
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Jens Bauer
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Lena Mühlenbruch
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Sarah M Schroeder
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marian C Neidert
- Neuroscience Center Zürich (ZNZ), University of Zürich and ETH Zürich, Zürich, Switzerland
- Clinical Neuroscience Center and Department of Neurosurgery, University Hospital and University of Zurich, Zürich, Switzerland
- Department of Neurosurgery, Cantonal Hospital St. Gallen, Zürich, Switzerland
| | - Jonas Scheid
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBIC), University of Tübingen, Tübingen, Germany
| | - Steffen Lemke
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBIC), University of Tübingen, Tübingen, Germany
| | - Marissa L Dubbelaar
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Quantitative Biology Center (QBIC), University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Anna Dengler
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Mathias Hauri-Hohl
- Pediatric Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University and University Hospital Zürich, Zürich, Switzerland
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Peptide-based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Bicer F, Kure C, Ozluk AA, El-Rayes BF, Akce M. Advances in Immunotherapy for Hepatocellular Carcinoma (HCC). Curr Oncol 2023; 30:9789-9812. [PMID: 37999131 PMCID: PMC10670350 DOI: 10.3390/curroncol30110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related deaths in the world. More than half of patients with HCC present with advanced stage, and highly active systemic therapies are crucial for improving outcomes. Immune checkpoint inhibitor (ICI)-based therapies have emerged as novel therapy options for advanced HCC. Only one third of patients achieve an objective response with ICI-based therapies due to primary resistance or acquired resistance. The liver tumor microenvironment is naturally immunosuppressive, and specific mutations in cell signaling pathways allow the tumor to evade the immune response. Next, gene sequencing of the tumor tissue or circulating tumor DNA may delineate resistance mechanisms to ICI-based therapy and provide a rationale for novel combination therapies. In this review, we discuss the results of key clinical trials that have led to approval of ICI-based therapy options in advanced HCC and summarize the ongoing clinical trials. We review resistance mechanisms to ICIs and discuss how immunotherapies may be optimized based on the emerging research of tumor biomarkers and genomic alterations.
Collapse
Affiliation(s)
- Fuat Bicer
- Division of Hematology Oncology, Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
| | - Catrina Kure
- Department of Medicine, Northside Hospital-Gwinnett, Lawrenceville, GA 30046, USA;
| | - Anil A. Ozluk
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| | - Bassel F. El-Rayes
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| | - Mehmet Akce
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| |
Collapse
|
17
|
Taborska P, Lukac P, Stakheev D, Rajsiglova L, Kalkusova K, Strnadova K, Lacina L, Dvorankova B, Novotny J, Kolar M, Vrana M, Cechova H, Ransdorfova S, Valerianova M, Smetana K, Vannucci L, Smrz D. Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy. Sci Rep 2023; 13:19079. [PMID: 37925511 PMCID: PMC10625569 DOI: 10.1038/s41598-023-46305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Soft tissue sarcomas are aggressive mesenchymal-origin malignancies. Undifferentiated pleomorphic sarcoma (UPS) belongs to the aggressive, high-grade, and least characterized sarcoma subtype, affecting multiple tissues and metastasizing to many organs. The treatment of localized UPS includes surgery in combination with radiation therapy. Metastatic forms are treated with chemotherapy. Immunotherapy is a promising treatment modality for many cancers. However, the development of immunotherapy for UPS is limited due to its heterogeneity, antigenic landscape variation, lower infiltration with immune cells, and a limited number of established patient-derived UPS cell lines for preclinical research. In this study, we established and characterized a novel patient-derived UPS cell line, JBT19. The JBT19 cells express PD-L1 and collagen, a ligand of the immune checkpoint molecule LAIR-1. JBT19 cells can form spheroids in vitro and solid tumors in immunodeficient nude mice. We found JBT19 cells induce expansion of JBT19-reactive autologous and allogeneic NK, T, and NKT-like cells, and the reactivity of the expanded cells was associated with cytotoxic impact on JBT19 cells. The PD-1 and LAIR-1 ligand-expressing JBT19 cells show ex vivo immunogenicity and effective in vivo xenoengraftment properties that can offer a unique resource in the preclinical research developing novel immunotherapeutic interventions in the treatment of UPS.
Collapse
Affiliation(s)
- Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
| | - Pavol Lukac
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Rajsiglova
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic
| | - Karolina Strnadova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Lukas Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
- Department of Dermatovenerology, First Faculty of Medicine, Charles University, and General University Hospital, Prague, Czech Republic
| | - Barbora Dvorankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Jiri Novotny
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Kolar
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milena Vrana
- HLA Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Cechova
- HLA Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Sarka Ransdorfova
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marie Valerianova
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University, and Motol University Hospital, V Uvalu 84, 150 06 Praha 5, Prague, Czech Republic.
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
18
|
Pu T, Peddle A, Zhu J, Tejpar S, Verbandt S. Neoantigen identification: Technological advances and challenges. Methods Cell Biol 2023; 183:265-302. [PMID: 38548414 DOI: 10.1016/bs.mcb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.
Collapse
Affiliation(s)
- Ting Pu
- Digestive Oncology Unit, KULeuven, Leuven, Belgium
| | | | - Jingjing Zhu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
19
|
Wang J, Yu W, D'Anna R, Przybyla A, Wilson M, Sung M, Bullen J, Hurt E, D'Angelo G, Sidders B, Lai Z, Zhong W. Pan-Cancer Proteomics Analysis to Identify Tumor-Enriched and Highly Expressed Cell Surface Antigens as Potential Targets for Cancer Therapeutics. Mol Cell Proteomics 2023; 22:100626. [PMID: 37517589 PMCID: PMC10494184 DOI: 10.1016/j.mcpro.2023.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) provides unique opportunities for cancer target discovery using protein expression. Proteomics data from CPTAC tumor types have been primarily generated using a multiplex tandem mass tag (TMT) approach, which is designed to provide protein quantification relative to reference samples. However, relative protein expression data are suboptimal for prioritization of targets within a tissue type, which requires additional reprocessing of the original proteomics data to derive absolute quantitation estimation. We evaluated the feasibility of using differential protein analysis coupled with intensity-based absolute quantification (iBAQ) to identify tumor-enriched and highly expressed cell surface antigens, employing tandem mass tag (TMT) proteomics data from CPTAC. Absolute quantification derived from TMT proteomics data was highly correlated with that of label-free proteomics data from the CPTAC colon adenocarcinoma cohort, which contains proteomics data measured by both approaches. We validated the TMT-iBAQ approach by comparing the iBAQ value to the receptor density value of HER2 and TROP2 measured by flow cytometry in about 30 selected breast and lung cancer cell lines from the Cancer Cell Line Encyclopedia. Collections of these tumor-enriched and highly expressed cell surface antigens could serve as a valuable resource for the development of cancer therapeutics, including antibody-drug conjugates and immunotherapeutic agents.
Collapse
Affiliation(s)
- Jixin Wang
- Oncology Data Science, AstraZeneca, Gaithersburg, Maryland, USA
| | - Wen Yu
- Data Science and AI, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Rachel D'Anna
- Oncology Data Science, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Matt Wilson
- Early TDE Discovery, AstraZeneca, Cambridge, UK
| | | | - John Bullen
- Early TTD Discovery, AstraZeneca, Cambridge, UK
| | - Elaine Hurt
- Early TTD Discovery, AstraZeneca, Cambridge, UK
| | - Gina D'Angelo
- Late Oncology Statistics, Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Ben Sidders
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Zhongwu Lai
- Oncology Data Science, Oncology R&D, AstraZeneca, Waltham, Massachusetts, USA
| | - Wenyan Zhong
- Oncology Data Science, Oncology R&D, AstraZeneca, New York, New York, USA.
| |
Collapse
|
20
|
Schindler NR, Braun DA. Antigenic targets in clear cell renal cell carcinoma. KIDNEY CANCER 2023; 7:81-91. [PMID: 38014393 PMCID: PMC10475986 DOI: 10.3233/kca-230006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 11/29/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the management of advanced renal cell carcinoma (RCC), but most patients still do not receive a long-term benefit from these therapies, and many experience off-target, immune-related adverse effects. RCC is also different from many other ICI-responsive tumors, as it has only a modest mutation burden, and total neoantigen load does not correlate with ICI response. In order to improve the efficacy and safety of immunotherapies for RCC, it is therefore critical to identify the antigens that are targeted in effective anti-tumor immunity. In this review, we describe the potential classes of target antigens, and provide examples of previous and ongoing efforts to investigate and target antigens in RCC, with a focus on clear cell histology. Ultimately, we believe that a concerted antigen discovery effort in RCC will enable an improved understanding of response and resistance to current therapies, and lay a foundation for the future development of "precision" antigen-directed immunotherapies.
Collapse
Affiliation(s)
- Nicholas R. Schindler
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - David A. Braun
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Feola S, Chiaro J, Cerullo V. Integrating immunopeptidome analysis for the design and development of cancer vaccines. Semin Immunol 2023; 67:101750. [PMID: 37003057 DOI: 10.1016/j.smim.2023.101750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The repertoire of naturally presented peptides within the MHC (major histocompatibility complex) or HLA (human leukocyte antigens) system on the cellular surface of every mammalian cell is referred to as ligandome or immunopeptidome. This later gained momentum upon the discovery of CD8 + T cells able to recognize and kill cancer cells in an MHC-I antigen-restricted manner. Indeed, cancer immune surveillance relies on T cell recognition of MHC-I-restricted peptides, making the identification of those peptides the core for designing T cell-based cancer vaccines. Moreover, the breakthrough of antibodies targeting immune checkpoint molecules has led to a new and strong interest in discovering suitable targets for CD8 +T cells. Therapeutic cancer vaccines are designed for the artificial generation and/or stimulation of CD8 +T cells; thus, their combination with ICIs to unleash the breaks of the immune system comes as a natural consequence to enhance anti-tumor efficacy. In this context, the identification and knowledge of peptide candidates take advantage of the fast technology updates in immunopeptidome and mass spectrometric methodologies, paying the way to the rational design of vaccines for immunotherapeutic approaches. In this review, we discuss mainly the role of immunopeptidome analysis and its application for the generation of therapeutic cancer vaccines with main focus on HLA-I peptides. Here, we review cancer vaccine platforms based on two different preparation methods: pathogens (viruses and bacteria) and not (VLPs, nanoparticles, subunits vaccines) that exploit discoveries in the ligandome field to generate and/or enhance anti-tumor specific response. Finally, we discuss possible drawbacks and future challenges in the field that remain still to be addressed.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy.
| |
Collapse
|
22
|
Tripodi L, Sasso E, Feola S, Coluccino L, Vitale M, Leoni G, Szomolay B, Pastore L, Cerullo V. Systems Biology Approaches for the Improvement of Oncolytic Virus-Based Immunotherapies. Cancers (Basel) 2023; 15:1297. [PMID: 36831638 PMCID: PMC9954314 DOI: 10.3390/cancers15041297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact that OVs are unspecific cancer vaccine platforms, to further enhance antitumor immunity, it is crucial to identify the potentially immunogenic T-cell restricted TAAs, the main key orchestrators in evoking a specific and durable cytotoxic T-cell response. Today, innovative approaches derived from systems biology are exploited to improve target discovery in several types of cancer and to identify the MHC-I and II restricted peptide repertoire recognized by T-cells. Using specific computation pipelines, it is possible to select the best tumor peptide candidates that can be efficiently vectorized and delivered by numerous OV-based platforms, in order to reinforce anticancer immune responses. Beyond the identification of TAAs, system biology can also support the engineering of OVs with improved oncotropism to reduce toxicity and maintain a sufficient portion of the wild-type virus virulence. Finally, these technologies can also pave the way towards a more rational design of armed OVs where a transgene of interest can be delivered to TME to develop an intratumoral gene therapy to enhance specific immune stimuli.
Collapse
Affiliation(s)
- Lorella Tripodi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Sara Feola
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00100 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00100 Helsinki, Finland
| | - Ludovica Coluccino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Maria Vitale
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Guido Leoni
- Nouscom Srl, via Castel Romano 100, 00128 Rome, Italy
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4YS, UK
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00100 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00100 Helsinki, Finland
| |
Collapse
|
23
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 360] [Impact Index Per Article: 180.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
24
|
Clancy J, Hyvärinen K, Ritari J, Wahlfors T, Partanen J, Koskela S. Blood donor biobank and HLA imputation as a resource for HLA homozygous cells for therapeutic and research use. STEM CELL RESEARCH & THERAPY 2022; 13:502. [PMID: 36210465 PMCID: PMC9549658 DOI: 10.1186/s13287-022-03182-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Allogeneic therapeutic cells may be rejected if they express HLA alleles not found in the recipient. As finding cell donors with a full HLA match to a recipient requires vast donor pools, the use of HLA homozygous cells has been suggested as an alternative. HLA homozygous cells should be well tolerated by those who carry at least one copy of donor HLA alleles. HLA-A-B homozygotes could be valuable for HLA-matched thrombocyte products. We evaluated the feasibility of blood donor biobank and HLA imputation for the identification of potential cell donors homozygous for HLA alleles.
Methods
We imputed HLA-A, -B, -C, -DRB1, -DQA1, -DQB1 and -DPB1 alleles from genotypes of 20,737 Finnish blood donors in the Blood Service Biobank. We confirmed homozygosity by sequencing HLA alleles in 30 samples and by examining 36,161 MHC-located polymorphic DNA markers.
Results
Three hundred and seventeen individuals (1.5%), representing 41 different haplotypes, were found to be homozygous for HLA-A, -B, -C, -DRB1, -DQA1 and -DQB1 alleles. Ten most frequent haplotypes homozygous for HLA-A to -DQB1 were HLA-compatible with 49.5%, and three most frequent homozygotes to 30.4% of the Finnish population. Ten most frequent HLA-A-B homozygotes were compatible with 75.3%, and three most frequent haplotypes to 42.6% of the Finnish population. HLA homozygotes had a low level of heterozygosity in MHC-located DNA markers, in particular in HLA haplotypes enriched in Finland.
Conclusions
The present study shows that HLA imputation in a blood donor biobank of reasonable size can be used to identify HLA homozygous blood donors suitable for cell therapy, HLA-typed thrombocytes and research. The homozygotes were HLA-compatible with a large fraction of the Finnish population. Regular blood donors reported to have positive attitude to research donation appear a good option for these purposes. Differences in population frequencies of HLA haplotypes emphasize the need for population-specific collections of HLA homozygous samples.
Collapse
|
25
|
Feola S, Chiaro J, Martins B, Russo S, Fusciello M, Ylösmäki E, Bonini C, Ruggiero E, Hamdan F, Feodoroff M, Antignani G, Viitala T, Pesonen S, Grönholm M, Branca RMM, Lehtiö J, Cerullo V. A novel immunopeptidomic-based pipeline for the generation of personalized oncolytic cancer vaccines. eLife 2022; 11:71156. [PMID: 35314027 PMCID: PMC8989416 DOI: 10.7554/elife.71156] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022] Open
Abstract
Besides the isolation and identification of major histocompatibility complex I-restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective antitumor CD8+ T-cell-mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific antitumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses. Here, we describe for the first time a streamlined pipeline for the generation of personalized cancer vaccines starting from the isolation and selection of the most immunogenic peptide candidates expressed on the tumor cells and ending in the generation of efficient therapeutic oncolytic cancer vaccines. This immunopeptidomics-based pipeline was carefully validated in a murine colon tumor model CT26. Specifically, we used state-of-the-art immunoprecipitation and mass spectrometric methodologies to isolate >8000 peptide targets from the CT26 tumor cell line. The selection of the target candidates was then based on two separate approaches: RNAseq analysis and HEX software. The latter is a tool previously developed by Jacopo, 2020, able to identify tumor antigens similar to pathogen antigens in order to exploit molecular mimicry and tumor pathogen cross-reactive T cells in cancer vaccine development. The generated list of candidates (26 in total) was further tested in a functional characterization assay using interferon-γ enzyme-linked immunospot (ELISpot), reducing the number of candidates to six. These peptides were then tested in our previously described oncolytic cancer vaccine platform PeptiCRAd, a vaccine platform that combines an immunogenic oncolytic adenovirus (OAd) coated with tumor antigen peptides. In our work, PeptiCRAd was successfully used for the treatment of mice bearing CT26, controlling the primary malignant lesion and most importantly a secondary, nontreated, cancer lesion. These results confirmed the feasibility of applying the described pipeline for the selection of peptide candidates and generation of therapeutic oncolytic cancer vaccine, filling a gap in the field of cancer immunotherapy, and paving the way to translate our pipeline into human therapeutic approach.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Beatriz Martins
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Salvatore Russo
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Erkko Ylösmäki
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Chiara Bonini
- Experimental Hematology Unit, University Vita e Salute San Raffaele, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, University Vita e Salute San Raffaele, Milan, Italy
| | - Firas Hamdan
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Michaela Feodoroff
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Gabriella Antignani
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Tapani Viitala
- Pharmaceutical Biophysics Research Group, University of Helsinki, Helsinki, Finland
| | | | - Mikaela Grönholm
- Drug Research Program (DRP) ImmunoViroTherapy Lab, University of Helsinki, Helsinki, Finland
| | - Rui M M Branca
- Department of Oncology-Pathology, Karolinska Institutet, stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Vincenzo Cerullo
- ImmunoVirothearpy Lab, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Kim SH, Park JH, Lee SJ, Lee HS, Jung JK, Lee YR, Cho HI, Kim JK, Kim K, Park CS, Lee CK. Efficient Anti-Tumor Immunotherapy Using Tumor Epitope-Coated Biodegradable Nanoparticles Combined With Polyinosinic-Polycytidylic Acid and an Anti-PD1 Monoclonal Antibody. Immune Netw 2022; 22:e42. [DOI: 10.4110/in.2022.22.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Ji-Hyun Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Sun-Jae Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Hee-Sung Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jae-Kyung Jung
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Young-Ran Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Hyun-Il Cho
- Research and Development Division, ViGenCell Inc., Seoul 06591, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Kyungjae Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Chong-Kil Lee
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
27
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|
28
|
Landscape of Immune Microenvironment in Epithelial Ovarian Cancer and Establishing Risk Model by Machine Learning. JOURNAL OF ONCOLOGY 2021; 2021:5523749. [PMID: 34484333 PMCID: PMC8416376 DOI: 10.1155/2021/5523749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022]
Abstract
Background Epithelial ovarian cancer (EOC) is an extremely lethal gynecological malignancy and has the potential to benefit from the immune checkpoint blockade (ICB) therapy, whose efficacy highly depends on the complex tumor microenvironment (TME). Method and Result We comprehensively analyze the landscape of TME and its prognostic value through immune infiltration analysis, somatic mutation analysis, and survival analysis. The results showed that high infiltration of immune cells predicts favorable clinical outcomes in EOC. Then, the detailed TME landscape of the EOC had been investigated through “xCell” algorithm, Gene set variation analysis (GSVA), cytokines expression analysis, and correlation analysis. It is observed that EOC patients with high infiltrating immune cells have an antitumor phenotype and are highly correlated with immune checkpoints. We further found that dendritic cells (DCs) may play a dominant role in promoting the infiltration of immune cells into TME and forming an antitumor immune phenotype. Finally, we conducted machine-learning Lasso regression, support vector machines (SVMs), and random forest, identifying six DC-related prognostic genes (CXCL9, VSIG4, ALOX5AP, TGFBI, UBD, and CXCL11). And DC-related risk stratify model had been well established and validated. Conclusion High infiltration of immune cells predicted a better outcome and an antitumor phenotype in EOC, and the DCs might play a dominant role in the initiation of antitumor immune cells. The well-established risk model can be used for prognostic prediction in EOC.
Collapse
|
29
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
30
|
Parigger T, Gassner FJ, Scherhäufl C, Bakar AA, Höpner JP, Hödlmoser A, Steiner M, Catakovic K, Geisberger R, Greil R, Zaborsky N. Evidence for Non-Cancer-Specific T Cell Exhaustion in the Tcl1 Mouse Model for Chronic Lymphocytic Leukemia. Int J Mol Sci 2021; 22:6648. [PMID: 34206229 PMCID: PMC8268419 DOI: 10.3390/ijms22136648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
The reinvigoration of anti-cancer immunity by immune checkpoint therapies has greatly improved cancer treatment. In chronic lymphocytic leukemia (CLL), patients as well as in the Tcl1 mouse model for CLL, PD1-expressing, exhausted T cells significantly expand alongside CLL development; nevertheless, PD1 inhibition has no clinical benefit. Hence, exhausted T cells are either not activatable by simple PD1 blocking in CLL and/or only an insufficient number of exhausted T cells are CLL-specific. In this study, we examined the latter hypothesis by exploiting the Tcl1 transgenic CLL mouse model in combination with TCR transgene expression specific for a non-cancer antigen. Following CLL tumor development, increased PD1 levels were detected on non-CLL specific T cells that seem dependent on the presence of (tumor-) antigen-specific T cells. Transcriptome analysis confirmed a similar exhaustion phenotype of non-CLL specific and endogenous PD1pos T cells. Our results indicate that in the CLL mouse model, a substantial fraction of non-CLL specific T cells becomes exhausted during disease progression in a bystander effect. These findings have important implications for the general efficacy assessment of immune checkpoint therapies in CLL.
Collapse
Affiliation(s)
- Thomas Parigger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Christian Scherhäufl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Aryunni Abu Bakar
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Jan Philip Höpner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
- Department of Biosciences, Paris-Lodron-University Salzburg, 5020 Salzburg, Austria
| | - Alexandra Hödlmoser
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Markus Steiner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Kemal Catakovic
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (T.P.); (F.J.G.); (C.S.); (A.A.B.); (J.P.H.); (A.H.); (M.S.); (K.C.); (R.G.)
| |
Collapse
|
31
|
Wang X, Yu Z, Liu W, Tang H, Yi D, Wei M. Recent progress on MHC-I epitope prediction in tumor immunotherapy. Am J Cancer Res 2021; 11:2401-2416. [PMID: 34249407 PMCID: PMC8263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Tumor immunotherapy has now become one of the most potential therapy for those intractable cancer diseases. The antigens on the cancer cell surfaces are the keys for the immune system to recognize and eliminate them. As reported, the immunogenicity of the tumor antigens could be determined by the binding between the key epitope peptides and MHC molecules. In recent years, the approaches to anticipate the peptides from the candidate epitopes have gradually changed into more efficient methods. Including the improved conventional methods, more diverse methods were coming into view. Here we review the anticipated methods of the tumor associated epitopes that specifically bind with major histocompatibility complex (MHC) class I molecules, and the recent advances and applications of those epitope prediction methods.
Collapse
Affiliation(s)
- Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Dongxu Yi
- The Affiliated Reproductive Hospital of China Medical UniversityNo. 10 Puhe Street, Huanggu District Shenyang, Liaoning, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| |
Collapse
|
32
|
Tian W, Liu X, Wang L, Zheng B, Jiang K, Fu G, Feng W. Deciphering the selective binding mechanisms of anaplastic lymphoma kinase-derived neuroblastoma tumor neoepitopes to human leukocyte antigen. J Mol Model 2021; 27:134. [PMID: 33899124 DOI: 10.1007/s00894-021-04754-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB), as a metastatic form of solid tumor, has a high fatality rate found in early childhood. The two anaplastic lymphoma kinase (ALK) neoepitopes nonamer and decamer used in cancer immunotherapy against NB cancer can selectively bind to the human leukocyte antigen (HLA-B*15:01) groove with high affinities, whereas the native self-peptide is unable to interact with the HLA-B*15:01. Here, we performed molecular dynamics (MD) simulations and subsequent molecular mechanics-generalized born surface area (MM-GBSA) binding free energy calculations to explore the selective binding mechanisms of nonamer and decamer to the HLA-B*15:01 against the self-peptide. MD simulations revealed the significant conformational dynamics of the self-peptide in the HLA-B*15:01 groove against the nonamer and decamer. Binding free energy calculations showed that the binding affinities of HLA-B*15:01-neoepitope complexes were followed in the order decamer > nonamer > self-peptide. Detailed analysis of HLA-B*15:01-neoepitope structural complexes showed that compared to the nonamer, the self-peptide tended to move outward to the solvent, whereas the decamer moved deep to the HLA-B*15:01 groove. These different dynamic observations of the ALK neoepitopes can explain the distinct binding affinities of self-peptide, nonamer, and decamer to the HLA-B*15:01. The results may be useful for the design of more selective ALK neoepitopes.
Collapse
Affiliation(s)
- Wenchao Tian
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xianxian Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Lulu Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Bufeng Zheng
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Kun Jiang
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Guoyong Fu
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Wenyu Feng
- Pediatric Surgery, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China.
| |
Collapse
|
33
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|